
Chapter 5

The DEC PDP-8

Introduction 1

The PDP-8 is a single-address, 12-bit-word computer of the second

generation. It is designed for task environments with minimum

arithmetic computing and small Mp requirements. For example,

it can be used to control laboratory devices, such as gas chromoto-

graphs or sampling oscilloscopes. Together with special T's, it is

programmed to be a laboratory instrument, such as a pulse height

analyzer or a spectrum analyzer. These applications are typical

of the laboratory and process control requirements for which the

machine was designed. As another example, it can serve as a

message concentrator by controlling telephone lines to which

typewriters and Teletypes are attached. The computer occasion-

ally stands alone as a small-scale general-purpose computer. Most

recently it was introduced as a small-scale general-purpose time-

sharing system, based on work at Carnegie-Mellon University and

DEC. It is used as a KT(display) when it has a P(display; '338);

this C is discussed in Chap. 25. The PDP-8 has achieved a produc-

tion status formerly reserved for IBM computers; about 5,000 have

been constructed.

PDP-8 differs from the character-oriented 8-bit computer in

Chap. 10; it is not unlike the 16-bit computers, such as the IBM

1800 in Chap. 33. The PDP-8 is typical of several 12-bit computers:

the early CDC-160 series (1960), CDC-6600 Peripheral and Con-

trol Processor (Chap. 39), the SDS-92, M.I.T. Lincoln Laboratory's

Laboratory Instrument Computer LINC (1963), Washington Uni-

versity's Programmed Console (1967), and the SCC 650 (1966).

The PDP-5 (transistor, 1963), PDP-8 (1965), PDP-8/S (serial,

1966) and PDP-8/I (integrated circuit, 1968), PDP-8/L (integrated

circuit, 1968) constitute a series of computers based on evolving

technology. All of these have identical ISP's. Their PMS structures

are nearly identical, and all components other than Pc and Mp
are compatible throughout the series. The LINC-8-338 PMS struc-

ture is presented in Fig. 1. A cost performance tradeoff took place

in the PDP-8 (parallel-by-word arithmetic) and PDP-8/S (serial-

by-bit arithmetic) implementations. A PDP-8/S is one-fifteenth of

a PDP-8 at one-half the cost. The performance factors can be

attributed to 8/1.5 or 5.3 for Mp speed and a factor of about 3

for logical organization, even though the same 2-megahertz logic

clock is used in both cases. The PDP-8 is about 6.7 times a PDP-5.

1-The initials in the title stand for Digital Equipment Corporation Pro-

grammed Data Processor.

The ISP of the PDP-8 Pc is about the most trivial in the book.

It has only a few data operators, namely, <—,+, —
(negate), -j,

A, / 2, X 2, (optional) X, /, and normalize. It operates on words,

integers, and boolean vectors. However, there are microcoded

instructions, which allow compound instructions to be formed in

a single instruction.

The computer is straightforward and illustrates the levels dis-

cussed in Chap. 1. We can easily look at it from the "top down."

The C in PMS notation is

C('PDP-8; technology:transistors; 12 b/w;

descendants:'PDP-8/S, 'PDP-8/I, 'PDP-8/L;

antecedents: 'PDP-5;

Mp(core; #0:7; 4096 w; tc:1.5 /is/w);

Pc(Mps(2
~ 4 w);

instruction length:l|2 w
address/instruction : 1 ;

operations on data/od:(<— , +, —\, A, —(negate), X 2,

/2, +1)

optional operations:(X, /, normalize);

data-types:word, integer, boolean vector;

operations for data access:4);

P(display; '338);

P(c; 'LINC);

S('I/0 Bus; 1 Pc; 64 K);

Ms(disk, 'DECtape, magnetic tape);

T(paper tape, card, analog, cathode-ray tube))

ISP

The ISP is presented in Appendix 1 of this chapter (including the

optional Extended Arithmetic Element/EAE). The 2 12-word Mp
is divided into 32 fixed-length pages of 128 words each. Address

calculation is based on references to the first page, Page„0, or to

the current page of the Program Counter/PC. The effective-

address calculation procedure provides for both direct and indirect

reference to either the current page or the first page. This scheme

allows a 7-bit address to specify local page addresses.

A 2 15-word Mp is available on the PDP-8, but addressing

greater than 2 12 words is comparatively inefficient. In the extended

range, two 3-bit registers, the Program Field and Data Field

Begisters, select which of the eight 2 12-word blocks are being

actively addressed as program and data.

There is an array of eight registers, called the Auto„index

registers, which resides in Page^O. This array (Auto„index[0:

11]<0:7>:= M[108:178]<0:11>) possesses the useful property that

whenever an indirect reference is made to it, a 1 is first added

120

Chapter 5 The DEC PDP-8 121

I

122 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

to its contents. (That is, there is a side effect to referencing.) Thus,

address integers in the register can select the next member of a

vector or string for accessing.

The instruction-set-execution definition can also be presented

as a decoding diagram or tree (Fig. 2). Here, each block represents

an encoding of bits in the instruction word. A decoding diagram

allows one more descriptive dimension than the conventional,

linear ISP description, revealing the assignment of bits to the

instruction. Figure 2 still requires ISP descriptions for Mp, Mps,
the instruction execution, the effective-address calculation, and

the interpreter. Diagrams such as Fig. 2 are useful in the ISP

design to determine which instruction numbers are to be assigned

to names and operations and instructions which are free to be

assigned (or encoded).

There are eight basic instructions encoded by 3 bits, that is

op<0:2> := i<0:2>, where instruction/i<0:ll>. Each of the first six

instructions (where < op < 6) have the 4 address operand deter-

mination modes (thus yielding essentially 24 instructions). The first

six instructions are:

data transmission: deposit and clear-accumulator/dca

two's complement add to the accumula-

tor/tad

Principle oddressable

instructions

Chapter 5 The DEC PDP-8 123

binary arithmetic:

binary boolean:

program control:

two's complement add to the accumu-

lator/tad

and to the accumulator/and

jump/set program counter/jmp

jump to subroutine/jms

index memory and skip if results are

zero/isz

Note that the add instruction, tad, is used for both data trans-

mission and arithmetic.

The subroutine-calling instruction, jms, provides a method for

transferring a link to the beginning (or head) of the subroutine.

In this way arguments can be accessed indirectly, and a return

is executed by a jump indirect instruction to the location storing

the returned address. This straightforward subroutine-call mecha-

nism, although inexpensive to implement, requires reentrant and

recursive subroutine calls to be interpreted by software, rather

than by hardware. A stack, as in the DEC 338 (Chap. 25), would

be nicer.

The input„output instruction/iot (:
= op = 6) uses the re-

maining 9 bits of the instruction to specify instructions to input/

output devices. The 6 io„select bits select 1 of 64 devices. The

3 bits, io„pl_bit, io_p2„bit, io„p4_bit, command the selected

device by conditionally providing three pulses in sequence. The

instructions to a typical io device are:

io„plJ>it -+ (IO„skip„flag[io select] -> (PC <- PC + 1))

testing a condition of an IO device output to a device input

from a device

io„p4„bit
—> (Output„data[io select] <— AC)

io^p2„bit -» (AC <— Input^data[io select])

There are three microcoded instruction groups selected by

op 7. The instruction decoding diagram (Fig. 2) and the ISP

description (Appendix 1 of this chapter) show the microinstruc-

tions which can be combined in a single instruction. These instruc-

tions are: operate group 1
(:
= (op = 7) A -, i<3» for operating on

the processor state; operate group 2 (:= (op = 7) A (i<3,ll> =

102)) for testing the processor state; and the extended arithmetic

element group (:= ((op
= 1) A (i<3,ll> = 11 2))) for multiply,

divide, etc. Within each instruction the remaining bits, <4:10) or

<4:11), are extended instruction (or opcode) bits; that is, the bits

are microcoded to select instructions. In this way an instruction

is actually programmed (or microcoded). For example, the instruc-

tion set„link —»L <—1 is formed by coding the two microinstruc-

tions, clear link, next, complement link.

opr„ 1 —> (i<5>
—* L <— 0; next

i<7>^L< jL)

Thus, in operate group 1, the instructions clear link, complement

link, and set link are formed by coding instruction<5,7) = 10, 01,

and 11, respectively. The operate group 2 instruction is used for

testing the condition of the Pc state. This instruction uses bits 5,

6, and 8 to code tests for the accumulator. The AC skip conditions

are coded (0
~

7) as never, always, =0, =^=0, <0, >0, <0, and >0.

If all the nonredundant and useful variations in the two operate

groups were available as separate instructions in the manner of

the first seven (dca, tad, etc.), there would be approximately

7 + 12(opr„l) + 10(opr„2) + 6(EAE) = 35 instructions in the

PDP-8.

The optional Extended Arithmetic Element/EAE includes

additional Multiplier Quotient/MQ and Shift Counter/SC regis-

ters and provides the hardwired operations multiply, divide, logi-

cal shift left, arithmetic shift, and normalize. The EAE is defined

on the last page of Appendix 1,

The interrupt scheme

External conditions in the input/output devices can request that

Pc be interrupted. Interrupts are allowed if (Interrupt„state = 1).

A request to interrupt clears Interrupt^state (Interrupt„state

«— 0), and Pc behaves as though a jump to subroutine instruction,

jms 0, had been given. A special iot instruction (instruction =

6001 8)
followed by a jump to subroutine indirect to instruction

(instruction = 5200g)
returns Pc to the interruptable state with

Interrupt^state
= 1. The program time to save M(processor

state/ps) is 6 Mp accesses (9 microseconds), and the time to restore

Mps is 9 Mp accesses (13.5 microseconds).

Only one interrupt level is provided in the hardware. If multi-

ple priority levels are desired, programmed polling is required.

Most io devices have to interrupt because they do not have a

program-controlled enable switch for the interrupt. For multiple

devices approximately 3 cycles (4.5 [is) are required to poll each

interrupter.

PMS structure

The PMS structure of the LINC-8-338 consisting of a Pc('LINC),

Pc('PDP-8), and P.display('338) is shown in Fig. 1. The PDP-8 is

just a single Pc. The Pc('LINC) is a very capable Pc with more

124 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

instructions than the main Pc. It is available in the structure to

interpret programs written for the C('LINC), a computer devel-

oped by M.I.T.'s Lincoln Laboratory as a laboratory instrument

computer for biomedical and laboratory applications. Because of

the rather limited ISP in Pc, one would hardly expect to find all

the components present in Fig. 1 in an actual configuration.

The S between the Mp and the Pc allows eight Mp's. This S

is actually S('Memory Bus; 8 Mp; 1 Pc; (P requests); time-multi-

plexed; 1.5 fis/w). Thus the switch makes Mp logically equivalent

to a single Mp(32768 w). There are two other L's which are con-

nected to the Pc, excluding the Tconsole. They are L('I/0 Bus)

and L('Data Break; Direct Memory Access). These links become

switches when we consider the physical structure. Associated with

each device is a switch, and the bus links all the devices; the

L('I/0 Bus) is really an S('I/0 Bus). Each time a K connects to

it, the S is included in the K. A simplified PMS diagram (Fig. 3)

shows the structure and the logical-physical transformation. Thus,

the I/O Bus is

S('I/0 Bus; duplex; bus; time-multiplexed, 1 Pc; 64 K; Pc

controlled, K requests; t:4.5 jus/w)

The S('I/0 Bus) is the same for the PDP-5, 8, 8/S, 8/1, and 8/L.

