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Summary Some logical aspects of a digital computer for a space vehicle

are described, and the evolution of its logical design is traced. The intended

application and the characteristics of the computer's ancestry form a frame-

work for the design, which is filled in by accumulation of the many decisions

made by its designers. This paper deals with the choice of word length,

number system, instruction set, memory addressing, and problems of multi-

ple precision arithmetic.

The computer is a parallel, single address machine with more than

10,000 words of 16 bits. Such a short word length yields advantages of

efficient storage and speed, but at a cost of logical complexity in connection

with addressing, instruction selection, and multiple-precision arithmetic.

reason for a given choice is that it is the same as, or the logical

next step to, a choice that was made once before.

A recent conference on airborne computers [Proc. Conf. Space-

borne Computer Eng., Anaheim, Calif., Oct. 30-31, 1962] affords

a view of how other designers treated two specific problems: word

length and number system. All of these computers have word

lengths of the order of 22 to 28 bits, and use a two's complement

system. The AGC stands in contrast in these two respects, and

our reasons for choosing as we did may therefore be of interest

as a minority view.

1. Introduction

In this paper we attempt to record the reasoning that led us to

certain choices in the logical design of the Apollo Guidance Com-

puter (AGC). The AGC is an onboard computer for one of the

forthcoming manned space projects, a fact which is relevant pri-

marily because it puts a high premium on economy and modularity

of equipment, and results in much specialized input and output

circuitry. The AGC, however, was designed in the tradition of

parallel, single-address general-purpose computers, and thus has

many properties familiar to computer designers [Richards, 1955J,

[Beckman et al., 1961]. We will describe some of the problems

of designing a short word length computer, and the way in which

the word length influenced some of its characteristics. These

characteristics are number system, addressing system, order code,

and multiple precision arithmetic.

A secondary purpose for this paper is to indicate the role of

evolution in the AGC's design. Several smaller computers with

about the same structure had been designed previously. One of

these, MOD 3C, was to have been the Apollo Guidance Computer,

but a decision to change the means of electrical implementation

(from core-transistors to integrated circuits) afforded the logical

designers an unusual second chance.

It is our belief, as practitioners of logical design, that designers,

computers and their applications evolve in time; that a frequent

1IEEE Trans., EC-12 (6), 687-697 (December, 1963)

2. Description of the AGC

The AGC has three principal sections. The first is a memory, the

fixed (read only) portion of which has 24,576 words, and the

erasable portion of which has 1024 words. The next section may
be called the central section; it includes, besides an adder and a

parity computing register, an instruction decoder (SO), a memory

address decoder (S), and a number of addressable registers with

either special features or special use. The third section is the

sequence generator which includes a portion for generating various

microprograms and a portion for processing various interrupting

requests.

The backbone of the AGC is the set of 16 write busses; these

are the means for transferring information between the various

registers shown in Fig. 1. The arrowheads to and from the various

registers show the possible directions of information flow.

In Fig. 1, the data paths are shown as solid lines; the control

paths are shown as broken lines.

Memory: fixed and erasable

The Fixed Memory is made of wired-in "ropes" [Alonso and

Laning, 1960], which are compact and reliable devices. The num-

ber of bits so wired is about 4 X 105 . The cycle time is 12 /xsec.

The erasable memory is a coincident current system with the

same cycle time as the fixed memory. Instructions can address

registers in either memory, and can be stored in either memory.
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Fig. 1. AGC block diagram.

The only logical difference between the two memories is the

inability to change the contents of the fixed part by program steps.

Each word in memory is 16 bits long (15 data bits and an odd

parity bit). Data words are stored as signed 14 bit words using

a one's complement convention. Instruction words consist of 3

order code bits and 12 address code bits.

The contents of the address register S uniquely determine the

address of the memory word only if the address lies between octal

0000 and octal 5777, inclusive. If the address lies between octal

6000 and octal 7777, inclusive, the address in S is modified by the

contents of the memory bank register MB. The modification con-

sists in adding some integral multiplies of octal 2000 to the address

in S before it is interpreted by the decoding circuitry. The memory
bank register MB is itself addressable; its address, however, is not

modified by its own contents.

Transfers in and out of memory are made by way of a memory
local register G. For certain specific addresses, the word being

transferred into G is not sent directly, but is modified by a special

gating network. The transformations on the word sent to G are

right shift, left shift, right cycle, and left cycle.

