
Chapter 45

The Tl ASC: A Highly Modular and
Flexible Super Computer Architecture^

W. J. Watson

Introduction

Early in 1966, a large computer development program was begun
by Texas Instruments. The goal for this eEFort was to provide
needed capacity for supporting seismic processing, plus offering a

general super computer capability in the support ofnew markets.

This development has resulted in the Advanced Scientific

Computer (ASC)—a highly modular system offering a wide

spectrum of computing power and configurability.

CEN1RAL

NENORY

754 Part 3 Computer Classes Section 4
I
Maxicomputers

INTERLEAVED

HIGH-SPEED OR

flEDIun-SPEED

MEMORY MODULES

rh rh m m m m dii m
INTERLEAVED tIEDIUI- SPEED MEMORY MODULES

EXTEHSICN

(OPTIONAL)

Fig. 2. Modular structure of the ASC central memory.

amounts of relatively economical medium-speed memory to be

utilized in support of the high-speed central memory. The

memory extension uses 1 ji,s semiconductor technology and is also

accessed in 8-word increments. Single-bit error correction is

provided at the 8-word level. The central memory extension is

included in the address space of the central memory and,

therefore, can be addressed by a processor or channel controller

for instructions or operands. It is also possible to effect block

transfers of data between high-speed memory and the memory
extension. This is possible because both a normal memory bus and

a memory access port are provided. Block transfers are initiated

by the peripheral processor with the specification of the source

starting address, the destination starting address, and the block

length. The block transfer proceeds automatically at 40M words

per second, and the peripheral processor is notified upon

completion.

The central memory size is limited only by the 24-bit address

(16 megawords). The proportions of fast memory and memory
extension may be varied in order to balance memory capacities to

suit the particular system requirements. The present high-speed

memory module is modular from 16K to 128K 32-bit words. This

permits memories from 128K to one million words to be

configured.

Central memory management and access control of memory

ports is achieved through the use of two facilities: map registers

and protect registers. Each user program has its own unique page

address map. Page addresses not required by the program are

mapped into absolute page zero which is not accessible to the CP.

When a program is loaded into memory, it will likely be loaded

into discontiguous memory pages. During program execution,

program developed page addresses are converted, without execu-

tion time penalty, to actual page addresses by the map registers.

Because a reference to page zero is denied and the relevant

processor notified, the map registers provide for inter-user

memory protection. Figure 3 shows the mapping scheme.

Desired page sizes depend on the amount of central memory and

the problem mix of a particular installation. Four different page

sizes may be specified for an ASC system, varying from 4K to

256K words. A program may utilize any one of the page sizes

available.

The protect registers allow for intra-user protection. These

registers consist of three pairs of bounds registers for defining the

upper and lower addresses of access for read, write, or execute

areas. The five combinations of protection presently used by the

system software with the bounds registers are:

• Execute Only

• Read Only

• Execute, Read, No Write

• Read, Write, No Execute

• Read, Write, Execute

An attempt to reference an area out of bounds for a particular

control state is denied and the processor notified of the attempted

violation.

In large ASC systems, more processors and control units

require additional access ports to memory. In these cases memory

port expanders are utilized to provide additional ports and are

utilized to service the devices not requiring the full bandwidth of a

memory port. Each memory access port expander provides a 1:4

expansion with a maximum bandwidth degradation often percent;

>LUTI<Nt lIHVALti ScOUi't,

Chapter 45
|

The Tl ASC: A Highly Modular and Flexible Super Computer Architecture 755

i.e., from 80 million 32-bit words per second to approximately 72

million 32-bit words per second. These expanders can be concate-

nated to provide further increases in connectivity. Priorities at the

single access port interface are resolved on either a fixed or

distributed basis. The mode is selected by patch card wiring in the

expander hardware.

Central Processor

The central processor (CP) provides both scalar (single operand)
and vector (array) instructions at the machine level. The basic

instruction size is 32 bits, with 16-, 32-, or 64-bit operands. The

single instruction stream, which contains a mixture of scalar and

vector instructions, is preprocessed by the instruction processing

unit.