Hence, any K can be used on any of the above C's. The I/O Bus

is the link to the K's for Pc-controlled data transfers. Each word

transferred is designated by a Pc instruction. However, the I/O

Bus allows a K to request Pc's attention via the interrupt request

signal. The Pc polls the K's to find the requesting K if multiple

interrupt requests occur. A detailed structure of the Pc-Mp

(Fig. 4) shows these L('I/0 Bus, 'Data Break) connections to the

registers and control in the notation used by DEC. This diagram

is essentially a functional block diagram.

The S('I/0 Bus) in Fig. 1 is only an abstract representation of

T. console -

Mp(#0: core)— S—
j

L Pc L('l/0 Bus)
|-.S-K-

L I L('Data Break) L

Mp(#I)— S 1

'

: L
j—

S-K-

Mp(#7)—5 I

St'Memory Bus)

Fig. 3. DEC PDP-8 PMS diagram (simplified).

the structure. Since it is a bus structure, the S can be expanded
into L's and simple S's as shown in Fig. 3. The termination of the

L in Pc is given in Fig. 3. The corresponding logic at a K is given

in Fig. 5 in terms of logic design elements (AND's and OR's).

(Fig. 5 also shows the S('I/0 Bus) structure of Figs. 1 and 3). The

operation of S('I/0 Bus) shown in Fig. 5 starts when Pc sends

a signal to select (or address) a particular K, using the IO„select

<0:5> signals to form a 6-bit code to which K responds. Each

K is hardwired to respond to a unique code. The local control,

K[j], select signal is then used to form three local commands when

ANDed with the three iot command lines from Pc, io_plwbit,

io„p2„bit, and io„p4„bit. Twelve data bits are transmitted either

to or from Pc, indirectly under K's control. This is accomplished

by using the AND-OR gates in K for data input to Pc, and the

AND gate for data input to K. The data lines are connected to AC
as shown in Fig. 4. A single skip input is used so that Pc can

test a status bit in K. A K communicates to Pc via the interrupt

request line. Any K wanting attention simply ORs its request signal

into the interrupt request signal. Program polling in Pc then selects

the specific interrupter. Normally, the K signal causing an inter-

rupt is also connected to the skip input.

The L('Data Break; Direct Memory Access) provides a direct

access path for a P or K to Mp via Pc. The number of access ports

to memory can be expanded to eight by using the S('DM01 Data

Multiplexer). The S is requested from a P or K. The P or K supplies

an Mp address, a read or write access request, and then either

accepts or supplies data for the Mp accessed word. In the config-

uration (Fig. 1), P('LINC) and P('338) are connected to S('DMOl)
and make requests to Mp for both their instructions and data in

the same way as the Pc. The global control of these processor

programs is via the S('I/0 Bus). The Pc issues start and stop com-

mands, initializes their state, and examines their final state when

a program in the other P halts or requires assistance.

When a K is connected to L('Data Break) or to S('DM01 Data

Multiplexer), the K only accesses Mp for data. The most complex
function these K's carry out is the transfer of a complete block

of data between the Mp and an Ms or a T, for example,

K('DECtape, disk). A special mode, the three-cycle data break,

is controlled by Pc so that a K may request the next word from

a queue in Mp. In this mode the next word is taken from the queue

(block) in Mp, and a counter is reduced each time K makes a

request. With this scheme, a word transfer takes three Mp cycles:

one to add one to the block count, one to add one to the address

pointer, and one to transmit the word.

The DECtape was derived from M.I.T.'s Lincoln Laboratory

LINCtape unit. Data are explicitly addressed by blocks (variable

Chapter 5 The DEC PDP-8 125

Peripheral
equipment
I/O Bus

Skip

I/O Bus AC
peripheral (iota (12)

equipment O
using
programmed
transfers Select

code
(MB)
(6)

Data
switches

* 12

Teletype
model 33
* AS R 8

Teletype
control

Peripheral
equipment -

I/O Bus

Output
bus

drivers

Data (8)

Peripheral J

equipment *\

I/O ^

Data (12)

Clear AC

Link

Accumulator

12

AC
control

Data (12)

Peripheral

equipment
using the
Data Break
facilities

Output
bus

drivers

Data (12)

Increment MB

Inhibit current address count

Transfer direction

Word count overflow

Memory
buffer
register

12

MB
control

Program
counter
control

Program
counter

12

Instruction

register
3

Break request

Cycle select 2

Break state

Major
state

generator

Address (12)

Address accepted

— I OP 1,2, and 4 pulses (3)

126 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

-
L('AC<0:i1>;output;12 b)-"

-L('AC^input<0:l1> input, 12 b)-

- Lt'IO^skip)

- LCICOnterrupt^request) "

-

LOIO^pulse^pl, p2,p4; pulse; output)*—
- LCIO^selecKaSwutput)*

• K'I/0 Bus)-Pc-Mp

-Select code ' 10CH01 = k

-k„select:MIO^select"K)

I0^select<0:5>
(2»6)

I—33-

-QT7

(12)
70n

AC<0>
' ^

(12)
M '

E"

-»-I<X.pulse~p1 A k^select
(used tor: lOwSkip M—PC—PC-H)

-* I0i_,pulse^p2 * k._.select

(used tor AC*-Input^data [k])

—*I0^pulse^.p4A k^select
(used tor outputwdoto [k]*— AC)

- Interruptw/equest [k]

-IO„skip[k]

Input^doto[k]<(o:i^

To Output^dotaKKcXH)

To Kl-kl's registers

S logic (within o K)

L L L L L L

_KS rL Pc— Mp

Chapter 5 The DEC PDP-8 127

Programming

t Register
I transfer

Logic

RT network [4,7,8]

Compound operation

Sequential
circuits

Switching
circuits

^Register Transfer y7{ Operator yGontrol [13]

I j> SC [12] />^SC fControi
^ data A -

operation/ \

'[14]

array

SE

Combinatorial »CC (with f£ c

/ 1 \ Fli
P.-

circuits [9] feed back)

NAND .

[15]

CC
(data

operation)

State

system
level

[10,11]

Electrical

circuits

Inverter [15]

Transistor

Multivibrator [I4J

[active component)

R (passive component)

[X] indicates figure number of instance

Fig. 6. DEC PDP-8 hierarchy of descriptions.

Abstract representations

Figure 6 also lists some of the methods used to represent the

physical computer abstractly at the different description levels.

As mentioned previously, only a small part of the PDP-8 descrip-

tion tree is represented here. The many documents, schematics,

diagrams, etc., which constitute the complete representation of

even this small computer include logic diagrams, wiring lists,

circuit schematics and printed-circuit board layout masks, pro-

duction description diagrams, production parts lists, testing speci-

fications, programs for testing and diagnosing faults, and manuals

for modification, production, maintenance, and use. As the discus-

sion continues down the abstract description tree, the reader will

observe that the tree conveniently represents the constituent ob-

jects of each level and their interconnection at the next highest

level. Each level in the abstract-description tree will be described

in order.

The PMS level

The simplified PMS structure in Fig. 3 has been reduced from

Fig. 1. The computer is small enough so that the physical delinea-

tion of the PMS components, such as K's and S's, is less pro-

nounced than in larger systems. In fact, in the case of the

S('Memory Bus, 'I/O Bus), the S's are actually within the K and

Mp, as shown in Fig. 5. The implementation of these switches

within the K and Mp was shown in Fig. 5. In Fig. 7 we present

a more conventional functional diagram and the equivalent PMS

diagram of the computer, with Pc decomposed into K, processor

state (Mps), and D. The functional diagram has the same compo-
nents of the characteristic elementary computer model, namely,

K, D, M, and T(input, output). These figures give a somewhat

general idea of what processes can occur in the computer, and

how information flows, but it is apparent that at least another

level is needed to describe the internal structure and behavior of

the Mp and Pc. We should look at these primitives (although still

together as a C) at the register-transfer level.

Programming level (ISP)

The ISP interpretation is given in Appendix 1 of this chapter and

is the specification of the programming machine. In addition, it

constrains the physical machine's behavior to have a particular

ISP. The ISP has been discussed earlier in the chapter.

Register-transfer level

The C can also be represented at the register-transfer level by

using PMS. Figure 4 (by DEC) shows the register-transfer level;

128 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

L ('Memory Bus)-

-LrMB<0:l1>;'dota; >
[output; broodcost;12 bj

-LfSense amplifiers

L<0:H>;'data, input. J

-L[MA<0:H>;bddress,

[output;
12 b

read/write,' inhibit,

M„ select [0:7];

MB—M[MA]

p-T('Sense,-iomplifier<0:lt>)

M CCore-iStock ;12b;4096w)

To Mp

Mp(core;»0)

|—-S Co-ordinate«setec-

tion; input: 12b;

output: 64 + 64

t—T Clnhibit_drivers<0:li>)

MPMemory buffer /MB <0:i1>; flip flop)
—

, D[('MB;operotions:('MB~0'MB->-MB-t1,
'MB—PC.'MB- m[mA],'MB— DBudota,
'MB— AC)

r M('Memory address/MA<0:H>)

'MA; operations:('MA<0:4>— 0,
'MA— PC.'MA— MB.'MA <5:11>—MB<5111>
'MA— DB address

D (' Instruction register decode)

M ('Instruction register /IR<0.2>; flip flop)

—OCIR; operations :('IR—0,'IR—m[ma]<0:2>))

_ J

Mps('Link/L)

DT'Link/L; operations:(l—C\L— 1

L— -.L)

Mps ('Accumulator/AC <0:i1>,flip flop)-

'AC; operations:(AC—0;'AC—77778 ,

'AC— -.AC.'AC—AC-M,
'L°AC— L°AC »2 {rotate},
'L°AC— L°AC x4 (rotate),
'L°AC— L°AC x2 {rotate},
'L°AC— L°AC x4 (rotate),
'AC—AC® MB, AC—AC "MB,
'AC— Carry (AC.MB),
'AC—AC Data„switches)

I ir
MpsCProgram counter/PC<0:11>;flip flop)

'PC; operations: ('PC—0)'PC— PC+1 ,

'PC<0:4>— 0,'PC—MB;
'PC<5'.11>— MB<5:11>)

r-

Inputs from other K's

U'Dafa Break/DB)' =

- LCreguest .'direction, cycle-select <CX1>)-
—

•-!_ ('address _accepted,'word_count_ov,' break-state)
-

-lCmb<o:ii>; output)—
-

L('DB-.address<0'.11>; input)—

L('DB_doto <0:11>; input)—

ll<r(lSP,Mp,S('I/0 bus),T. console ;'Dota

j

I break; M (working ;'Stotei-iregister,)

T (clock)
»

X(time)

~1

;

MA,'MB,'AC,'L,'PC
'States register;

Run,'Interrupt—
state

LCI/O Bus):=

-L('AC,inpuf,output;12b)-

- L [('IO^select <0 :5>) : =1
—-

['MB<3 8>

(Input;'Inferrupt^.request,

10,-jSkip), (output;

I0Ljpulse_p1,p2,p4)

]
T.console :

=

T console CDatauswitches)—

T. console (' stort.'stop.'continue

'examine.'deposit

keys

-T.console (lights)
-

Fig. 8. DEC PDP-8 register-transfer-level PMS diagram.

only registers, operations, and L's are important at this level. We
still lack information about the conditions under which operations

are evoked. Figure 8 is a PMS diagram of Pc-Mp registers. Here

we show considerably more detail (although we do not bother with

electrical pulse voltages and polarities) than in Fig. 4. We declare

the Pc state (including the temporary register) within Pc. The

figure also gives the permissible data operations, D, which are

permitted on the registers. It should be clear from this that the

logical design level for the registers and the operators can easily be

reached. The K logic design cannot be reached until we use the

programming level constraints (ISP), thus defining the conditions

for evoking the data operators.