Central section

The middle part of Fig. 1 shows the central section in block form.

It consists of the address register S and the memory bank register

MB both of which were mentioned above. There is also a block

of addressable registers called "central and special registers,"

which will be discussed later, an arithmetic unit, and an instruc-

tion decoder register SQ.

The arithmetic unit has a parity generating register and an

adder. These two registers are not explicitly addressable.

The SQ register bears the same relation to instructions as the

S register bears to memory locations; neither S nor SQ are ex-

plicitly addressable.

The central and special registers are A, Q, Z, LP, and a set of

input and output registers. Their properties are shown in Table 1.

Sequence generator

The sequence generator provides the basic memory timing, the

sequences of control pulses (microprograms) which constitute an

instruction, the priority interrupt circuitry, and a number of scal-

ing networks which provide various pulse frequencies used by the

computer and the rest of the navigation system.

Instructions are arranged so as to last an integral number of

memory cycles. The list of 11 instructions is treated in detail in

Sec. 6. In addition to these there are a number of "involuntary"

sequences, not under normal program control, which may break

into the normal sequence of instructions; these are triggered either

by external events, or by certain overflows within the AGC, and
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Table 1 Special and central registers

Octal

Register (s) address Purpose and/ or properties

A 0000 Central accumulator. Most instructions refer

to A.

Q 0001 If a transfer of control (TC) occurred at L,

(Q) = L + 1.

Z 0002 Program counter. Contains L + 1, where L
is the address of the instruction presently

being executed.

LP 0003 Low product register. This register modifies

words written into it by shifting them in a

special way.

IN ... Several registers which are used for sampling

either external lines, or internal computer
conditions such as time or alarms.

OUT . • • Several output registers whose bits control

switches, networks, and displays.

may be divided into two categories: counter incrementing and

program interruption.

Counter incrementing may take place between any two mem-

ory cycles. External requests for incrementing a counter are stored

in a counter priority circuit. At the end of every memory cycle

a test is made to see if any incrementing requests exist. If not,

the next normal memory cycle is executed directly, with no time

between cycles. If a request is present, an incrementing memory

cycle is executed. Each "counter" is a specific location in erasable

memory. The incrementing cycle consists of reading out the word

stored in the counter register, incrementing it (positively or nega-

tively), or shifting it, and storing the results back in the register

of origin. All outstanding counter incrementing requests are proc-

essed before proceeding to the next normal memory cycle. This

type of interrupt provides for asynchronous incremental or serial

entry of information into the working erasable memory. The pro-

gram steps may refer directly to a "counter" to obtain the desired

information and do not have to refer to input buffers. Overflows

from one counter may be used as the input to another. A further

property of this system is that the time available for normal pro-

gram steps is reduced linearly by the amount of counter activity

present at any given time.

Program interruption occurs between normal program steps

rather than between memory cycles. An interruption consists of

storing the contents of the program counter and transferring con-

trol to a fixed location. Each interrupt line has a different location

associated with it. Interrupting programs may not be interrupted,

but interrupt requests are not lost, and are processed as soon as

the earlier interrupted program is resumed. Calling the resume

sequence, which restores the program counter, is initiated by

referencing a special address.

3. Word length

In an airborne computer, granted the initial choice of parallel

transfer of words within it, it is highly desirable to minimize the

word length. This is because memory sense amplifiers, being high-

gain class A amplifiers, are considerably harder to operate with

wide margins (of temperature, voltages, input signal) than, say,

the circuits made up of NOR gates. It is best to have as few of

these as possible. Furthermore, the number of ferrite-plane inhibit

drivers equals the number of bits in a word in this case. Similarly,

the time required for a carry to propagate in a parallel adder is

proportional to the word length, and in the present case, this factor

could be expected to affect the microprogramming of instructions.

The initial intent, then, was to have as short a word length as

possible.

Another initial choice is that the AGC should be a "common

storage" machine, which means that instructions may be executed

from erasable memory as well as from fixed memory, and that data

(obviously constants, in the case of fixed memory) may be stored

in either memory. This in turn means that the word sizes of both

types of memory must be compatible in some sense; for the AGC,

the easiest form of compatibility is to have equal word lengths.