The central processor design is such that one, two, three, or

four execution units or "pipes" can be provided. These units

employ the pipeline concept in both scalar and vector modes. A

single execution unit can have up to twelve scalar instructions in

process at one time. From one to four vector results can be

produced every 60 ns, depending on the number of execution

units provided.

The CP has 48 program-addressable registers. This group of

32-bit registers consists of sixteen base address registers, sixteen

arithmetic registers, eight index registers, and eight vector

parameter registers. This last group is used to extend the

instruction format for the complete specification of vector instruc-

tions. The basic instruction format is shown as it relates to these

register groups in Fig. 4.

The CP scalar instruction repertoire includes an extensive set of

Load and Store instructions: halfword, fiiUword, and doubleword

instructions, with immediate, magnitude, and negative operand

capabilities. Ability to load and store register files and to load

effective addresses is also available. Arithmetic scalars include

various adds, subtract, multiply, and divide for halfword (16-bit)

and fuUword (32-bit) fixed point numbers and fuUword and

doubleword (64-bit) floating point numbers. Scalar logical instruc-

tions are provided as are arithmetic, logical, and circular shifts.

Various comparison instructions and combination comparison-

logical instructions are provided for halfword, fiiUword, and

doublewords. Many combinations of test and branching instruc-

tions with incrementing or decrementing capability are also

available. Stacking and modifying arithmetic registers can be done

with single instructions. Subroutine linkage is accomplished

through Branch and Load instructions. Format conversion for

single and doublewords, as well as normalize instructions, are

available.

The vector capabilities ofthe CP are made available through the

use of VECTL (vector after loading vector parameter file) and

VECT (assumes parameter file is already loaded) instructions. The
vector repertoire includes such arithmetic operations as add,

subtract, multiply, divide, vector dot product, matrix multiplica-

tion, and others for both fixed point and floating point representa-

tions. Vector instructions are also available for shifting; logical

operations; comparisons; format conversions; normalization; and

special operations
—such as Merge, Order, Search, Peak Pick,

Select and Replace, among others.

One important characteristic of the vector instruction capability

is the ability to encompass three dimensions of addressability

within a single vector instruction. This is equivalent to a nest of

three indexing loops in a conventional machine.

The basic structure of the CP, shown in Fig. 5, has three major

components: the instruction processing unit (IPU) for non-

arithmetic stages of instruction processing for the CP instruction

stream, the memory buffer unit (MBU) to provide operand

VICTOR
PAWAMtTER
REGISTERS

4 4 4

EFFECTIVE ADDRESS M T N

Fig. 4. Instruction format and register groups. Fig. 5. Basic structure of the CP.

756 Part 3
I
Computer Classes Section 4

I
Maxicomputers

interfacing with the central memory, and an arithmetic unit (AU)

to perform the specified arithmetic or logical operations. Figure 5

shows a CP diagram for 2- or 4-pipeline CP's, each with a

corresponding number of MBU-AU pairs. Note that a memory

port is required for the IPU and, in addition, one memory port for

each pipeline (MBU-AU pair) in a CP.

A significant feature of the CP hardware is an operand

look-ahead capability which causes memory references to be

requested prior to the time of actual need. Double buffering in

multiple 8-word (octet) buffers for each pipeline provides a

smooth data flow to and from each arithmetic unit. The pipelined

AU achieves its highest sustained flow rate in the vector mode,

typically a result each 60 ns per AU.

Instruction Processing Unit

The primary function of the instruction processing unit (IPU) is to

supply a continuous stream of instructions for execution by the

other parts of the CP. One Central Memory port is required to

provide the instruction stream. Two 8-word (octet) buffers are

utilized to achieve a balanced stream of instructions from memory

to the IPU. Instructions are transferred from memory in octets as

are all other references to memory for fetching or storing of

information.

The following functions are performed by the IPU: (1) instruc-

tion fetch, (2) instruction decode, (3) register operand selection,

(4) effective address development through indexing and/or indi-

rect addressing, (5) immediate operand development, (6) branch

address development, (7) determination of branch condition, (8)

storage of AU results into the register file, (9) scalar hazard and

register conflict resolution, (10) generation of vector starting

addresses, and (11) transmittal of vector parameters to the MBU

during vector initialization.

