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In 1965, Gordon Moore of Fairchild Semiconductor
published what is known as Moore’s law: his observation
and prediction about the growing density of IC chips, and
the precursor to large-scale integration.' Moore’s predic-
tions about LSI chips raised questions about how complex
chips would be designed and used.> As the Fairchild
R&D director, he initiated several research projects
addressing the following LSI design and use issues:

computer-aided design tools (CAD) for LSI chips
cellular logic chips using standard cells

gate array logic chips

packaging for LSI chips

semiconductor memory chips

computer design with LSI chips

As testimony to Moore’s vision, most of these Fairchild
projects subsequently spawned new industries and
companies, such as LSI Logic and several CAD companies.
And, in 1968, Moore and Robert Noyce started Intel.”®
They reasoned that chip density was increasing geomet-
rically, but that IC package pins were growing less than
linearly: IC pin limitations could be an obstacle. Memory
chips required few pins, were regular in design, and the
market for computer memory systems was growing.’ The
advent of LSI chips and memory later fostered the
development of the single-chip CPU at Intel.'*'?

The earlier computer development project in Fair-
child’s R&D, however, did not succeed and is therefore
not well known. I worked as a designer on both the
Fairchild and Intel projects, and I share some insights
about them here.

Programming at Fairchild

In 1964, I joined Fairchild Semiconductor in Moun-
tain View as a Data Processing Department programmer
using several machines—the IBM 1620, 1401, and 360,
and the SDS 930—in assembly language, Cobol, and
Fortran. I wrote software that processed sales order
records with a varying number of variable-length fields.
Customer orders contained an arbitrary list of products,
each with a varying number of requested delivery dates.
Conventional programming languages couldn’t handle
variable-length data, and few could handle data arrays of
varying size. Most systems required fixed-dimension
arrays. Cobol barely supported varying sized records,
with the “occurs depending on”” option, and few systems
supported nested variable-length fields. These limita-
tions forced us to write the sales order processing
software in assembly language, so the code wasn't
machine independent.
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As it happened, Gordon Moore’s R&D computer
development group wanted a practicing programmer to
join their staff, so I transferred to R&D in 1966."% Our
project team developed a new language, Symbol, and the
hardware for directly executing it. The Symbol computer
overcame the data handling problems that I'd encoun-
tered with the sales order entry software. At the expense
of extra hardware, the Symbol computer removed
“artifacts”—introduced to improve execution speed—
of conventional computing languages. Undesirable
programming artifacts, for example, included static data
types and type declaration.

Computer design project

One of Moore’s R&D groups, Digital Systems Research
(see Figure 1) under the direction of Rex Rice, focused on
chip and system packaging. This group had developed
the original Dual In-line Package (DIP). Earlier IC
packages had flexible (flimsy) wires, so mounting these
IC chips on printed circuit boards (PCBs) was difficult.
The DIP, however, had two rows of rigid pins in two
regularly spaced lines, which facilitated automatic
handling of ICs and PCB insertion equipment.

Our computer design project tackled the next level of
packaging, using tens of PCBs with hundreds of IC chips
per board. But what kind of experimental computer
should we build? We soon embarked on the design of
Symbol, a “radical” large-scale, high-level language,
time-sharing computer with a virtual memory.'* One
objective was to use an order of magnitude more
hardware than conventional computers did. Most
college engineering courses stress logic minimization,
so maximizing hardware may sound absurd. But in 1966
we assumed that LSI chip costs would fall dramatically,
and that by using more hardware we might overcome
some limitations of conventional computers—including
variable-length data handling.'>'® The Symbol’s logic
design was hardwired, with no control store or micro-
programming of any kind. Another objective was to
partition the CPU into several functional units that we
could build as LSI chips.'?

Although we thought about eventually using LSI
chips, in the Symbol prototype each of 100-plus two-
sided PCBs (16" X 20") had about 200 conventional gates
and flip-flops (Fairchild CTL). Since an LSI chip would
have few pins, all of Symbol’s functional units were
constrained to have a small number of interfacing signals
to meet the LSI chips’ ultimate packaging constraints. In
retrospect, these LSI considerations were appropriate;
they were the compelling factors for the microcomput-
er’'s development at Intel three years later in 1969.
However, a few key differences distinguish the assump-
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Figure 1. Fairchild Digital Systems Research Group, Symbol IIR computer prototype’s chassis and design
team (1968). (Courtesy of Fairchild Digital Systems Research Dept.)

tions underlying the Symbol and the Intel
microcomputer. First, the Symbol pin limit
was arbitrarily set at 100, whereas the first Intel
microprocessor, the 4004, had only 16 pins.
Next, the Intel microcomputer had only a 4-
bit data word and a dramatically scaled-down
instruction set in order to squeeze the entire
CPU onto a single chip.?*?? Finally, the
Fairchild Symbol project was a ““super smart”
64-bit computer that would have required a
large number of specialized LSI chips. (I found
the contrast stark when I left my work on a
“smart” large computer at Fairchild in 1969 to
work on the 4004—a small, dumb microcom-
puter—at Intel.'>?%%%)

Symbol computer overview

Fairchild’s Symbol computer had both the
compiler and operating system built with
hardware, not software. Several of us on the
Symbol design team were experienced pro-
grammers, familiar with the high-level lan-
guages Cobol, Fortran, and Algol, and with the
inner workings of compilers and operating
system software. Accordingly, many hardware
mechanisms we built were based on known
software techniques. For example, the one-
pass (hardware) translator generated a symbol
table and reverse Polish code as in conven-
tional software interpretive languages. The
translator hardware (compiler) operated at
disk transfer speeds and was so fast there was
no need to keep and store object code, since it
could be quickly regenerated on-the-fly. The
hardware-implemented job controller per-
formed conventional operating system func-
tions. The memory controller provided a

virtual memory for variable-length strings
and is described herein.*?