So-called "separate storage" solutions which allow different word

lengths for instructions and data can be made to work [Walend-

ziewicz, 1962] but they have a drawback in that three memories

are then required: a data memory (erasable), and two fixed memo-

ries, one for instructions and one for constants. In addition, we

have found that separate storage machines are more awkward to

program, and use memory less efficiently, than common storage

machines.

There are three principal factors in the choice of word length.

These are:

1 Precision desired in the representation of navigational vari-

ables.

2 Range of the input variables which are entered serially and

counted.
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3 Instruction word format. Division of instruction words into

two fields, one for operation code and one for address.

As a start, the choice of word length (15 bits) for two previous

machines in this series was kept in mind as a satisfactory word

length from the point of view of mechanization; i.e., the number

of sense amplifiers, inhibit drivers, the carry propagation time, etc.,

were all considered satisfactory. The act of "choosing" word length

really meant whether or not to alter the word length, at the time

of change from MOD 3C to the AGC, and in particular whether

to increase it. The influence of the three principal factors will be

taken up in turn.

Precision of data words

The data words used in the AGC may be divided roughly into

two classes: data words used in elaborate navigational computa-

tions, and data words used in the control of various appliances
in the system. Initial estimates of the precision required by the

first class ranged from 27 to 32 bits, 0(10
8±1

).
The second class

of variables could almost always be represented with 15 bits. The

fact that navigational variables require about twice the desired

15-bit word length means that there is not much advantage to

word sizes between 15 and 28 bits, as far as precision of represen-

tation of variables is concerned, because double-precision numbers

must be used in any event. Because of the doubly signed number

representation for double-precision words, the equivalent word

length is 29 bits (including sign), rather than 30, for a basic word

length of 15 bits.

The initial estimates for the proportion of 15-bit vs 29-bit

quantities to be stored in both fixed and erasable memories indi-

cated the overwhelming preponderance of the former. It was also

estimated that a significant portion of the computing had to do

with control, telemetry and display activities, all of which can be

handled more economically with short words. A short word length

allows faster and more efficient use of erasable storage because

it reduces fractional word operations, such as packing and editing;

it also means a more efficient encoding of small integers.

Range of input variables

As a control computer, the AGC must make analog-to-digital

conversions, many of which are of shaft angles. Two principal
forms of conversion exist: one renders a whole number, the other

produces a train of pulses which must be counted to yield the

desired number. The latter type of conversion is employed by the

AGC, using the counter incrementing feature.

When the number of bits of precision required is greater than

the computer's word length, the effective length of the counter

must be extended into a second register, either by programmed

scanning of the counter register, or by using a second counter

register to receive the overflows of the first. Whether programmed

scanning is feasible depends largely on how frequently this scan-

ning must be done. The cost of using an extra counter register

is directly measured in terms of the priority circuit associated

with it.

In the AGC, the equipment saved by reducing the word length
below 15 bits would probably not match the additional expense
incurred in double-precision extension of many input variables.

The question is academic, however, since a lower bound on the

word length is effectively placed by the format of the instruction

word.

Instruction word format

An initial decision was made that instructions would consist of

an operation code and a single address. The straightforward
choices of packing one or two such instructions per word were

the only ones seriously considered, although other schemes, such

as packing one and a half instructions per word, are possible

[England, 1962]. The previous computers MOD 3S and MOD 3C
had a 3-bit field for operation codes and a 12-bit field for addresses,

to accommodate their 8 instruction order codes and 4096 words

of memory. In the initial core-transistor version of the AGC (i.e.,

MOD 3C), the 8 instruction order codes were in reality augmented

by the various special registers provided, such as shift right, cycle

left, edit, so that a transfer in and out of one of these registers

would accomplish actions normally specified by the order code

(see Sec. 6). These registers were considered to be more economical

than the corresponding instruction decoding and control pulse

sequence generation. Hence the 3 bits assigned to the order code

were considered adequate, albeit not generous. Furthermore, as

will be seen, it is possible to use an indexing instruction so as to

increase to eleven the number of explicit order codes provided
for.