Up to 36 instructions in various stages of execution can be

overlapped within the 4-pipe CP. There are twenty positions for

instructions in the 2-pipe CP and twelve positions for instructions

in the 1-pipe CP. Four levels are contained within the IPU, and

eight levels are contained in each arithmetic pipeline (MBU-AU

pair). In addition to the previously mentioned functions, the IPU

performs routing of instructions to the MBU-AU pairs based on an

optimum use of arithmetic unit capability.

Vector processing is altered by software in order to distribute

segments of the vector for multiple pipe systems.

Several features are provided to alleviate the potential prob-

lems of branches and instruction dependencies in the instruction

pipeline. The Prepare-to-Branch instruction, used extensively by

the Fortran compiler, increases the execution speed of branches,

particularly important in loop iterations. This instruction provides

the IPU control hardware with advance address information to

facilitate uninterrupted instruction processing. Instruction depen-

dencies are recognized by the hardware. It scans the instruction

stream and distributes the independent instructions across

MBU-AU pairs to insure proper, yet efficient, execution sequenc-

es.

Memory Buffer Unit

The memory buffer unit (MBU) provides an interface between

central memory and the arithmetic unit. Its primary function is to

supply the arithmetic unit with a continuous stream of operands

from memory and to provide for the storing of the results back to

memory. Note that all references to memory, whether for fetching

or storing, are made in 8-word increments (octets).

The MBU has three double buffers, one octet per buffer, called

the "X" and "Y" buffers for input and the "Z" buffers for output.

This double buffering is provided so that pipeline processing can

be sustained at a high rate with minimal memory access conflicts.

These buffers are illustrated in Fig. 6.

During scalar operations, data specified by effective addresses

developed in the IPU are fetched or stored as required. The Z

buffer can be transferred directly to the X or Y buffers so that

memory references are not necessary for scalar operands which

reside in the Z buffer.

For most vector operations, two operand data strings are

fetched, while a result data string is stored. Addresses for

sustaining the vector operations are computed in the MBU using

parameters initially specified by the vector parameter file.

Arithmetic Unit

The primary function of a CP arithmetic unit (AU) is to perform

the arithmetic operations specified by the operation code of the

instruction currently at the AU level. There is one AU per pipeUne

TO
MEMORY
CONTROL
UNIT

Chapter 45
|

The Tl ASC: A Highly Modular and Flexible Super Computer Architecture 757

FLOATING ADD FIXED MULT

i

758 Part 3
I Computer Classes Section 4 Maxicomputers

Fig. 9. Two possible VP time slot assignments.

storage and execution of those short routines which are highly

utihzed by the VP's, such as polling loops. The read only memory
consists of up to 4K 32-bit words of non-volatile memory elements

with a cycle time of less than 85 ns. It is modular in 256-word

increments.

Because the PP is intended to perform control functions rather

than execute mathematical algorithms, the instruction set is

oriented toward control operations and does not require multipli-

cation, division, or floating point operations. The instruction

format is similar to that of the central processor, using a 32-bit

word for each instruction. Instructions are provided for bit (1 bit),

byte (8 bits), halfword (16 bits), and fuUword (32 bits) operations.

Each VP has direct access to the entire central memory for

program execution and data storage. Therefore, a single copy of

reentrant code can be executed simultaneously by more than one

VP.

The communications register (CR) file contains sixty-four 32-bit

word registers which are program addressable by the VP's. The

CR file serves as the principal storage medium for control

information necessary for the coordination of all parts of the ASC

system. Synchronization of communications is achieved between

all processors (CP, VP's channel controllers, and peripheral unit

controllers) from interpretation of status bits received from all

devices into the CR file.

Disc Storage

Disc storage is the principal secondary storage system for the ASC

system. Disc storage consists of head-per-track (H/T) disc systems

supplemented by positioning-arm disc (PAD) systems.