The core memory. The Mp structure is given in Fig. 8. A more

detailed block diagram which shows the core stack with its twelve

64 X 64 1-bit core planes is needed. Such a diagram, though still

a functional block diagram, takes on some of the aspects of a

circuit diagram because a core memory is largely circuit-level

details. The Mp (Fig. 9) consists of the component units: the two

address decoders (which select 1 each of 64 outputs in the X and

Y axis directions of the coincident current memory); selection

switches (which transform a coincident logic address into a high-

current path to switch the magnetic cores); the 12 inhibit drivers

(which switch a high current or no current into a plane when

either a or 1 is rewritten); 12 sense amplifiers (which take the

induced low sense voltage from a selected core from a plane being

switched or not switched and transform it into a 1 or 0); and the

core stack, an array M[0:77778]<0:11>. Since this is the only time

the Mp is mentioned, Fig. 9 also includes the associated circuit-

level hardware needed in the core-memory operation, such as

Chapter 5 The DEC PDP-8 129

power supplies, timing, and logic signal level conversion amplifiers.

The timing signals are generated within Pc(K) and are shown

together with Pc's clock in Fig. 10.

The process of reading a word from memory is:

1 A 12-bit selection address is established on the MA<0:11>
address lines, which is 1 of 10000g (or 409610) unique num-

bers. The upper 6 bits, <0:5), select 1 of 64 groups of Y

addresses and the lower 6 bits, <6:11>, select 1 of 64 groups

of X addresses.

2 The read logic signal is made a 1.

3 A high-current path flows via the X and Y selection

switches. In each of the X and Y directions 64 x 12 cores

have selection current. Only one core in each plane is

selected since Ix = Iy
= Iswitching/2, and the current at

the selected intersection = Ix + Iy = Iswitching.

4 If a core is switched to (by having Iswitching amperes

through it), then a 1 was present and is read at the output
of the plane (bit) sense amplifiers. A sense amplifier receives

an input from a winding that threads every core of every
bit within a core plane [0:77778].

All 12 cores of the selected

word are reset to 0. The sense time at which the sense

amplifier is observed is tms (memory strobe), and the strobe

in effect creates MB <— M[MA].

5 The read current is turned off.

Inhibit

On/off
control

From

130 Part 2 The instruction-set processor: mainline computers Section 1 Processors with one address per instruction

Clock

pulses

Reod

Write

Inhibit

Memory
strobe

Chapter 5 The DEC PDP-8 131

Fetch instruction memory Execution memory

EO)
c»cl«

{tms A liszvtodv and})—(
MB— m[ma]);

tad— (

AC—AC® MB))',

register— 2); MB—0; IR—
6 Stateuregister—O);(to FO)

Note: State diagram does not include

Data Break, Interrupt, and EAE.

Fig. 11. DEC PDP-8 Pc state diagram.

for the description. The State^register values 0, 1, and 2 corre-

spond to fetching, deferring (indirect addressing, i.e., fetching an

operand address), and executing (fetching or storing data, then

executing) the instruction. The state diagram does not describe

the Extended Arithmetic Element/EAE operation, the interrupt

state, and the data break states (these add 12 more states). The

initialization procedure, including the T.console state diagram, is

also not given. One should observe that when t2 occurs at the

beginning of the memory cycle, a new Statewregister value is

selected. The State„register value is always held for the remainder

of the cycle; i.e., only the sequences (FO —> Fl —» F2 —» F3 or

DO- Dl -» D2 -> D3 or EO -» El -> E2 -» E3) are permitted.

Figure 8 alludes to Pc(K), that is, the sequential network used

for controlling Pc. The inputs and the present state (including

clocks) determine the operations to be issued on the registers.

Logic design level (registers and data operations)

Proceeding from the register-transfer and ISP descriptions, the

next level of detail is the logic module. Typical of the level is the

1-bit logic module for an accumulator bit, AC<j), illustrated in

Fig. 12. The horizontal data inputs in the figure are to the logic

module from AC<j>, MB<j>, IO Bus<j>, and Data_switch<j>. The

vertical control signal inputs command the register operations (i.e.,

the transfers); they are labeled by their respective ISP operations

(for example, AC «- MB A AC, AC <- AC X 2 {rotate}). The

sequential network Pc(K) (Fig. 8) generates these control signal

inputs.

Logic design level (Pc control, Pc(K) sequential network)

The output signals from the Pc(K) (Fig. 8) can be generated in

a straightforward fashion by formulating the boolean expressions

132 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

Bus to each bit of AC

-,AC<J>
MB<J>

AC<J>
carry
output

AC<J>'

carry
input

>-33-S

-iMB<J>'&
AC<J-1>

Doto^switch %X
<J>

10 Bus AC
input <J>"

110-
.AC<J-1> _

33-

AC-AC V

DatOuSwitch;

AC- AC a MB;

AC— 1;]
-AC-

"C-1;]
C-0;

AC—
"AC;

LAC-AC©MB;

AC- AC/2 {rotate }

AC—AC x 2 {rotate };
'AC— AC + 1 is formed by AC<12> corry input

AC— Carry (AC, MB)

-
:0-

=:@-

— R 0»^AC<J>

— S 1- AC<J>

AC
commands

Fig. 12. DEC PDP-8 AC<J> bit register-transfer logic diagram.

'AC— :« (

(tl A (IR = 111) A (-, MB<3> a ME

(tl A (IR = 111) A (MB<3> A -. ME

(tl A (IR = 111) a (MB<3> a MB<
(tl a (IR =011) a (Stote^register

(tl a (((State-register =0) a (IR

((State-register
« 2) a (IR

Logic egu

Chapter 5 The DEC PDP-8 133

-15volts

134 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

APPENDIX 1 DEC PDP-8 ISP DESCRIPTION

Chapter 5 The DEC PDP-8 135

APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued)

Instruction Interpretation Process

136 Part 2 The instruction-set processor: main-line computers Section 1 Processors with one address per instruction

APPENDIX 1 DEC PDP-8 ISP DESCRIPTION (Continued)

KT and KMs State
Each K may have any or all of the following registers. There can be up to 64 optional K s.

Chapter 8

Structural Levels of the PDP-S^

C. Gordon Bell / Allen Newell /

Daniel P. Siewioi'ek

A map of the PDP-8 design hierarchy, based on the Structural

Levels View of Chap. 2, is given in Fig. 1, starting from the PMS

structure, to the ISP, and down through logic design to circuit

electronics. These description levels are subdivided to provide

more organizational details such as registers, data operators, and

functional units at the register transfer level.

The relationship of the various description levels constitutes a

tree structure, where the organizationally complex computer is

the top node and each descending description level represents

increasing detail (or smaller component size) until the final circuit

element level is reached. For simplicity, only a few of the many

possible paths through the structural description tree are illustrat-

'Originally printed in C. G. Bell, J. C. Mudge, and J. E. McNamara,

Computer Engineering: A DEC View ofHardware System Design, Digital

Press, 1978, pp. 209-228.

ed. For example, the path showing mechanical parts is missing.

The descriptive path shown proceeds from the PDP-8 computer
to the processor and from there to the arithmetic unit, or more

specifically, to the Accumulator (AC) register of the arithmetic

unit. Next, the logic implementing the register transfer operations

and functions for the jth bit of the Accumulator is given, followed

by the flip-flops and gates needed for this particular implementa-

tion. Finally, on the last segment of the path, there are the

electronic circuits and components from which flip-flops and gates

are constructed.

Abstract Representations

Figure 1 also lists some of the methods used to represent the

physical computer abstractly at the different description levels. As

mentioned previously, only a small part of the PDP-8 description

tree is represented here. The many documents which constitute

the complete representation of even this small computer include

logic diagrams, wiring lists, circuit schematics, printed circuit

board photo etching masks, production description diagrams,

production parts lists, testing specifications, programs for testing

and diagnosing faults, and manuals for modification, production,

maintenance, and use. As the discussion continues down the

abstract description tree, the reader will observe that the tree

|X| indicates (igurs numb*r of instanc*

Fig. 1. PDP-8 hierarchy of descriptions.

no

Chapter 8
|
Structural Level* of the PDP-8 111

conveniently represents the constitutent objects of each level and
their interconnection at the next highest level.

The PMS Level

The PDP - 8 computer in PMS notation is:

C[PDP-8 technoIogy:transistors: 12 b/w:

descendants: '

PDP-8/S,
'

PDP-8/I,
'

PDP-8/L,
'8/E, '8/?, '8/M, '8/A, 'CMOS-8;
antecedents: '

PDP-5;

Mp[core; #0:7; 4096 words; tc:1.5 |As/word];]

Pc(Mps(2 to 4 words);

instruction length: 1|2 words;

address/instruction : 1 ;

operations on data:(=, +, Not, And, Minus

(negate), Srr l(/2), Sir 1 (x2), +)

optional operations:(x ,/,nomialize);

data-types:word, integer. Boolean vector;

operations for data access:4);

P(display; '338);

P(c;
'

LINC);

S(
' I/O Bus; 1 Pc; 64K);

Ms(disk,
'

DECtape, magnetic tape);"

T(paper tape, card, analog, cathode-ray tube)

As an example of PMS structure, the LINC-8-338 is shown in

Fig. 2; it consists of three processors (designated P): Pc(' LINC),
PcC PDP-8), and P.display('338). The LINC processor is a very
capable processor with more instructions than the PDP-8 and is

available in the structure to interpret programs written for the
LINC. Because of the rather limited instruction set being
interpreted, one would hardly expect to find all the components
present in Fig. 2 in an actual configuration.
The switches (S) between the memory and the processor allow

eight primary memories (Mp) to be connected. This switch, in

PMS called S(' memory Bus; 8 Mp; 1 Pc; time-multiplexed; 1.5

jis/word), is actually a bus with a transfer rate of 1.5 microseconds

per word. The switch makes the eight memory modules logically

equivalent to a single 32,768-word memory module. There are
two other connections (a switch and a link) to the processor
excluding the console. They are the S(

' I/O Bus) and L(
' Data

Break; Direct Memory Access) for interconnection with peripher-
al devices. Associated with each device is a switch, and the I/O
Bus links all the devices. A simplified PMS diagram (Fig. 3) shows
the structure and the logical-physical transformation for the I/O

Bus, Memory Bus, and Direct Memory Access link. Thus, the I/O
Bus is:

S(
' I/O Bus duplex; time-multiplexed; 1 Pc; 64K;Pc controlled,

K requests; t:4.5 n,s/w)

The I/O Bus is nearly the same for the PDP-5, 8, 8/S, 8/1, and
8/L. Hence, any controller can be used on any of the above

computers provided there is an appropriate logic level converter

(PDP-5, 8, and 8/S use negative polarity logic; the 8/1 and 8/L,

positive logic). The I/O Bus is the link to the controllers for

processor-controlled data transfers. Each word transferred is

designated by a processor in-out transfer (lOT) instruction. Due
to the high cost of hardware in 1965, the PDP-8 I/O Bus protocol
was designed to minimize the amount of hardware to interface a

peripheral device. As a result, only a minimal number of control

signals were defined with the largest portion of I/O control

performed by software.

A detailed structure of the processor and memory (Fig. 4) shows
the I/O Bus and Data Break connections to the registers and
control in the notation used in the initial PDP-8 reference manual.
This diagram is essentially a functional block diagram. The
corresponding logic for a controller is given in Fig. 3 in terms of

logic design elements (ANDs and ORs). The operation of the I/O
Bus starts when the processor sends a control signal anr) sets the
six I/O selection lines (lO. SELECT <0:5>) to specify a particular
controller. Each controller is hardwired to respond to its unique
6-bit code. The local control, K[k], select signal is then used to

form three local commands when ANDed with the three lOT
command lines from the processor. These command lines are
called lO. PULSE. 1, 10.PULSE.2, and IO.PULSE.4. Twelve data
bits are transmitted either to or from the processor, indirectly
under the controller's control. This is accomplished by using the
AND/OR gates in the controller for data input to the processor,
and the AND gate for data input to the controller. A single skip

input is used so that the processor can test a status bit in the

controller. A controller communicates back to the processor via

the interrupt request line. Any controller wanting attention

simply ORs its request signal into the interrupt request signal.