The address field of 12 bits presented a different problem. At

the time of the design of MOD 3C we estimated that 4000 words

would satisfy the storage requirements. By the time of redesign
it was clear that the requirement was for 105 words, or more, and

the question then became whether the proposed extension of the

address field by a bank register (see Sec. 7) was more economical

than the addition of 2 bits to the word length. For reasons of

modularity of equipment, adding 2 more bits to the word length
would result in adding 2 more bits to all the central and special

registers, which amounts to increasing the size of the nonmemory
portion of the AGC by 10 per cent.
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In summary, the 15-bit word length seemed practical enough

so that the additional cost of extra bits in terms of size, weight,

and reliability did not seem warranted. A 14-bit word length was

thought impractical because of the problems with certain input

variables, and it would further restrict the already somewhat

cramped instruction word format. Word lengths of 17 or 18 bits

would result in certain conceptual simplicities in the decoding

of instructions and addresses, but would not help in the represen-

tation of navigational variables. These require 28 bits, and so they

must be represented to double precision in any event.

4. Number representation

Signed numbers

In the absence of the need to represent numbers of both signs,

the discussion of number representation would not extend beyond
the fact that numbers in AGC are expressed to base two. But the

accommodation of both positive and negative numbers requires

that the logical designer choose among at least three possible forms

of binary arithmetic. These three principal alternatives are: (1)

one's complement, (2) two's complement, and (3) sign and magni-

tude [Richards, 1955].

In one's complement arithmetic, the sign of a number is re-

versed by complementing every digit, and "end around carry" is

required in addition of two numbers.

In two's complement arithmetic, sign reversal is effected by

complementing each bit and adding a low order one, or some

equivalent operation.

Sign and magnitude representation is typically used where

direct human interrogation of memory is desired, as in "post-

mortem" memory dumps, for example. The addition of numbers

of opposite sign requires either one's or two's complementation

or comparison of magnitude, and sometimes may use both. No

advantage is offered in efficiency with the possible exception of

sign changing, which only requires changing the sign bit. A disad-

vantage is engendered in magnetic core logic machines by the

extra equipment needed for subtraction or conditional recomple-

mentation.

The one's complement notation has the advantage of having

easy sign reversal, which is equivalent to Boolean complementa-

tion; hence a single machine instruction performs both functions.

Zero is ambiguously represented by all zero's and by all one's,

so that the number of numerical states in an n-bit word is 2" — 1.

Two's complement arithmetic is advantageous where end

around carry is difficult to mechanize, as is particularly true in

serial computers. An n-bit word has 2" states, which is desirable

for input conversions from such devices as pattern generators,

geared encoders, or binary scalers. Sign reversal is awkward, how-

ever, since a full addition is required in the process.

The choice in the case of the AGC was to use one's complement
arithmetic in general processing, and two's complements for cer-

tain input angle conversions. Since the only arithmetic done in

the latter case is the addition of plus or minus one, the two's

complement facility is provided simply by suppressing end around

carry and using the proper representation of minus one. The latter

is stored as a fixed constant, so that no sign reversal is required.

Modified one's complement system

In a standard one's complement adder, overflow is detected by

examining carries into and out of the sign position. These overflow

indications must be "caught on the fly" and stored separately if

they are to be acted upon later. The number system adopted in

the AGC has the advantage of being a one's complement system

with the additional feature of having a static indication of over-

flow. The implementation of the method depends on the AGC's

not using a parity bit in most central registers. Because of certain

modular advantages, 16, rather than 15, columns are available in

all of the central registers, including the adder. Where the parity

bit is not required, the extra bit position is used as an extra column.

The virtue of the 16-bit adder is that the overflow of a 15-bit sum

is readily detectable upon examination of the two high order bits

of the sum (see Fig. 2). If both of these bits are the same, there

is no overflow. If they are different, overflow has occurred with

the sign of the highest order bit.

The interface between the 16-bit adder and the 15-bit memory
is arranged so that the sign bit of a word coming from memory
enters both of the two high order adder columns. These are de-

noted S2 and Sj since they both have the significance of sign bits.

When a word is transferred from the accumulator A to memory,

only one of these two signs can be stored. Our choice was to store

the S
2 bit, which is the standard one's complement sign except

in the event of overflow, in which case it is the sign of the two

operands. This preservation of sign on overflow is an important

asset in dealing with carries between component words of multi-

ple-precision numbers (see Sec. 5).

In a standard one's complement system, a series of additions

may result in subtotals which overflow, yet still produce a valid

sum so long as the total does not exceed the capacity of one word.

In a modified one's complement system, however, where sign is

preserved on overflow, this is no longer true; and the total may

depend on the order in which the numbers are added; this is not

a serious drawback, but it must be accounted for in all phases

of logical design and programming.
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that arises when the maximum multiple-precision number is ex-

ceeded.