Head-per-Track (H/T) Disc System)

The H/T disc system is a high-performance device whose eEFective

performance is further enhanced because the operating system

utilizes a shortest-access-time-first (SATF) algorithm [Denning,

1967] for data transfers. This combination of hardware and

software provides a very high effective transfer rate. Each HAT

disc module has a capacity of 25 million 32-bit words with a

transfer rate of approximately 500K words per second. Using the

shortest-access-time-first algorithm, access time will average

approximately 5 ms which results in an exceptionally fast "effec-

tive
"

transfer rate. The rotational period of the disc is 32 ms. Each

H/T disc module has seven discs with fourteen surfaces. Two
surfaces ofthe module are used as alternate storage for inoperative

sections. For data ordering purposes, the discs are divided into

bands and then further subdivided into sectors of 64 words each.

Positioning-Arm Disc (PAD) System)

The PAD system, when utilized to supplement head per track, is

available in a variety of configurations. Control of PAD systems is

achieved by use of channel interface, disc controller, and disc

interface units. From two to eight PAD disc drives may be

attached to a set of control devices. The number of controllers and

discs per controller will depend upon the storage and retrieval

problem requirements.

The PAD system has a transfer rate of 200K words per second

and a storage capacity of25M words per disc drive. Access time is

divided into two categories: positioning-arm time which is 30 ms

average with a maximum of 55 ms and average rotational latency

which is 8.4 ms. Thus, average total access time is approximately

38 ms.

Data Communications

The data communication system is very modular and, thus,

externally flexible in the various devices which may be utilized for

communication with the ASC. Data communications are con-

trolled by a data concentrator which, in turn, interfaces to the

MCU through a channel control device.

Data Concentrator

The data concentrator is a TI-980 minicomputer equipped with

special-purpose hardware communication interface units on its

direct memory access ports. The TI-980 is a small, general-

purpose computer with up to 64K 16-bit words of memory and

a one-microsecond cycle time. The data concentrator hardware

is under control of a data communications operating system
which executes in the TI-980. This operating system provides

for the functions of buffering, reformating, routing, proto-

col handling, error control and recovery procedures, and

system control messages. The system services multiple stations

concurrently.

Chapter 45
|

The Tl ASC: A Highly Modular and Flexible Super Computer Architecture 759

The data communications system presently supports communi-

cation with three types of stations: high-performance user termi-

nals, other large computers, and remote concentrators. The

system can be easily extended to support smaller terminals down

to the teletype level. These stations may be either remote or local.

When local, the communication link is implemented with multi-

ple conductor cables. Since the transfer is asynchronous by word,

the average transfer rate is very dependent upon cable length with

a maximum transfer rate of 250,000 words per second for distances

less than 500 feet.

Remote Links

Remote links are presently implemented with non-switched, full

duplex common carrier data transmission facilities. Data is

transferred over these links synchronously at rates determined by
the modems and common carrier bandwidths. The data communi-

cation system supports transfer rates up to a maximum of 240,000

bits per second. Because the system supports full duplex transmis-

sion, this capacity typically translates to the ability to support a

1200 1pm printer simultaneously with a 1000 cpm reader over a

9600 bps transmission facility.

Peripherals

Standard types of magnetic tape drives, card equipment, and

printers have been interfaced with the ASC. These interfaces are

attached to primary or secondary memory ports through a variety

of standard selected and multiplexed data channels.

Summary

Preservation of global system modularity concepts in the design of

the ASC has resulted in a capability for configuring systems having
a very wide range of cost and capabilities.

In the memory area capacity, performance, connectivity,

protection, and mapping are all variable over wide bounds. The

central processor can be tailored to provide a wide range of

processing power by using one, two, three, or four pipes.

The peripheral processor provides for dynamically matching the

execution rates of up to eight independent instruction streams

with the task requirements. The highly flexible communication

register file provides a matrix of 2048 bits which can be manipulat-
ed and sensed by the eight virtual processors. Flexible hardware

interfaces are provided for coupling these bits to external I/O

signal lines. Finally, the modular read only program memory of

the peripheral processor accommodates growth and modifications

in read only memory resident operating system code.

An example of a complete system configuration is illustrated in

Fig. 10.

Software'

At the beginning of the software design effort, several goals v*£ere

established which have directed the development effort. It was

desired that the system support multi-programming, local and

remote batch processing, as well as multiple users of the

previously mentioned interactive terminals. It was considered

important that the powerful central processor be reserved for the

scientific computations for which it was designed and that as much
as possible of the "overhead" function be performed in the

Peripheral Processor Unit. It was determined that the first users of

the ASC had a significant investment in Fortran coded programs.