Normally, the controller signal causing an interrupt is also

connected to the skip input, and skip instructions are used in the
software polling that determines the specific interrupting device.

The Data Break input for Direct Memory Access provides a

direct access path for a processor or a controller to memory via the

processor. The number of access ports to memory can be

expanded to eight by using the DM01 Data Multiplexer, a

switch. The DM01 port is requested from a processor (e.g. , LINC
or Model 338 Display Processor) or a controller (e.g.; magnetic
tape). A processor or controller supplies a memory address, a read
or write access request, and then accepts or supplies data for the

accessed word. In the configuration (Fig. 1), Pc['LINC] and
P[

'

338] are connected to the multiplexer and make requests to

memory for both their instructions and data in the same way as the

PDP-8 processor. The global control of these processor programs
is via the processor over the I/O Bus. The processor issues start

and stop commands, initializes their state, and examines their

112 Part 1 Fundamentals Section 3 Computers of Historical Significance

TIT.WvM- 10 ch.r/s. » b/ch«r. »4 ch.rl zy

T(pap«r tape lr«ad«(300 char/i
|
(punch

100ch»r/sl 8 b/char)

T(.ncr«m«nt«l pent plot 300 point/s. 01

in/point)

Tlcafd. rMder. 200 800 c»rd/m>nl

Kcard punch, 100 card/mm)

n I T (l,n«. prii

ULI I 64 chT/
•r, 300 lin«/fT

/coll

120 col/lin*

UJ I 3.S/
display araa 10 x 10 m^i 6 X 5

s/potnt 01 I
05 m/potnt)

TIDaiaphone. 12-48 kb/sl

Ltanatog output.

hEHIH
03-EH

U(»0 63, analog, input
- -10 volial

Kl#0 63. Teletvp*. 110, 180 b/«l

-I
'

I LLI I 133 liS/w

iG-EI-E

ECtapa, addrassabla magnattc tap*

englh 260 ft. 350 char/in, 3 b/chaiD-
(#0 7. magnatic tapa. 36 45 75' 112 5 in/-

200,556,800 b/in 6 8 b/chail D-
Wsl#0 3. ftsad haad disk. 1 dalay 0-17 ms,

6 Ms/w 26214
pantv)b/w)

^H_ .III. WsliiiO 3. hsad haad disk. 1

1 K I 1 S I
— 66 ^s/w. 32768 vvl (16

"t—J ^J (12. 1 pantvlb/w)

P(dtsplav. 33tl -| T(#0 3. CRT, display, area 10 X 10 in^ y*

T(0 3, light, pan)

I TIiKO 3. push buttons, consolal y-
Pc(Laboratory

 nsirumant
Computar/LINC)

1 Mp (core. 1 5 i-s/w, 4096 w. (12 + 1 tbi

2 SCMetnory Bus)

3 Pell -- 2 w/instruction data w, i. by. 12 b/w.

U pfocassor stata (2 1/2 - 3 1/2) w
technotogy transistors.

antacadants. PDP 5, dascandantt,

PDP'8/S. POP 8/1. POP 8/L, Omntbut lartiily

4 S(I/O Bus. from Pc. to 64 K)
*

6 K(1 - 4 instructions. M buHar (1 char - 2 w)l

Fig. 2. LINC-8-338 PMS diagram.

IMsliVO

1. LIN
6 25kw/s

NCtapa, addrassabla magr>atic tape. y
I T(ifO 15. knobs, arulog. input)

T(CBT. display. 5X5 in^j >
TIdigital. input, output)

TCDala Tarmtnal Pai^al. digital, input, output)

Chapter 8
|

Structural Levels of the PDP-e 113

\~ DM* 0*ta SrMh link

•6 d«i* trantfvft

c«s« tr*n«t*r|

Fig. 3. POP-8 S('l/0 Bus) logic and PMS diagrams.

K> l<N sloMf daM rsis p'ogism coniroHvd data tranafart

Kf fof high tfsia rala. diiact rnamory accaa* tranatari

final state when a program in the other processor halts or requires

assistance.

When a controller is connected to the Data Break or to the

DM01 Data Multiplexer, it only accesses memory for data. The
most complex function these controllers carry out is the transfer of

a complete block of data between the memory and a high speed
transducer or a secondary memory (e.g., DECtape or disk). A

special mode, the Three Cycle Data Break, allows a controller to

request the next word from a block in memory.
The DECtape was derived from M.I.T.'s Lincoln Laboratory

LINCtape unit. Data were explicitly addressed by blocks (variable

but by convention 128 words). Thus, information in a block could

be replaced or rewritten at random. This operation was unlike the

early standard IBM format magnetic tape in which data could be

appended only to the end of a file.

Programming Level (JSP)

The ISP of the PDP-8 processor is probably the simplest for a

general purpose stored program computer. It operates on 12-bit

words, 12-bit integers, and 12-bit Boolean vectors. It has only a

few data operators, namely, =, +, minus (negative of), not, and

sir 1 (rotate bits left), srr 1 (rotate bits right), (optional) x
, /, and

normalize. However, there are microcoded instructions, which

allow compound instructions to be formed in a single instruction.

The ISP of the basic PDP-8 is presented in Appendix 1. The
2'^-word memory (declared MP[0:4095]<0:11>) is divided into 32

fixed-length pages of 128 words each (not shown in the ISPS

description). Address calculation is based on references to the first

page, page, zero, or to the current page of the Program Counter

(PCXProgram. Counter). The effective address calculation proce-

dure, called MA in Appendix 1, provides for both direct and

indirect reference to either the current page or the first page. This

scheme allows a 7-bit address to specify a local page address.

A 2''-word memory is available on the PDP-8, but addressing
more than 2'^ words is comparatively inefficient. In the extended

range, two 3-bit registers, the Program Field and Data Field

registers, select which of the eight 2'^-word blocks are being

actively addressed as program and data. These are not given in the

ISPS description.

There is an array of eight 12-bit registers, called the auto, index

registers, which resides in page. zero. This array (auto. index

[0:7]<0:11>: = MP[#10: #17]<0:11>) possesses a useful proper-

ty: whenever an indirect reference is made to it, a 1 is first added

to its contents. (That is, there is a side effect to referencing.) Thus,

address integers in the register can select the next member of a

vector or string for accessing.

The processor state is minimal, consisting of a 12-bit accumula-

tor (AC\Accumulator<0:ll>), an accumulator extension bit called

the Link (LXLink), the 12-bit Program Counter, the GO flip-flop.

114 Part 1 Fundamentals Section 3
{
Computers of Historical Significance

pehiphehal
equipment

I/O BUS

I/O BUS
PCRIPHEHAL
EQUIPMENT

USING
PROGRAMMED
TRANSFERS

TELETYPE
MODEL 33

ASH

TELETVPE
CONTROL

PERIPHERAL
EQUIPMENT

t/O

PERIPHERAL
EQUIPMENT
USING THE
DATA BREAK
FACILITIES

PERIPHERAL
EQUIPMENT -

I/O BUS

SKIP

Chapter 8
|
Structural Levels of the PDP-8 115

and the INTERRUPT. ENABLE bit. The external processor state

is composed of console switches and an interrupt request.

The instruction format can also be presented as a decoding

diagram or tree (Fig. 5). Here, each block represents an encoding

of bits in the instruction word. A decoding diagram allows one

more descriptive dimension than the conventional, linear ISPS

description, revealing the assignment of bits to the instruction.

Figure 5 still requires ISPS descriptions for the memory, the

processor state, the effective address calculation, the instruction

interpreter, and the execution for each instruction. Diagrams such

as Fig. 5 are useful in the ISP design to determine which

instruction operation codes are to be assigned to names and

operations, and which instructions are free to be assigned (or

encoded).

There are eight basic instructions encoded by 3 opcode bits of

the instruction. register, that is, IR<0:2>. Each of the first

memory reference six instructions, where the opcode is less than

or equal to 5, has four addressing modes (direct page. zero, direct

current. page, indirect page. zero, and indirect current. page). The

first six instructions in the following four categories are:

Data transmission

"deposit and clear Accumulator" (DCA). (Note that the add

instruction, TAD, is used for both data transmission and

arithmetic.)

Binary arithmetic

"two's complement add to the Accumulator" (TAD).

Binary Boolean

"and to the Accumulator" (AND).

OPERATE GROUPS MICROCOOED INSTRUCTIONS
group 1 And <

)
' And time 11.234]

PRINCIPAL
ADDRESSABLE
INSTRUCTIONS

Op Eq«

»0\

116 Part 1 Fundamentals Section 3
|
Computers of Historical Significance

4 Program control

"jump/set Program Counter" (JMP); "jump to subroutine"

QMS); "index memory and skip if results are zero" (ISZ).

The subroutine calling instruction, JMS, provides a method for

transferring a link to the beginning (or head) of the subroutine. In

this way arguments can be accessed indirectly, and a return is

executed by a "jump indirect" instruction to the location storing

the returned address. This straightforward subroutine call mecha-

nism, although inexpensive to implement, requires reentrant and

recursive subroutine calls to be interpreted by software rather

than by hardware. A stack for subroutine linkage, as in the

PDP-11, would allow the use of read-only memory program

segments consisting of pure code. This scheme was adopted in the

CMOS-8.
The "in-out transfer" instruction, opcode 6, lOT uses the

remaining nine bits of the instruction to specify instructions to

input/output devices. The six io. select bits select 1 of 64 devices.

Three conditional pulse commands to the selected device,

io. pulse. 1, io. pulse. 2, and io. pulse. 4, are controlled by the lOT,

io.control<0:2> operation code bits. The instructions to a typical

I/O device are:

1 Testing a Boolean Condition of an IO device.

IF io. pulse. 1^
(IF io.skip.flag[io.select]=^

PC = PC -I- 1)

2 Output data to a device from Accumulator.

IF io. pulse.4^
(output. register[io. select]

=

AC)

3 Input data from a device to Accumulator.

IF io. pulse. 2=>

(AC =
input. register[io. select])

There are three microcoded instruction groups selected by

(IR<0:2> eqv #7), called the operate instructions. The instruc-

tion decoding diagram (Fig. 5) and the ISP description show the

microinstructions which can be combined in a single instruction.

These instructions are: operate group 1 ((IR<0:2> eqv #7) and

not ib) for operating on the processor state; operate group 2

((IR<0:2> eqv #7) and NOT ibo and MB<11>) for testing the

processor state; and the Extended Arithmetic Element group (not

included in the ISP description) (IR<0:2> eqv #7 and ibO and

MB<11>) for multiply, divide, etc. Within each instruction the

remaining bits, <4:10> or <4:11>, are extended instruction (or

opcode) bits: that is, the bits are microcoded to select additional

instructions. In this way, an instruction is actually programmed
(or microcoded, as it was originally named before "microprogram-

ming" was used extensively). For example, the instruction, "set

link to 1," is formed by coding the two microinstructions, "clear

link" following by "complement link.
"

If (IR <0:2> eqv #7) and (group eqv 0)) ^
If MB<5> => L = 0; next

If MB<7> ^ L = not L)

Thus, in operate group 1, the instructions "clear link, comple-
ment link, and set link" are formed by coding MB<5,7> = 10,01,

and 11, respectively. The operate group 2 instructions are used

for testing the condition of the processor state. These instructions

use bits 5, 6, and 8 to code tests for the Accumulator. The AC skip

conditions are coded as never, always, AC eql 0, AC neg 0,

AC Iss 0, AC leq 0, AC geq and AC gtr 0. The optional Extend-

ed Arithmetic Element (EAE) includes additional Multiplier Quo-

Table 1 PDP-8 Register Transfer Control Signals and Data Break

Interface

AC/Accumulator, L/Link and combined L, AC (JVC

AC = 0; AC = #7777; AC = not AC; (JVC = LAC + 1

L =
0; L =

1; L = not L;

UVC = l-AC srr 1; LAC = LAC srr 2; [rotates right

LAC = LAC sir 1; LAC = LAC sir 2; Irotates left

AC = AC or SWITCHES; AC = AC and MB; AC = lO.BUS

AC = AC xor MB; LAC ^ carry (AC.MB);

(note that previous two commands form: LAC = AC + MB).