The independent sign method has a pitfall arising from the fact

that every number has two representations, either one of which

may occur as a sum. There are some numbers for which one of

the representations exceeds the capacity of the most significant

component. The overflow is false in the sense that the double-

precision capacity is not exceeded, only the single word capacity

of the upper component. Sign reconciliation can be used in this

case to yield an acceptable representation. This problem can be

avoided if all numbers are scaled so that none are large enough

to produce false overflows. Such a restriction is not necessary,

however, since the false overflow condition arises infrequently and

can be detected at no expense in time. The net cost of reconcilia-

tion is therefore very low.

Multiplication and division

For triple and higher orders of precision, multiplication and divi-

sion become excessively complex, unlike addition and subtraction

where the complexity is only linear with the order of precision.

The algorithm for double-precision multiplication is directly

applicable to numbers in the independent sign notation. False

overflow does not arise, and the treatment of interflow is simplified

by an automatic counter register which is incremented when

overflow occurs during an add instruction. The sign of the counter

increment is the same as the sign of the overflow; and the incre-

ment takes place while one of the product components of next

higher order is stored in that counter.

Double-precision division is exceptional in that the independ-

ent sign notation may not be used; both operands must be made

positive in identical sign form, and the divisor normalized so that

the left-most nonsign bit is one.

Triple precision

A few triple-precision quantities are used in the AGC. These are

added and subtracted using independent sign notation with inter-

flow and overflow features the same as those used for double-

precision arithmetic.

6. Instruction set

Basic design criteria

The implicit requirements for any von Neumann-type machine

demand that facilities exist for:

1 Fetching from memory

2 Storing in memory

3 Negating (complementing)

4 Combining two operands (e.g., addition)

5 Address modification (more generally, executing as an in-

struction the result of arithmetic processing)

6 Normal sequencing (to each location from which an instruc-

tion can be executed there corresponds one location whose

contents are the next instruction)

7 Conditional sequence changing, or transfer of control

8 Input

9 Output

An instruction can, of course, provide several of these facilities.

For instance, some computers have an instruction that subtracts

the contents of a memory location from an accumulator and leaves

the result in that memory location and in the accumulator; this

instruction fulfills all of requirements 1-4 above. Requirement 5

is met in a somewhat primitive manner if instructions can be

executed from erasable memory, and is met elegantly by the use

of index registers. Still another scheme, somewhat similar to one

used in the Bendix G-20, is employed in the AGC. Requirement

6 is usually fulfilled by having an instruction location counter

which contains the address of the next instruction to be executed,

and is incremented by one when an instruction is fetched. Alter-

natively, each instruction may include the address of the next

instruction, as is often done in machines having drum memories.

In the AGC, as in most short-word computers, the former method,

with one single-address instruction per word, is clearly the simplest

and cheapest. Requirement 7 is generally met by examining a

condition such as the sign of an accumulator and, if the condition

is satisfied, either incrementing the instruction location counter

(skipping), or using an address included in the instruction as that

of the next instruction (conditional transfer of control). An uncon-

ditional transfer of control is usual but not necessary, since any

desired condition can be forced. Most machines have special

input-output instructions to satisfy requirements 8 and 9. In the

AGC, however, since input and output is through addressable

registers, input is subsumed under fetching from memory, and

output under storing in memory. Counter incrementing and pro-

gram interruption aid these functions also.

Further criteria

The major goals in the AGC were efficient use of memory, reason-

able speed of computing, potential for elegant programming, effi-
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cient multiple precision arithmetic, efficient processing of input

and output, and reasonable simplicity of the sequence generator.

The constraints affecting the order code as a whole were the word

length, one's complement notation, parallel data transfer, and the

characteristics of the editing registers. The ground rules governing

the choice of instructions arose from these goals and constraints.

a Three bits of an instruction word are devoted to operation

code.

b Address modification must be convenient and efficient.

c There should be a multiply instruction yielding a double

length product.

d Treatment of overflow on addition must be flexible.

e A Boolean combinatorial operation should be available.

/ No instruction need be devoted to input, output, or shifting.

This list is by no means complete, but gives a good indication of

what kind of computer the AGC has to be. In the following para-

graphs the ways in which the instructions fulfill the above require-

ments are described.