Fortran was thus selected as the first high level scientific language

and it was important that the compiler produce highly efficient

object code with no change in the source. It was required that an

extensive file management system be provided with special

emphasis on privacy of files. It was desired that the services and

facilities of the system—both hardware and software—be made
available to the user in a simple and straightforward manner.

Simple jobs should require only minimal user descriptions and

knowledge of the inner workings of the operating system should

not be a requirement for the efBcient use of the ASC system.

Finally, it was recognized that each installation has somewhat

different workload and priority requirements. Anticipating that

some of these requirements might be over-looked in the initial

design, it was thus considered important that the system be

modular and easily modified to meet each installations' particular

needs.

In the following paragraphs a description of the ASC Fortran is

given.

ASC Fortran

As was mentioned as a design goal, the ASC Fortran was designed
to accept previously coded Fortran programs. As such, it contains

ANSI Fortran and Fortran IV as a part of its language, but also

contains certain extensions. The compiler is designed to optimize

the execution of the object code on the ASC. It also performs an

extensive diagnostic analysis complete with a set of appropriate

output messages.

In the area of extensions, two new features are worthy of special

mention. These are the subarray and array cross section. The

following example illustrates the concepts using three dimensional

'The section from here to the end of this chapter is excerpted from L. C.

Dean, "Texas Instructments Advanced Scientific Computer," Informatie

jaargang, vol. fifteen, no. 4, April 1973, pp. 191-193.

760 Part 3
I
Computer Classes Section 4

I Maxicomputers

I d «roii5«

CCMTRAL
MIMOirV

IXTIMSION
I M WOnOB

fr

HIM1MIV
POUT

XFAMDKR^
MCMONV
CKPAMOCII

•U MBo MBU

<» THACK
DUAL ocHsirr

r*pc UNITS

7 TMACX

TAPf UHIT^

TAPt SWITCH UMIT

TAPS CONTItOLk-CnS

MPX CHANMiL

MKMOnV
POUT

cxpamokh
=0;

]
DI»C CKANNf L k I

DISC IMTIW- k I OrSC MOOULC fe
IMO COMTHOLLEtl FACt UNIT ^— 25 M WOPDS

MCMOPV
POPT

CXPAMOIH

CHAMNCL I TWO PAD OI»CS I
ONTHOLLCP ^— *0 M W0M09

:HAMNKL TWO PAO DISCS I
NTWOLLEP io M WOPOS MCMOTC

TCPMIPtAl.S I

]
^_^ PAD CHANNEL B TWO PAD DISCS I

ANO CONTPOLLEP B^ ^0 M WOPOS I

PEPlPMCftAL PPOCESSiNC UNIT

]
too

CARO MIM
PUNCHES

OPCnATOR
COMH
rwo CUTS

Fig. 10. A possible ASC system configuration.

arrays, although both subarray and array cross section may be

apphed to arrays up to a dimension of seven.

Dimension A (50, 20, 30)

A (*, *, 13)

Subarray C (4, 5, 8) at A (23, 2, 11)

As shown, the "parent" array. A, is dimensioned as (50, 20, 30).

If in an executable statement of the Fortran source code, the array

A(*, *, 13) appears, it means the array consisting of all points lying

in the 13th "plane" of the array A. Thus the asterisk in a given

subscript position means to vary that subscript over its defined

range of values in the conventional order. The array cross section

may also be used as A (*, *, J) where the array defined depends

upon the current value of J.

The subarray statement defines a three-dimensional subset C of

A, with dimensions (4, 5, 8), with the point C (1, 1, 1) at A (23, 2,

11). The subarray statement may also be used as: Subarray C(I, J,

Chapter 45
|

The Tl ASC: A Highly Modular and Flexible Super Computer Architecture 761

K) at A (L, M, N) by (P, Q, R) where the current values of I, J, K
determine the size of the array C, where the current values of L,

M, N determine the position of C within A, and where P, Q, R
determine the increments to be used on the subscripts of A to

determine the values in the array C. This latter feature allows the

array C to be "less dense" than the parent array A. It has

particular utility when iterative procedures are used and larger

"grid" spacing is desired at early stages of the iteration.