MB/Memory. Buffer
MB = MB + 1;

Chapter 8
{

Structural Levels of the PDP-8 117

Sens* Amplih«f»
'0 1 1 >

M|0 4095|<0 11 >

1

«p

lis Part 1 Fundamentals Section 3
{ Computers of Historical Significance

"Fetch" instruction memory cycle

Chapter 8 '

Structural Levels of the PDP-8 119

"Defer" (indirect)

address memory cycle

Wait(tms)next
'

IVIB = M(MA1 next

Wait (t1 1 next
Dl) IF MA <0:8>eql #001 -

MB = MB + 1 next

"Execution" memory cycle

Waititms) next

MB = MtMAI next

Wait(t1) next

IF AND ->

120 Part 1
1
Fundamentals Section 3

I Computers of Historical Significance

(which add 12 more states). The initialization procedure, includ-

ing the console state diagram, is also not given. One should

observe that, at the beginning of the memory cycle, a new

state, register value is selected. The state. register value is

always held for the remainder of the cycle; i.e., only the

sequences FO, Fl, F2, F3, or DO, Dl, D2, D3, or EO, El, E2, E3

are permitted.

Logic Design Level (Registers and Data Operations)

Proceeding from the register transfer and ISP descriptions, the

next level of detail is the logic module. Typical of the level is the

1-bit logic module for an accumulator bit, AC <j>, illustrated in

Fig. 8. The horizontal data inputs in the figure are to the logic

module from AC<j>, MB<j>, AC<j> input from the lO.Bus.

In, and switches <j>. The control signal inputs whose names are

identified using the vertical bar (e.g., |

AC =0
|)
command the

register operations (i.e., the transfers). They are labeled by their

respective ISP operations (for example, AC = AC and MB, AC =

AC sir 1, for rotate once left). The sequential state machine, for

the processor Pc(K), generates these control signal inputs using a

combinational circuit as the one shown in Fig. 9.

Logic Design Level (Pc Control, Pc(K) Sequential

State Machine Network)

The output signals from the processor sequential machine (Fig. 9)

can be generated in a straightforward fashion by formulating the

Boolean expressions directly from the state diagram in Fig. 7. For

example, the AC = control signal is expressed algebraically and

with a combinational network in Fig. 9. Obviously, these Boolean

output control signals are iiinctions which include the clock, the

state, register, and the states of the arithmetic registers (for

example, AC =
0, L =

0, etc.). The expressions should be factored

and minimized so as to reduce the hardware cost of the control for

the interpreter. Although the sequential controller for the

processor is mentioned here only briefly, it constitutes about half

the logic within the processor.

Bus to each bit of AC

not

AC <j> -

MB<i>-

AC <j> -

MB<j>-

AC<j>
carry

output

not MB<j>-

AC<i>
(SEE NOTE)

carry

input
I

I
LAC = carry (AC. MB) 1 1 AC ^ AC xor MB

1

NOTE: AC = AC + 1 is formed by AC <1 1> carry input.

I
AC = not AC

I

switches <j>

not AC <]+!>

not AC<i- 1>

AC <j-l>-

AC<j+l>-

IOBusln<i>-

I
AC = AC or switches I

I
AC = AC and MB

I

R

AC<i>

-
1
AC =-

1

I
AC =

I

I
LAC = LAC srr

I

1
LAC ^ LAC sir I

AC
register

transfer

control

signals

Fig. 8. PDP-8 AC<i> bit logic diagram.

IR<2>

(slate register eqv 2)

IR<2>

(state register eqv 01

MB<3>

122 Part 1 Fundamentals Section 3
j
Computers of Historical Significance

<^-N- -W-4«- 1

Chaptm- 8
I

Structural Levels of the PDP-8 123

changes will not be noticed until after the clock passes. This

achieves the same e£Fect.

Figure 11 illustrates the combinational logic elements used in

the PDP-8. The circuit selection is limited to the inverter circuit

with single or multiple inputs. These are more familiarly called

NAND gates or NOR gates, depending on whether one uses

positive and/or negative logic level definitions.

The core memory structure is given in Fig. 6. A more detailed

block diagram showing the core stack with its twelve 64 x 64 1-bit

core planes is needed. Such a diagram, though still a functional

block diagram, takes on some of the aspects of a circuit diagram

because a core memory is largely circuit level details. The

memory (Fig. 12) consists of the component units: the two address

decoders (which select 1 each of 64 outputs in the X and Y axis

directions of the coincident current memory); selection switches

(which transform a coincident logic address into a high current

path to switch the magnetic cores); the 12 inhibit drivers (which

switch a high current or no current into a plane when either a 1 or

is rewritten); 12 sense amplifiers (which take the induced low

sense voltage from a selected core from a plane being switched or

not switched and transform it into a 1 or 0); and the core stack, an

array M[#0:#7777]<0:11>. Figure 12 also includes the associat-

ed circuit level hardware needed in the core memory operation

(e.g., power supplies, timing, and logic signal level conversion

amplifiers).

The timing signals are generated within the control portion of

the processor and are shown together with processor clock in Fig.

13. The process of reading a word from memory is:

1 A 12-bit selection address is established on the MA<0:11>
address lines, which is 1 of #10000 (or 4096) unique

— — — LOGIC SIGNALS

HIGH CURRENT
-SIGNALS
(01 + l»/2l-l«/2l

LOW LEVEL WINDING
"
(SENSE SIGNALS]

V = SELECT WIRE

FOUR WIRES THROUGH A CORE

> MS DATA
INPUTS<0 11 >

I .

CURRENT DIRECTION CONTROLS

Fig. 12. PDP-8 four-wire coincident current (three dimensions) core memory logic diagram.

124 Part 1 Fundamentals Section 3
I Computers of Historical Significance

CLOCK
PULSfS

Chapter 8
[

Structural Levels of the PDP-8 125

APPENDIX 1 PDP-8 ISP DESCRIPTION

PDP8 :=

begin

I The basic PDP-8 instruction set (without extended arithmetic element)
! is implemented. No I/O devices are included in the description.
! I/O instruction execution is limited to the instructions that
I deal with the internal interrupt enable flags and status.

! Reference: "The DIGITAL Small Computer Handbook", 1967 Edition,
! Digital Equipment Corporation.

••MP.State*»

MP[#0:)!'7777]<0:11>,
page.zero[i«'0:#177]<0:ll>
auto.index[*'0:*7]<0:ll>

MB<0:11>

•PC.State**

L<>,
AC<0:11>.

PC<0:11>

•External .State**

switches<0: 11>,

interrupt. requestO

 Implementation. Declarations**

goo,
interrupt .enableO,
last.pc<0:ll>,
skipO

••Instruction. Format**

I R\ instruction. register<0 :2> ,

ibXindirect.bitO := MB<3>,

1 Main memory (4k words)
;= MP[)C0:/!'177]<0:11>.
:= MP[/S'10:*fl7]<0:ll>,

I Memory buffer

1 Link bit
! Accumulator

1 Program counter

I Console data switches
1 Any device requesting interrupt

I 1 when running
! 1 when Pc can be interrupted

pbXpage.bitO
pa\page.address<0:6>
io. select<0:5>
io.pulse<0:2>

io. pul se. 1<>

io.pul se. 2<>
io. pul se.4<>

MB<4>,
MB<5:11>.
MB<3:B>.
MB<9:11>,
io.pulse<0>,
io.pul se<l>,
io.pul se<2>

,

1 Skip flag

Operation code

Memory reference:
= direct; 1 = indirect
= zero page; 1 = current page

I/O device select
I/O pulse control bits

126 Part 1 Fundamentals Section 3 '

Computers of Historical Significance

APPENDIX 1 (Cont'd.)

APPENDIX 1 (Cont'd.)

Chapter 8
{

Structural Level* ol the POP-8 127

Instruction. Execution**{us}

execNinstruction .execution :=

begin
IR = MB<0:2> next
IF (IR geq ff3) and (IR leq f/5) => MA() next
IF IR leq #2 => MB = MP[MA()] next
DECODE IR =>

begin
00

128 Part 1 Fundamentals Section 3
| Computers of Historical Significance

APPENDIX 1 (Cont'd.)

Chapter 15

A PDP-8 Implemented from AMD
Bit-Sliced Microprocessors

Michael Tsao

An example of a microprogrammable system based on the

Am2910 sequencer and the Am2901 ALU will illustrate design
with bit slices. The target machine is the PDP-8 ISP (see

Appendix 1 of Chap. 8). This register-transfer (RT) level design of

the micromachine is thus optimized toward the basic PDP-8.

However, the general principles involved in microprogramming
bit slices are illustrated by this example. A major goal of this

design is the clarity of implementation, rather than the economy
of design.

System clock

Pipeline Register

Mux to

Condition Code

Sequencer address

MStore ROM output

ALU output

Miscellaneous

Register

220 Part 2
I
Regions of Computer Space Section 1

I Microprogram-Based Processors

Am291 microsequencer

^instruction

^word

-48

Pipeline Register

microaddress

Condition Code
calculation and

input MUX

Signal

select

-Ireq, lenb

- Status

Control signal

generator

—^Link control

—^ lenb control

/ » get IR

^ ALU input select & MASK
ROM select

 ALU RAM port select

—»• ALU instruction

Table 1 The Microword Format and Required Bits per Field

Fig. 2. Micromachine—control and sequencer.

Out of sixteen Am2910 instructions, only 4 are used in this

example: Conditional Jump Subroutine (CJS, #01), Conditional

Jump (CJP, #03), Conditional Return from Subroutine (CRTN,

#12), and Continue (CONT, #16). Therefore, it is theoretically

possible to use only 2 bits of information to specify these four

actions.

Din select

Chapter 15 A PDP-8 Implemented from AMD Bit-Sliced Microprocessors 221

have to be separately microprogrammed. Another alternative for

the PDP-8 Link bit is to use one of the Am2901 RAM registers for

storing the value. In this case, additional Link-handling micro-

code would have to be inserted after each PDP-8 ALU operation,

increasing the target instruction execution time.

Data Input to the ALU

There is only one method of writing external data into the Am2901
ALU. It is through the Direct (D) input. In this PDP-8 design,

three sources are connected to share the D input: data from the

main memory (MBR), constants for ALU operations (the Mask

ROM), and data in the switch register (SWITCHES). These three

sources are connected by an input bus to the D input port on the

ALU. The microword selects which one of the three will be the

source during any given microcycle.

The use of a separate ROM to store the constants can be

debated. An alternative is to store the constants in the microword.

It is wastefiil to dedicate a microword bit field to this purpose,

since the width of this field must be the same as the ALU width

and constants are used infrequently. If the microword fields are

multiplexed, we violate the design goal of clarity. Hence, a

constant ROM is a good compromise between the two conflicting

objectives. One need only store the address of the constant in the

microprogram.