Details of the instruction set

In the listing that follows, L denotes the location of the instruction;

K denotes the data address contained in the instruction. Paren-

theses mean "content of," and the leftward arrow means that the

register named at the arrowhead is set to the quantity named to

the right.

L: TC K; Transfer Control

Q <- L + 1; go to K.

This is the primary method of transferring control to any stated

location, and thus meets part of requirement 7. The setting of the

return address register Q renders complex subroutines feasible. TC

Q may be used to return from a subroutine (with no other TC's)

because the binary number "L + 1" is the same as the binary word

"TC L + 1," by virtue of the TC code being all zeros. TC A
behaves like an "execute" instruction, executing whatever instruc-

tion is in A, because Q follows A in the address pattern, see

Table 1.

L: CCS K; Count, Compare, and Skip

If(K)> + 0,A*-(K) -l,noskip;if(K) = +0, A <- +0, skip

to L + 2; if (K) < -0, A <- 1 - (K), skip to L + 3; if (K) =

-0, A <- +0, skip to L + 4.

This instruction fulfills the remainder of requirement 7 and

provides several features. It is clear that in a machine with a 3-bit

operation code there should be only one code devoted entirely to

branching, if at all possible. It is inefficient to program a zero test

using only a sign-testing code; it is even more inefficient to pro-

gram a sign test using only a zero-testing code. This instruction

was therefore designed to test both types of conditions simultane-

ously. It has to be a four-way branch, and since there is only one

address per instruction, it follows that CCS must be a skipping-

type branch.

The function of (K) delivered to A is the diminished absolute

value (DABS). It serves two primary purposes: to do most of the

work in generating an absolute value, and to apply a negative

increment to the contents of a loop-counting register, so that CCS
has some of the properties of TIX in the IBM 704.

L: INDEX K; Index using K
Use (L + 1) + (K) as the next instruction.

In a short-word machine where there is no room in the instruc-

tion word to specify indexing or indirect addressing, this code

meets requirement 5 in a way far superior to forming an instruction

and placing it in A or in erasable memory for execution. INDEX

operates on whole words, so that the operation code as well as

the address may be modified. It may be used recursively (consider

the implications of several INDEX'S in succession, assuming that

no operation codes are modified). Finally, it permits more than

8 operation codes to be specified in 3 bits, since overflow of the

indexing addition is detectable.

L: XCH K; Exchange

(A)^(K).
This instruction meets requirements 1, 2, and 8. When K is

in fixed memory, it is simply a data-fetching (clear and add) code.

Its use with erasable memory aids efficiency by reducing the need

for temporary storage. XCH is also an important input instruction

in a machine where addressable counters, incremented in response

to external events, are an input medium, because a counter can

be read out and reset (to zero or any desired value) by XCH with

no chance of missing a count.

L: CS K; Clear and Subtract

A «- -(K).

CS is the primary means of sign-changing and logical negation,

and so fulfills requirements 1 and 3. Since there is no clear and

add instruction, it is the usual operation for nondestructive readout

of erasable memory in simple data transfers, that is, when no

addition or other arithmetic is required. Usually the programming
can be arranged so that complementing during transfer is accept-

able; otherwise the CS can be followed by CS A before storing.

L: TS K; Transfer to Storage

K <- (A); if (A) includes ± overflow, A <- ±1, skip to L + 2.
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This instruction is the primary means of transfers to memory
and output, satisfying requirements 2 and 9. It is also the most

convenient method of testing for overflow. Since A and the other

central registers have two sign positions, overflow indication is

retained in a central register. TS always stores (A) and tests

whether overflow is present. If K is in erasable memory and is

not a central register, the lower-order sign bit S
l
is not transmitted;

this is the process or overflow correction. If positive overflow

indication is present in A, TS skips over the next instruction and

sets A < 1-1 ( + 1 denotes octal 000001); if negative overflow is

present, TS skips over the next instruction and sets A < 1
(
— 1

denotes octal 177776); otherwise (A) are unchanged. The sequence

TS K
XCH ZERO (ZERO in fixed memory)

suffices to store in K an overflow-corrected word of a multiple-

precision sum and leave in A the interflow to the next higher-order

part. TS A skips if either type of overflow is present, but leaves

all 16 bits of (A) unchanged.

Finally, a computed transfer of control may be achieved by

TS Z because Z is the program counter; only the low-order 12

bits of (A) are significant, being the address of the instruction to

which control is transferred. Overflow in (A) in this case does not

affect the transfer but sets A <— ±1.