Roth the array cross section and the subarray statement are

powerful new tools to the Fortran programmer. They not only

allow for more efficient memory utilization and minimize the

memory to memory data movement, but they allow the program-
mer to formulate his array processing problem in a more direct

and convenient manner. Both of these extensions are presently

under consideration by the X3J3 Standards Committee. They
have been approved "in principle" by this committee.

Optimization algorithms within the compiler include such

conventional areas as constant propagation, elimination of redun-

dant sub-expressions, reduction in operator strength, register

assignment, and removal of loop constant assignment statements

and loop constant expressions from DO loops. Further, it includes

paired memory fetching techniques, retention of intermediate

values, and extensive re-ordering of instructions for optimum

"pipe-line" flow.

One of the most powerful procedures in the optimization

algorithms is the automatic conversion of scalar source code into

vector instructions. The most frequently occurs within DO loops

and often results in the complete elimination of software indexing.

Figure 11 is an illustration of this process. In Example 1 of this

illustration, the source code appears in standard Fortran. In

example 2, the array cross-section feature is used. In example 3,

pure vector representation is employed. Regardless of the source

code, the ASC Compiler will produce a single vector instruction

in the object code. In addition to this vectorization, the Compiler

Dimension M (3,3), N (3,3)

Integer K

Example 1. DO 10 J
=

1,3

DO 10 I = 1,3

10N(I,J)= M(I, J)-K

Example 2. DO 10 J
=

1,3

10 N(*,J)
= M(*,J)-K

Example 3. N = M-K

uses vector instructions for assignment statements where possi-

ble, and provides extensive analysis to optimize memory referenc-

ing (e.g., loop reversal and re-ordering).

Figure 12 is an illustration of this type of analysis. The original

source code is given in example 1 of that illustration. If no vector

instructions or memory optimation were employed, the object

code would require approximately 20,000 clocks. Vectorization

yields a reduction to 2351 clocks, almost a 10:1 improvement. By

reversing the order of the loops and using temporary storage, the

execution time can be reduced to 880 clocks even though two

passes through memory are employed. In example 3, the loops are

reversed and one is inverted, yielding a further reduction and

eliminating the need for temporary storage. Finally, in example 4,

loops are.both inverted and reversed yielding an execution of 437

clocks. Since 400 items are to be moved this result is probably
near optimum (only 37 clocks of "overhead"). This example is

obviously a simple one involving only the movement of data, but it

illustrates the kind of analysis performed by the ASC Compiler in

optimizing memory references.

To allow maximum use of mathematical functions within

instructions which can or should be vectorized, both scalar and

Basic problem
Dimension A(25,25)

DO 10 I = 1,20

DO 10 J
= 1,20

10 A(I,J + 1) = A(I + 1,J)

Reversal of loops

Reversal of loops introduces fault. This can be circum-

vented by introduction of temporary vector.

DO 10 J
= 1,20

DO 10 I = 1,20

10T(I,J)
=

A(I +1,J)

DO 20 J + 1,20

DO 20 I = 1,20

20 A(I,J + 1)
=

T(I,J)

Loops reversed and inverted

This removes the fault without introducing temporary
vector.

DO 10 J
= 1,20

DO 10 I = 1,20

10 A(I,22-J) =
A(I + 1,21-J)

Loops reversed and both inverted

This has properties of solution 3 but makes better use

of memory.
DO 10 J

= 1,20

DO 10 I = 1,20

10 A(21-I,22-J) = A(22-I,21-J)

Fig. 11 Fig. 12. Vector optimization.

762 Part 3 Computer Classes Section 4
| Maxicomputers

"vector" mathematical subroutines are provided. This allows such

functions as "cosine" to have meaning when the argurhent is an

array. For example, COS (A) means: compute the cosine function

for every element of A when A is an array.

In general, this will give a performance improvement of

between 6:1 and 8:1 (depending on the mathematical function)

over repeated calls to the scalar math routines. There is a slightly

higher overhead in set up time for the vector math routines, but it

appears that the cross-over point is about six elements, i.e., if the

number of arguments is greater than six, it is faster to use the

vector math pack version.

References

Dean [1973]; Denning [1967].