Miscellaneous Control Signals

The data part of this design requires many miscellaneous control

signals. For example, the Link bit uses seven different signals to

control its operation. Analysis indicates that only one of these

signals needs to be asserted during any given microcycle. The

Miscellaneous Control Select field in the microword selects one

and only one signal during each microcycle. The selection code is

decoded and directed to the associated destinations. The assign-

ments of the signals can be found in the ISPS description.

The PDP-8 Primary Memory

The primary memory (MP) for the PDP-8 target machine is

assumed to be constructed from "static" semiconductor memory
chips. In this type of memory, the output constantly displays the

content of the location selected by the address input, unless a

write operation is in progress. In this PDP-8 design, the ALU
output is connected with the Memory Address Register (MAR)
and with the data input port of the MP. When the write enable

line of the MP is asserted, the content of the ALU output port is

latched into the location selected by the MAR. The Memory
Buffer Register (MBR), an ISP implementation pseudoregister, is

constantly displaying the content of the location selected by the

MAR. For the ISPS simulation, the memory access speed is

assumed to be less than one microcycle. One can read the value of

MBR (containing data from MP) two microeycles after a "write"

into the MAR.

The Microprogram

The encoded microprogram that emulates the PDP-8 basic

instruction set is listed in Appendix 2. This program listing is

extracted from an ISPS simulator command file used to simulate

this microprogrammable machine. The content of the constant

ROM (Mask) is defined using the ISPS simulator "set" command,

e.g., "set Mask[4] = #0177." The content of the microprogram
store is also defined in this manner. As an example, the instruction

fetch cycle is now described. (For readability, the encoded

microword is broken into seven fields separated by dashes.)

set uMP[000] = #03-010-10-403-12-00-10

!RUN: MAR-^LastPC«-PC, IF PDP8.go = goto HALT:

If the PDP-8. go bit is off (Condition code select 10), the

microprogram jumps to Halt: (location 010). The content of PC

(ALU RAM[1]) is pushed to the ALU output. The value is also

latched into LastPC (ALU RAM[2]). Concurrently, the value is

latched into the Memory Address Register (MAR) using the

control code 10.

set uMP[001] = # 16-000-00-503-11-21-00 !PC<-PC + 1

The value #0001 is selected from the constant Mask ROM (21).

The PC value is selected at the ALU A port, added to the

constant, and then latched back into PC.

set uMP[002] = #03-040-^1-703-05-10-15

!IR«-ALU.Mb^MBR, goto Exec:

The content of the Memory Buffer Register (obtained by
the MP[MAR] operation) is latched into the ALU. Mb
(ALU RAM[5]). In this cycle, the MBR is also latched into the

Instruction Register (IR) by the control signal 15. The micro-

program jumps to the instruction execution section (location

040, Exec:) by forcing a pass-test condition (41) into the

Am2910 sequencer Condition Code input.

set uMP[004] = #03-000-03-741-00-20-10

lENDex: MAR«-0, IF no interrupt goto RUN:

When the instruction execution is finished, the microprogram
returns to this point. The MAR is set to zero in anticipation of

interrupt servicing. The MAR will be reset to the correct PC
value by microinstruction uMP[001] later on. If the interrupt

request is not granted (condition code 03), the microprogram

jumps back to RUN: (location 000). Otherwise, the program
continues to location uMP[005] to handle the interrupt.

222 Part 2
I
Regions of Computer Space Section 1 IMIcroprogram-Based Processors

Implementation and Simulation Results

The micromachine and the microcode were simulated and tested

by the ISPS simulator. The results are presented here.

Chip Count

Since the micromachine was not actually built, the chip count is

an estimate of the required hardware parts. The goal of this

exercise is to identify the inefficient area in terms of the parts

count, and to suggest alternative IC chip types that may reduce

the parts count. (See Table 2.)

The parts count for this microprogrammed PDP-8 implementa-
tion is 35 chips. Of these IC parts, over two-thirds (25 chips) are

SSI or MSI types. If IC custom-made parts are available for the

Link bit, the Skip-condition generate, and the Pipeline Register,

the design can be reduced to 22 chips.

Target-Machine Instruction Execution Speed

Two methods of comparing this microprogrammed PDP-8 and a

basic PDP-8 are discussed here. By counting the average number

of microinstructions executed for a target instruction, one can

estimate the execution speed of the emulated PDP-8. Or one can

compare the execution speed of the two ISPS simulators.

Table 2 Chip Count for a Microprogrammed PDP-8

For each target PDP-8 instruction, the microprogram must

execute the following number of microinstructions (Table 3).

On the average, 18 microwords (4-l-3-l-6-l-5or4-(-3 + 11)

are needed to do one PDP-8 target instruction. At the

manufacturer-recommended microcycle time of 150 ns, and not

counting the PDP-8 Mp access time, the microprogram execution

speed is 2.7 jj.s per target instruction (150 ns x 18). The Mp access

time is usually quoted at 1.3 jxs for PDP-8/E and /M [Bell,

Mudge, and McN'amara, 1978]. For an average instruction (i.e.,

indirect memory reference), three memory accesses are required:

instruction fetch, pointer to data (one level of indirection), and the

actual data fetch. When these are added to the 2.7-|ji,s micropro-

gram execution time, the projected maximum average instruction

time is 6.6 (j.s.

Another method of comparison involves the ISPS simulator.

Several PDP-8 benchmark and diagnostic programs were simula-

ted. The CPU times used by each simulator were compared. The

microcoded PDP-8 uses approximately 20 times the CPU time

used by the basic PDP-8 ISP. Translated into simulation CPU
time, the ISP simulator of the micromachine executes approxi-

mately 1.5 PDP-8 target instructions for every CPU second on a

DEC KL-10 processor.

Chip count Description

6 Microstore. The microword width is between 39 bits and 48 bits (see Table 1). In using 8-bit-wide ROM or EPROM parts,

six such chips are required. Since the microprogram is less than 128 words (7 address bits), many commercially

available memory chips can be used here.

6 Pipeline Register (Pipe). Eight-bit-wide D flip-flops are assumed here. This register is very expansive in terms of chip

count. An alternative would be having a special ROM type that can latch the data in the output buffer. Another

alternative is to latch the microaddress instead of the microword. In this second design, the microword fetch and

ALU-Sequencer operations are in series rather then in parallel as in the original design. This is a classical cost-

performance tradeoff.

1 Am2910 microsequencer. The advantage of using the Am2910 instead of the Am2909 Sequencer is evident here. The

Am2909 requires two chips instead of one Am2910 for this example.

3 Am2901 ALU bit slices. Three slices are used to provide the 12-bit-wide PDP-8 data path.

5 (estimated) Link bit and associated hardware. The link bit in this design is constructed of a D flip-flop, some tristate drivers, and

input multiplexers. SSI implementation of the Link bit requires 14 percent (5 out of 35) of the total chip count. An

alternative is to use a custom-made MSI chip for the Link bit. A second alternative is to implement the Link bit in the ALU
RAM registers. In this second design, additional microcode will have to be inserted to handle the special cases,

degrading the overall performance.

3 Condition Code input multiplexer. Two 16-to-1 MUXs and two 2-to-1 MUXs.

4 PDP-8 Skip condition generate. The argument for a custom MSI chip can also be made here.

3 Constant Mask ROM and associated ALU D input selection control. The Constant Mask uses two ROM chips. The D

input control uses one 2-to-4 decoder. The source registers for the ALU D input bus are assumed to have build-in

tristate drivers.

4 (estimated) Other miscellaneous parts.

Chapter IS
|

A PDP-8 Implemented from AMD Bit-Sliced Microprocessors 223

Table 3 Average Number of Microinstructions Executed for a Target Instruction

Words Description

(11)

PDP-8 instruction fetch cycle. Check PDP-8.go, fetch target instruction, increment PC, check interrupt conditions.

Instruction decodes. A straightforward binary decision decode tree is implemented in microcode. An alternative is to use
the Instruction Decode Mapping ROM capability of the Am2910. The advantage of this alternative is not clear in view of

the simple PDP-8 ISP.

Effective Address Calculation. Depending on the addressing mode, there are five possibilities

2 words PDP-8 Page address

4 words current page
6 words indirect address. Page
8 words indirect address, current page
9 words auto index

On the average, approximately six microinstructions are needed to calculate the PDP-8 effective address (equivalent to

the Page indirect address).

Memory Reference Instructions. For each target instruction, the microcode fetches data from primary memory, executes

the operation, and deposits the result in memory. Depending on the particular target instruction, anywhere between two

microinstructions (JMP) and eight microinstructions (ISZ) are needed. On the average, five microinstructions are

assumed.

PDP-8 OPR group microinstructions. The decoding and execution of the PDP-8 OPR instructions are highly sequential in

nattire. Therefore, 11 microinstructions executed is taken as the average.

Summary

In this chapter, the design of a microprogrammed PDP-8 was

presented. The central component of this micromachine was the

AMD bit-shced microprocessor. Although the design was opti-

mized toward the basic PDP-8 configuration, many issues com-

mon to all microprogramming and RT-level hardware designs
were illustrated. In simulating the micromachine, the usefulness

of the ISP descriptive language as a design tool was also

demonstrated.

References

Bell, Mudge, and McNamara [1978].

APPENDIX 1 ISP OF A PDP-8 EMULATOR USING THE AM2901

AND AM2910

AMDS :=

#20

APPENDIX 2 SIMULATOR COMMAND FILE FOR AM2900

IMPLEMENTATION OF THE PDP-8

I Simulator command file for the AM2900 implementation of the PDP8

I

radix octal
I

! constant Mask ROM. used as input to the ALU Direct input port
s MaskLOJ=#0000
s Mask[l J=#0001
s Mask[2]=#0002
s Mask[31=#0010
s Mask[4J=#0177
s Maskl5J-#7600
s Mask[61 = il'7770

s Mask[7]-#0777
t

! the micro program
micro word format

#11 Sequencer instruction

I
01 CJS. conditional jump to subroutine

I
03 CJP. conditional jump to program

I
12 CRTN, conditional return from subroutine

I
16 COKT, continue

*!!t

*ll

xt micro address

select conditional input signals
(see ISPS Cond. Code for signal assignments)

#111 ALU instructions (see AH2901 descriptions)
431 used as NO. OP

Aport. flport (ALU RAH
AC

1 PC

gister assignments)

'II

'II

2 Last. PC
4 AlU.ma. for effective addr calc.
5 ALU.mb. copy of Mp output
others - not used

D input source select , con s tan t Mask select

Miscellaneous controls
(See ISP description Do. Control for detail)

s uMP(
s uHP[
s uMP[
!

s uHP[
s uMP|
s uHPL

ruction fetch and interrupt handling cycle
M it it M

000] = #030 10 10403 1200 10 I RUN :

001]=#1B00000503112100 I

002J = iS'0304041703051015 !