L: AD K; Add

A <^(A) + (K); if the final (A) includes ± overflow,

OVCTR «- (OVCTR) ±1.

Addition is the most frequently used combinatorial operation

(requirement 4). The property of OVCTR is used chiefly in devel-

oping double-precision products and quotients, partly because the

additions in these processes are less susceptible to false overflow

than are multiple-precision additions.

L: MASK K; Mask

A <- (A) n (K).

This is the only combinatorial Boolean instruction, and may
be used with CS to generate any Boolean function.

Extracodes

The AGC instruction set was carried over in large part from its

ancestor, MOD 3C [Alonso et al., 1961]. All instructions of MOD
3C were retained in the AGC, modifications and additions being

adopted where a substantial increase in computing power could

be obtained at small cost. The MOD 3C instruction set was like

the one described above for the AGC with two major exceptions:

first, instead of a mask instruction, MOD 3C had a multiply in-

struction. Second, the transfer to storage instruction did not in-

clude the property of skipping on overflow, although it did have

properties which aided masking.

After the design of MOD 3C was completed, it was discovered

that the INDEX instruction could be used to expand the instruc-

tion set beyond eight instructions by producing overflow in the

instruction word following the INDEX. For example, the addition

of octal 47777 to the instruction word "CS K" in the course of

an INDEX instruction will cause negative overflow, producing MP
K, a multiply instruction with operand address K.

In order to implement the extracodes in the AGC, it was

necessary to provide a path from the high-order 4 bits of the adder

to the unaddressable sequence selection register SQ. Part of this

path is the unaddressable buffer register B; these requirements

helped to suggest the benefits of retaining two sign bit positions

in all the central registers.

In principle, eight additional instruction codes can be obtained

by causing overflow, but we did not feel obliged to use them all.

Because every extracode must be indexed, the instructions chosen

for this class had two properties to some degree: they are normally

indexed, or they take long enough so that the cost of indexing

without address modification is small. All the extracodes are com-

binatorial, and therefore relate to requirement 4.

L: MP K; Multiply

A <— upper part, LP «— lower part, of (A)
•

(K); the two words

of the product agree in sign, which is determined strictly by the

sign bits of the operands.

Experience with MOD 3C showed that it was worthwhile

making a completely algebraic, self-contained multiply instruction,

especially in doing double-precision multiplication whose oper-

ands have independent signs. The AGC multiply is much faster

than that of MOD 3C, being limited by adder carry propagation

time rather than core-switching time.

L: DV K; Divide

A <— quotient, Q <
|

remainder |, of (A)/(K); LP <— nonzero

number with the sign of the quotient.

Many facets of AGC design originally adopted for other reasons

combined to make a divide instruction inexpensive. The foremost

of these is the nature of the editing registers, which are in the

standard erasable memory and have no special wiring. The special

properties of these registers are supplied by a shift or cycle of the

word being written into the memory local register G, when the

address of an editing register is selected. The central loop of DV
selects such an address and inhibits memory operations, so that

all the left shifts required in division are accomplished in the G

register while the editing register itself remains unchanged. The

microprogrammed nature of order construction makes a restoring
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algorithm more efficient than a nonrestoring one. The quotient

delivered to A has a sign determined according to normal algebraic

rules by the signs of (A) and (K); the same sign is available in LP

to aid in determining the correct sign of the remainder from those

of the divisor and quotient in case the quotient has been absorbed

by subsequent processing. DV is not usually indexed, but it pays

such large benefits in space and time, especially in double-pre-

cision division, that the cost of extracode indexing is negligible.

If the divisor is less in magnitude than the dividend, or is zero,

the quotient has correct sign and, in general, maximum magnitude.

No infinite loop results in any case.

L: SU K; Subtract

A <— (A)
—

(K); if the final (A) includes ± overflow,

OVCTR<-(OVCTR)±l.
The primary justification for this instruction is that it allows

multiple-precision addition subroutines to be changed into multi-

ple-precision subtract subroutines merely by changing the indexing

quantity. There are occasions in the middle of involved calcula-

tions where it is clumsy to construct a subtraction out of comple-

mentations and additions, especially when the sign of an overflow

is of interest. Since SU differs from AD only in that the operand
from memory is read out of the complement side of the buffer

register B rather than the direct side, its cost is virtually zero.