Dynamically varying variables

Symbol data variables were of arbitrary size
and could change type and size during
program execution. The following Symbol
code fragment emphasizes this point—the
hardware executes three consecutive assign-
ment statements:

X <= llall;

x <= 1.333333333333333333333333333356;
x <= ‘“‘now is the time for all good men to
come to the aid”’;

In the first case, the variable x is assigned a
simple string character. Thereafter, the x value
is replaced by a long number, and finally by a
long string. The Symbol hardware provided for
dynamic allocation and deallocation of stor-
age for variables like x, as well as marking the
data type in the symbol table during program
execution. Most conventional software lan-
guages don't allow variables to change type or
size during program execution.

Symbol floating-point arithmetic hardware
permitted up to 99-decimal digits of mantissa,
and the precision was dynamically user-deter-
mined. Many computers only offer either
single or double precision; the IBM System/
360 Model 44 users controlled floating-point
arithmetic precision via a front panel dial.

The Symbol hardware supported arrays of
dynamically varying sized data, unlike most
environments wherein arrays hold identically
structured data (e.g., a linear list of floating-
point numbers). In Symbol, each vector of an
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array could be a different length, and each data
entry could be a different size. The following
assignment statement changes the scalar var-
iable x into a three-element linear array:

X <= < 1.2 | “now is the time for all” |
1.333333333333356 >;

This array has 3 fields; in this external
representation special field markers ‘|’ sepa-
rate the three data values. Fach array ele-
ment is a different size and can be of a
different data type. Indexing or referencing
into an array in the Symbol language is
conventional, x[2], but locating variable
length data in real time is difficult and linear
searching is slow.

Machine organization

Consistent with the design objectives, we
built Symbol with multiple (hierarchical)
functional units suitable for LSI implementa-
tion. The principal instruction fetch and
interpreter that executed the object code was
the instruction sequencer. The IS in turn called
on several other CPU functional units: FP, for
floating-point arithmetic; SP, for string pro-
cessing; RP, for variable reference processing;
and MC, for memory reading and writing and
management.

Communication between these units was
facilitated via separate buses using control
response codes. Typical service requests and
communication were between the IS and MC;
the IS and the FP and SP; and the IS and RP, but
these units also made requests of the MC for
memory operations.

Memory organization

Recall that Symbol’s memory controller
hardware implemented a virtual memory
system that supported variable-length data.
The MC allocated virtual memory pages from a
free-page list to a user’s memory pool, assigned
data storage within a job’s pages, and did
garbage collection. Each memory page held
twenty-eight 64-byte groups (with additional
group-link words in each page). Except for
simple scalar variables stored within the
symbol table, the smallest unit of user data
was a single group. Larger data used multiple
groups that used forward and backward links.
The MC could traverse data in either direction.
Similarly, arrays utilized as many linked
groups as needed. The MC provided a high-
level string storage memory system and served
other processors by executing “primitive”
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operations. Here are four of the interesting
memory control operations:

® Assign group—AG. This operation allocated
a new group from the storage free list,
(allocated a new page if needed), and
returned the address of the first word in
the group.

® Store and assign—SA. This operation stored
the data word at the address sent, and
returned the next sequential address for the
following word in the same group. If the
group was full, it allocated another group
from the free space pool, and linked the
groups together, and returned the address
of the next free location in the group.

® Fetch and follow—FF. This operation fetched
the data word at the address given and
returned the next sequential address of
data, if in another group, it followed the
link. If this was the end, it returned a null
address.

® Delete string—DS. Using the address sent,
this operation linked all the groups in the
string into the free space list for this job.

The Symbol computer was complex, but
the hierarchy layering of functional hardware
units concealed low-level details from higher-
level units. Accordingly, for the floating-point
(FP) unit, memory could be treated as holding
arbitrary long data. The MC handled the
overhead of following links. As an example
in the FP arithmetic unit (most significant
digit handled first) that I designed, the output
result, up to 99 digits could occupy multiple
data words. The FP started with a request to the
MC to do an assign group, and as each output
word was developed by the FP, the FP called
the MC to store and assign each successive
data word into memory. Temporary work
spaces for partial products or quotients were
similarly requested from the MC; afterward,
the FP called the MC for a delete string for the
temporary variable-length string fields that
were no longer needed.

Summary

The overly ambitious Symbol computer
project delivered a prototype (to Iowa State)
without using LSI but was commercially
uninteresting, chiefly because LSI's impact
on computer CPUs was reflected in dra-
matically lowered hardware costs.”® In a
direction completely opposite that of the
Symbol computer’s hardwired logic design,
the industry turned to microprogramming
to implement complex logic functions—a



more practical, cost-effective approach. More
recently we have seen LSI used for graphics,
but chip designers are challenged on how
to best use more hardware. Hierarchical
hardware systems, like the neglected Symbol
computer, aren’t often considered yet are
worth further analysis in order to simplify
complex design.

Intel’s single-chip CPU was the result of
scaling down a computer’s architecture, not
scaling it up.?*#® Intel later also put operating
system functions into a CPU, but abandoned
that effort.”” Moore’s LSI passion affected
computer design, not through Symbol, but
ultimately via the microcomputer.
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