MAR'-LastPC'-PC. IF PDP8.go = goto HALT:
PC-PC*1
IR'-Mb'-MBR, goto Exec:

004]=#0300003741002010
005J=#1COOOD0301010011
006]=#030004I7030I2100

lENDex

s uMP[010]=0'03010412310Cn3017 IHALT:

! effective address calculation
1 use ALU.mb, and Last. PC, retur
I HHttHHiltltl
s uHP[020]=#0302314543542410
s uMP[021]=#1600000540202500
s uMP[02ZJ=#1600000033440010
s uMP[023 |=#1200015540402600
s uMP[024] = (l'1600000660002300
S uMP[OZi3J-tf0302704703D41000
s uMP[OZ()J

= #]60000050344Zlll

S uMP[OZ7]=#1600000401400010
S uMP[030] = i!'1200041403000000

HAR'-O. IF no-Intr goto RUN:

MPfOl'-PC
PC*-!, goto RUN:

stop uMachine, goto to Halt:

HAR»-ma'-#0177 & mb , IF pb=0 goto MAa :

0-LastPC & #7600 t get current page tt

MAR'-ma'-Q or ma t form 12bits addr

Q-ma & #7770. If lb=0 RETURN
•- xor #0010 ! check auto index

nia'^Mi'fHAR] . IF no-Auto- Index goto MAb :

HPtMARJ'-ma-ma+l t incr. Auto-index Reg

HAR*-ma ! latch new addr
RETURN ! extra cycle for Mp access

do M6=MP[ma()]. fetch data
It It II It It If II II

uMP[032] =#01 02 04 143 1000000

uHP[033 J
=#12 0004 170305 1000

do MP[m3]=MS, depposit ALU.mb

uMP[034]=ffl 60000040 14000 10

uMP[035]=#030044 140 10000 11

Mp pointed by ALU. ma

n PDP8 Hp
MpMaMb:

instruction execution
It H ###»

uHPf 040] = #030665343 1000000

uMP(041 1

= #D305052431000000

oMP| 042 j^#0 103241 431000000

uMl'i 043 J
= #030455 143 1000000

nMP[044]

= #030044 1 1435000 00

uMPL045i=#030044 11 03500001
I AND:
ITAO:

call SUBma:

ALU.mb*-MPi;MAR].

MAR'-ALU.ma

MP[ma]'-mb. goto ENDex

IF IR<0>=1 goto IR4567:
IF IR<1>=1 goto IR23:
call MpMa:
IF IR<2>-1 goto TAD:
AC'^AC & AlU.mb. goto ENDex:
LAC-LAC+ALU.mb. goto ENDex:

ISZ and DCA
It It H It II H n 11

iiMP| 050 |

= #030555 143 1000000 1 IH23:

UMP1051 I
=#01 0324 143 1000000 I ISZ;

uMPj 052 |-#lli00000503552100
iiMP| 053

I
^#0303 4 04 4 3 1 000000

uMP| 054 J-tf030344 1503 112100

uMP| 055 |=#0 102041 431 000000

uMP| 056] =#1600000 4 03050000

uMPt 057 j =#030344 1443000000

the other 4 instructions
It H H H II II II U

uMPf 066) =#030 7 7 02 43 1000000

UMP[0G7) ^#01 0204 143 1000000

nMP| 701= #030735 1431 000000

uMP| 071
I
=#10000004031 50000

iiMI'i072 |

= #0303441502412100

uHP[0?3)^#0300441 40341 0000

group 6 instruction, lOTs

turn on and turn off interrupt enable
II II H H

s uMP(077]=#0312051431000000 IIR67:

s uMPL100J=#1600000540502700 HOT;
s uMP[101]=#1600000661002100
s uMP| 102J=#0310404431000000
s uMPl 103] = #0300041431000013
s uMPJ 1041=#1600000661002200
s uMPJ 105J=#0300404431000000
s uMPtl06j=#0300441431000012

Group 7 operating insti'uct ions

uMP[l
uMP[1

uHP[1

uMP[l
uMPtl
uMPj 1

. uMI'Ll

do ro

, uMP| 1

, uMP| 1

, uMP| I

, uHPJ 1

, uMP
; uMP[l

####
20)=^#0314070431000000
21)=#0312327231000005"" "

#1000000443000000

23i=#0312525/70002007
24]-#lQOOOOD053000000

"

J=#0312/20431000000
26J'-#1U00000503002101

tates
H H ## U H tt It

27")
= #03133t)3431000000

30]=#0300422431000000
31 1=#0300421407000003

" "

#0300441407000003
33 j=#030042I405000002
34J=#0300441405000002

lOPR:
ImGRPl:

ILeft:
!

IRighti

group 2 micro instructions
####

s uHPf MO] = #03D0400431000000
s uMP| 141

1

= #0314321401000000
s uMPJ M2|--#1000000401000016
s uMP| 143!-#C3I4502431000000
S iiMPJ 144

|

= #160000(I503112100
s uMPJ 145 l^#0314727431000000
s uMI'i 14i;

|

= #l(iOOOD0443DOOOOO
s uHP| 147)=#0300422431000000
s uMI'[150J = #0300441533003000
I

I end of microcode

If IR<2>=1 goto DCA:
call MpHa:
AlU.mb - AIU.mb*-l

IF Al U.7=0 goto MpMaMb:
f'C«PC+I . goto MpMaHb:

call subMa:
ALU.mb •- AC

At^-0. goto MpMaMb:

IF IR<1>=1 goto IR67:

call subMa:
IF IR<2>=1 goto JMP:
ALU.mb-PC
PC-ALU.ma+1. goto MpMaMb:
PC •- ALU. ma. goto ENDex:

IF 1R<2>=1 goto OPR:

O'-ALU.mb & #0777
Al U.out*-0 xor #0001

skip IF ALU.z=0
enable interrupt, goto RUN:

ALU.ouf-0 xor #0002
IF ALU.;=0 goto ENDex:
disable interr. goto ENDex:

IF GRP = 1 goto inGRP2:

skip IF CLA=0. cond clear Link

AC-O
skip IF CMA = 0. Q*-#7777, cond comp Link

AC»^ not AC

skip IF lAC'O
LAC'-LAC+l. carry-out cond comp Link

IF RAR=1 goto Right:
IF RAL=0 goto ENDex:
LAC'-LAC*2, IF rt = goto ENDex:

LAC'-LAC*2. goto ENDex:

LAC'-LAC/2. IF rt = goto fNDex:

LAC«-LAC/2. goto ENDex:

!F Hb<ll>=l goto ENDex:

skip IF halt = 0. Y«-Ac

PDPS.go'-O. Y'-AC

skip IF Skip.cond=0
PC*^PC+1

sk jp IF c1a*0
ac*-0

IF osr=0 goto ENDex:
AC*^AC or SWR. goto ENDex

226

Chapter 46

The PDP-8 Family!

C. G. Bell / J. E. McNamara

Figure 1 depicts the PDP-8 family tree. The family ancestry began
\\ ith the Laboratory Instrument Computer (LINC) initially built

at the MIT Lincoln Laboratory in 1962, which, incidentally, we
believe was the earliest personal computer. DEC began manufac-

turing LINC's in 1965. Eventually a PDP-8 and LINC were

combined in a dual processor called the LINC-8.

In 1962, the need arose to produce a replacement for an analog

monitoring system as a front end to a reactor control complex. A
12-bit real time control computer, the PDP-5, was constructed.

'Abstracted from C. G. Bell, J. C. Mudge, and J. E. McNamara,

Computer Engineering: A DEC View ofHardware Systems Design, Digital

Press, Maynard, Mass., 1978, pp. 175-208.

The analog nature of the initial application was addressed by

building an analog-to-digital converter into the Accumulator. The

concept of an I/O bus was introduced instead of the radial I/O

structure of previous DEC designs. The I/O Bus permitted

equipment options to be added incrementally from a zero base

instead of having the pre-allocated space, wiring, and cable

drivers that characterized the radial structure. This lowered the

entry cost of the system and simplified the later reconfiguring of

machines in the field.

Although the design was optimized around the 4-Kword

memory, the PDP-5 ultimately evolved to 32-Kword configura-

tions using a memory extension unit. Similarly, although the base

machine design did not include built-in multiply and divide

functions, these were added later in the form of an Extended

Arithmetic Element.

While the PDP-5 had been a reasonably successful computer, it

soon became evident that a new machine capable of far greater

performance was required. New logic technology promised a

substantial speed improvement, and new core memory technolo-

gy was becoming available that would permit the memory cycle

1978

768 Part 4 ! Family Range, Compatibility, and Evolution Section 2
I Minicomputer Families

time to be shortened from 6 microseconds in the PDP-5 to 1.6

microseconds in the new machine. In addition, the cost of logic

was now low enough so that the program counter could be moved

from the memory to a separate register, substantially reducing

instruction execution times. The new machine was called the

PDP-8.

The new 12-bit machine was only half the size of its predeces-

sor, occupying only half a cabinet. The net small size meant that

the PDP-8 was the first true minicomputer. It could be placed on

top of a lab bench or built into equipment. It was this latter

property that was the most important, as it laid the groundwork
for the original equipment manufacturer (OEM) purchase of

computers to be integrated into total systems sold by the OEM.
Like its predecessor the PDP-5, the PDP-8 was a single-address

12-bit computer designed for task environments with minimum
arithmetic computing and small primary memory requirements.

Typical of these environments were process control applications

and laborator\' applications such as controlling pulse height

analyzers and spectrum analyzers.

The PDP-8 was the first of the "8 Family." A subset, called

"Omnibus 8" machines, is introduced later when the PDP-8/E,

PDP-8/M, and PDP-8/A machines are discussed. Finally, comput-
ers which implement the PDP-8 instruction set in a single

complementary metal oxide semiconductor (CMOS) chip will be

referred to as "CMOS-8" based systems.

The PDP-8, which was first shipped in April 1965, and the

other 8-Faniily machines that followed it achieved a production

status formerly reserved for IBM computers with about 50,000

machines produced by 1979, excluding the CMOS-8 based

computers. During the 15 years that these machines have been

produced, logic cost per function has decreased by orders of

magnitude, permitting the cost of entire systems to be reduced by
a factor of 10. Thus, the 8 Family oflFers a rare opportunity to study

the effect of technology on implementations of the same instruc-

tion set processor from early second generation to late fourth

generation.

The PDP-8 was followed in late 1966 by the PDP-8/S, a

cost-reduced version. The PDP-8/S was quite small in size,

scarcely larger than a file cabinet drawer. It achieved its low cost

by implementing the PDP-8 instruction set in serial fashion. This

did reduce the cost, but it so radically reduced the performance

that the machine was not a good seller.

In 1968, the PDP-8/I was produced, using medium-scale

integration (MSI) integrated circuits to implement the PDP-8

instruction set with better performance than the PDP-8, and at

two-thirds the price. For those customers wishing a package with

less option mounting space but the same performance, the

PDP-8/L was introduced later the same year.

The PDP-8/S, PDP-8/I, and PDP-8/L are mentioned only

briefly here because their characteristics were basically dictated

by the cost and performance improvements made possible by the

emerging integrated circuit technology. The cost and perform-
ance figures for these machines are examined in greater detail in

Figs. 4 to 8 and Table 1.

Shortly after the introduction of the PDP-8/L, it became
evident that customers wanted a faster and more expandable
machine. The continuing technological trend toward higher-

density logic and some new concepts in packaging made it

possible to satisfy both of these requirements but to still produce a

new machine that would be cheaper than its predecessor. The
new machine was the PDP-8/E. The PDP-8/E incorporated an

adapter for interconnecting to PDP-8/I and PDP-8/L I/O devices.

In addition, signal converters were available for interconnecting

to the older PDP-5, PDP-8, and PDP-8/S I/O devices. Thus it was

not necessary to design a complete new set of options at the time

the machine was introduced, and existing customers could

upgrade to the new computer without having to buy new

peripherals. The reason for using an adapter to connect to existing

I/O devices was that the PDP-8/E featured a new unified-bus I/O

Bus implementation called the Omnibus.