This last is not necessarily true when using core-transistor logic,

or two's complement notation.

17.

Expansion of memory addressing

The AGC's 12-bit address field is insufficient for specifying directly

all the registers in its memory. This predicament seems increas-

^ingly

to afflict most computers, either because indirect addressing
is assumed as a necessary evil from the start or, as was our case,

because our earliest estimates of memory requirements were wrong

by a factor of two or three. The method of indirect addressing

we arrived at uses a bank register MB, but with an important
modification: the 5-bit number stored in MB has no effect unless

the address is in the range (octal) 6000 to 7777. The MB register

contents are not interpreted as higher-order bits of the address;

they are interpreted as integers which specify which bank of 1024

words is meant in the event of the address part of the instruction

being in the ambiguous range. The over-all map of memory is

shown in Table 2. The unambiguous, fixed memory addresses

domain has come to be known as "fixed-fixed."

It is interesting that this method of extending the addressing

capability was not the result of trying to improve upon more

conventional methods, but was almost a consequence of the phys-

Table 2 Address part of an instruction word

(Decimal )

0-3071 Fixed and erasable memory; unambiguous addresses.

3072-4095 Fixed memory, ambiguous address. Contents of MB
used to resolve the ambiguity. Up to 32 such banks

are possible.

ical difference between fixed and erasable memory. Since all data

other than constants are concentrated in the erasable memory,
these had to be exempt from modification by the MB register. An
alternative arrangement, whereby only the addresses of instruc-

tions (as opposed to the addresses within an instruction word) are

modified, would be deficient in that it would allow only instruc-

tions to be stored in banks; there would be no way to refer to

constants stored in banks, or to use bank addresses to store argu-

ments of arithmetic operations. The possibility of using two bank

registers is worthy of serious consideration [Casale, 1962], but it

did not occur to us.

In addition to the addresses in erasable, it is necessary to

exempt the addresses of interrupting programs (i.e., the addresses

to which a program interrupt transfers control) from the influence

of the MB register. It was clear that it would be valuable to have

a large body of unambiguous addresses for use in executive and

dispatcher programs.

The most frequent and critical applications of bank changing
are in the AGC's interpretive mode. Most of the programs relevant

to navigation are written in a parenthesis-free pseudocode notation

for economy of storage. An interpretive program executes these

pseudocode programs by performing the indicated data accesses

and subroutine linkages.

The format of the notation permits two macrooperators (e.g.,

"double-precision vector dot product") or one data address to be

stored in one AGC word. Thus data addresses appear as full 15-bit

words, potentially capable of addressing up to 32,768 registers.

Each such address is examined in the interpreter and the contents

of the bank register are changed if necessary; preparation is also

made for subsequent return if a subroutine call is being made.

The structure of the interpretive program, and its relationship

to the computer characteristics discussed in this paper will not

be taken up here except to point out that parenthesis-free notation

is particularly valuable in a short-word computer such as the AGC.
It permits a very substantial expansion of the address and pseudo-

operation fields without sacrificing efficiency in program storage

[Muntz, 1962].
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The conversion of a 15-bit address into a bank number and an

ambiguous 12-bit address is as follows: the top 5 bits correspond

directly to the desired bank number. The remaining lower-order

10 bits, logically added to octal 6000, form the proper ambiguous

address. If the 15-bit address is less than octal 6000, however, the

address is in erasable or fixed-fixed memory. In this case the logical

addition of octal 6000 is suppressed.

It is possible to have a program in one bank call a closed

subroutine in another bank, and then have control returned to the

proper place in the bank of origin. This is done by means of a

short bank switching routine which is in fixed-fixed memory.

One potential awkwardness about this method of extending

memory addresses is the possible requirement for a routine in one

bank to have access to large amounts of data stored in another.

There are many programming solutions to this problem, obviously

at a cost in operating speed; a better solution would be to have

two bank registers. No problems of this nature have yet material-

ized, however.
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APPENDIX 1 BACKGROUND FOR AGC DESIGN

Name,

date

completed

Memory size

(F = fixed

E = erasable)

Number

of bits

Number of

instructions

Purpose

of design

Features incorporated

at this stage

MOD 1,

1960

F:448

E: 64
11 and parity 4 plus involuntary Feasibility Prototype

MOD 2,