The Omnibus, which is still in use in the PDP-8/A, has 144

pins, of which 96 are defined as Omnibus signals. The remainder

are power and ground. The large number of signals permit a great

number of intraprocessor communications links as well as I/O

signals to be accommodated. The Omnibus signals can be

grouped as follows:

1 Master timing to all components

2 Processor state information to the console

3 Processor request to memory for instructions and data

4 Processor to I/O device commands and data transfer

5 I/O device to processor, signaling completion (interrupts)

6 I/O Direct Memory Access control for both direct and

Three Cycle Data Break transfers

The approximately 30 signals in groups 4 and 5 provide

programmed I/O capability. There are about 50 signals in group 6

to provide the Direct Memory Access capability. These 80 signals

are nearly equivalent in quantity and function to the preceding

PDP-8 I/O Bus design, making the conversion from Omnibus

structure to PDP-8/I and PDP-8/L I/O equipment very simple.

The processor for the PDP-8/E occupied three 8- x 10-inch

boards; 4 Kwords of core memoiy took up three more boards; a

memory shield board, a terminator board, a teleprinter control

board, and the console board completed the minimuin system

configuration. Thus, a total of ten 8- x 10-inch boards formed a

complete system. The three-board PDP-8/E processor, occupying

240 in^ was in striking contrast to the 100-board PDP-5 processor,

which occupied 2,100 in^.

Chapter 46 The PDP-8 Family 769

The PDP-8/E implementation was determined by the availabiH-

ty of integrated circuits. Multiplexers, register files, and basic

arithmetic logic units performed the basic operations in a

straightforward fashion using a simple sequential controller.

Microprogrammed control was not feasible because suitable

read-only memories were not available. Integrated circuit read-

only memories available at that time were too small, holding only

about 64 bits.

The PDP-8/E was mounted in a chassis which had space and

power to accommodate two blocks of Omnibus slots. Thirty-eight

modules could be mounted in the slots, allowing space for the

processor and almost 30 peripheral option controllers. Many
customers wanted to build the PDP-8/E into small cabinets and

have it control only a few things. They found the large chassis and

its associated price to be more than they wanted. To reach this

market, the PDP-8/M was designed.

THE PDP-8/M was essentially a PDP-8/E cut in half The

cabinet had half the depth of a PDP-8/E, and the power supply
was half as big. There were 18 slots available, enough for the basic

processor-memory system and about eight options. The processor

was the same as that for a PDP-8/E.

By 197,5, DEC had been building "hex" size printed circuit

boards. The hex boards were 8 X 15 inches, half again as big as the

"quad" boards used in the PDP-8/E and PDP-8/M, which were 8

X 10 inches. The dimensional difference was along the contact

side of the board. A hex board had six sets of36 contacts while the

quad board had only four sets. Semiconductor memory chips had

also become available, so a new machine was designed to utilize

the larger boards and new memories to extend the PDP-8/E,
PDP-8/M to a new, lower price range. The new machine was the

PDP-8/A. The PDP-8/A processor and register transfer diagram is

shown in Fig. 2.

The hex modules permitted some of the peripheral controller

options that had occupied several boards in the PDP-8/E to fit on a

single board in the PDP-8/A. The availability of hex boards and of

larger semiconductor read-only memories permitted the PDP-8/A

processor to use microprogrammed control and fit onto a single

board. It should be noted here that when a logic system occupies
more than one board, a lot of space on each board is used by etch

runs going to the connectors. This was particularly true of the

PDP-8/E and PDP-8/M processor boards, due to the contacts on

two edges of the boards. When an option is condensed to a single

board, more space becomes available than square inch compari-
sons would at first indicate because many of the etch lines to the

contacts are no longer required.

The first PDP-8/A semiconductor memory took only 48 chips (1

Kbit each) to implement 4 Kwords of memory. Memories of 8

Kwords and 16 Kwords were also ofiiered. In 1977, only 96 16-Kbit

chips were needed to form a 128-Kword memory. With greater

u.se of semiconductor memory, especially read-only memory, a

scheme was devised and added to the PDP-8/A to permit

programs written for read-write memory to be run in read-only

memory. The scheme adds a 13th bit to the read-only memory to

signify that a particular location is actually a location that is both

read and written. When the processor detects the assertion of the

13th bit, the processor uses the other 12 bits to address a location

in some read-write memory which holds the variable information.

This effectively provides an indirect memory reference.

In 1976, an option to improve the speed of floating-point

computation was added to the PDP-8/A. This option is a single

accumulator floating-point processor occupying two hex boards. It

supports 3- or 6-word floating-point arithmetic (12-bit exponent
and 24- or 60-bit fraction) and 2-word double precision 24-bit

arithmetic. As a completely independent processor with its own
instruction set processor, it has its own program counter and eight

index registers. The performance, approximately equal to that of

an IBM 360 Model 40, provides what is probably the highest

performance/cost ratio of any computer.
More Omnibus 8 computers (PDP-8/E, PDP-8/M, PDP-8/A)

have been constructed than any of the previous models. The high

demand for this model appears to be due to the basic simplicity of

the design, together with the ability of the user to easily build

rather arbitrary system configurations.

In 1976, Intersil offered the first PDP-8 processor to occupy a

single chip, using CMOS technology. (Here we should note that

an internal to DEC processor-on-a-chip effort, the PDP-8/B,

yielded a design in 1973.) DEC verified that it was a PDP-8 and

began to apply it to a product in the fall of 1976. In the meantime,
in additon to Intersil, Harris Semiconductor became a second

source of chip supply for DEC.
The CMOS-8 processor block diagram is given in Fig. 3. The

block diagram looks very much like a conventional PDP-8/E

processor design using medium scale integrated circuits. It has a

common data path for manipulating the Program Counter (PC),

Memory Address (MA), Multiplier-Quotient (MQ), Accumulator

(AC), and Temporary (Temp) registers. The Instruction Register

(IR), however, does not share the common arithmetic logic unit

(ALU). Register transfers, including those to the "outside world,"

are controlled by a programmable logic array (PLA), as indicated

by the dotted lines in the figure.

While the CMOS-8 is the first DEC processor to be built on a

single chip, the most interesting thing about it is the systems

configurations that it makes possible. It is not only small in size (a

single 40-pin chip), but it also has miniscule power requirements
due to its CMOS construction. Thus, some very compact systems
can be built using it.

An excellent example of the use of a CMOS-8 as part of a

packaged system is the VT78 video terminal. The goals for this

terminal were to drastically reduce costs by including the

keyboard, cathode ray tube, and processor in a single package the

770 Part 4 Family Range, Compatibility, and Evolution Section 2
|
Minicomputer Families

Table 1 Characteristics of PDP-8 Family Computers

Chapter 46
|

The PDP-8 Family 771

PDP-8/L

772 Part 4
;

Family Range, Compatibility, and Evolution Section 2
{
Minicomputer Families

INSTRUCTION DCCOOER

TIWING GENERATOR
iWimiCTtOH
RESIST CR
LOfilC

CtOCK.
ROWED ON
LOCiC

TIMING
REGISTER
LO&C

MEMORY/ CRU
TIMING
LOGIC

HCHORt'IA)
TIMNC snuj.

LOCK

M Q

MAJOR STATE
REOSTCR
LOGIC

T f
HO CONSOLE

LINES COHTfKlL
SIGNALS

DP
I W> LINES

•l
I

I

I I

J L.

RC.AC.MQ
HI. CRMI
LOAD

GATING
CONTROL
SIGNALS

MAJOR REGISTERS
AND GATING

AC REGISTER
SATING

SIGNALS

LINK AND SKIR
CONTROL I
SIGNALS J

M«iTER
LOAD
tIMALS

] [

CARRt

LOGIC

Chapter 46
|

The PDP-8 Family 773

LCOINO
INTERNAI. CONTHOL LINf S

iXTiMNAl INPUT* OUT^UTI
^^— DATA LINEt

XTA. XTI. XTC
OMAONT
(NTGNT ^-
IffTCM
OATAF RUN

nAIT » - 1

LXMAR OEVSEL
SWSEL MEMSEL
CPSCl

Fig. 3. Block diagram of CMOS-8.

NOTE
LINC. LINC 8. *nd POP 12
includ* 2 LINClspvt
<<H DEClapvs) and «cop*i and
A/D conversion

I USER SVSTEU WITH
I Kw 2 DECtapas
(OR EQUIVALENT] AND HARD COPV

J I \ I I L J L
«5 6« «7 68 eS 70 71 72 73 74 7» 76 77 78

VEAH

0011 \ I I I I I I I I I I I L
66 e« 67 68 69 70 71 72 73 74 76 76 77 78

Fig. 4. Performance of DEC'S 12-bit computer versus time.

774 Part 4
I Family Range, Compatibility, and Evolution Section 2

|
Minicomputer Families

NOTE
PnC« includes 4
CPU .vtthout l*rm

02 03 0405 0709
J I I I I I I

02 03 004 006 000001

CPU PERFORMANCE IMIILIONS OF ADDITIONS/SECOND)

Fig. 7. Price versus performance of DEC'S 12-bit computers.

10,000

100

93 X 1.22'" '^^^^

PDP-8/A

PDP-8

PDP-8/S

I I I
I I I I

1964 1968
I I I I I I I I I

1972 1976 1980

Fig. 8. Bits accessed by ttie central processor/s/$ versus time (for 4

K word + processor systems).

71 "O^Ut

Chapter 46
j

The PDP-8 Family 775

somewhat between 1968 and 1977, as medium-scale integrated
circuits continued to be the implementation technology, and the

cost of packaging and connecting components continued to be
controlled by the relatively wide bus structure.

During their evolution, the DEC 12-bit computers have

significantly changed in physical structure, as can be seen from
the block diagrams in Fig, 9. The machines up through the

PDP-8/L had a relatively centralized structure with three buses to

interface to memory, program-controlled I/O devices, and Direct

Memory Access devices. The Omnibus-8 machines bundled these

connections together in a simpler physical structure. The
CMOS-8 avoids the wide bus problem by moving the bus to lines

on a printed circuit board. The number of interconnection signals
on the bus is then reduced by roughly a factor of 4 to about 25

signals which can be brought into and out of the chips within the

number of pins available.

Figures 4 and 7 illustrate the oscillating price/performance

history of the design evolution summarized below:

1 While the PDP-5 was designed to keep price at a mini-

mum, the PDP-8 had additions to improve the perform-
ance while not increasing price significantly over that of a
slower speed design. The cost per word was modestly
higher with the PDP-8 than with the PDP-5, but the
PDP-8 had 6 times the performance of a PDP-5. Thus, the
PDP-8 crosses three lines of constant price/performance in

Fig. 7.

2 The PDP-8/S was an attempt to achieve a minimum price
by using serial logic and a minimum price memory design.
However, the performance of the PDP-8/S was low.

3 The market pressures created by PDP-8/S performance
probably caused the return to the PDP-8 design, but in an

integrated circuit implementation, the PDP-8/I.

4 The PDP-8/I was relatively expensive, so the PDP-8/L was
quickly introduced to reduce cost and bring the design into
line with market needs and expectations.

5 The PDP-8/E was introduced as a high performance
machine that would permit the building of systems larger
than those possible with the PDP-8/L.

6 The PDP-8/Mwas a lower cost, smaller cabinet version of
the PDP-8/E and was intended to meet the needs of the
OEM market.

The design goal of machines subsequent to the PDP-8/M has
been primarily one of price reduction. The PDP-8/A was intro-

duced to further reduce cost from the level of the PDP-8/E and

PDP-8/M, although some large system configurations are still

built with PDP-8/E machines. The CMOS-8 chips represent a

substantial cost reduction but also a substantial performance
reduction. The CMOS-8 performance is one-third that of a

PDP-8/A, so a stand-alone system using a CMOS-8 is less

cost-effective than an PDP-8/A when the central processor is used
as the only performance criterion. The main reason for using
large-scale integration is the reduced cost and smaller package
rather than performance. Obviously, the next step is increased

performance or more memory, or both more performance and
more memory on the same chip.

