
Section 3

The IBM System/360-
a series of planned machines which span

a wide performance range

In this introduction, besides making some general comments

on the IBM System/360, we will attempt an analysis of the

performance and costs of the series. Performance is notoriously

difficult to measure, as we noted in Chap. 3, and costs are even

more so. With respect to the latter, what is publicly available

are price data, not manufacturing-cost data.

These prices reflect not only marketing policies but also

accounting policies within the organization for the attribution

of costs to product lines. For example, we have had to determine

Pc and Mp prices on the basis of incremental Mp prices within

a C. Nevertheless, the 360 series provides two things which

make a comparative analysis worthwhile. First, the common ISP

makes simple performance measures more comparable; sec-

ond, the common manufacturer makes relative prices more a

reflection of relative costs than would otherwise be the case.

Neither of these aspects is perfect, as we will note at several

points in the discussion. Nevertheless, the 360 series provides

as good an opportunity to attempt cost/performance analysis

as we know. Indeed, this opportunity has already been grasped

in a paper by Solomon [1966], which we have found very valua-

ble and use to provide a basis of Pc power.

Analyses of the type we attempt here produce only rather

crude pictures and are subject to question if all the input data

are not very carefully checked. We have not done the latter,

depending instead on published sources. For the purpose of this

book, illustration of the style of analysis seems sufficient. In

addition, using a performance measure based only on Pc power

measurements, as we do here, leaves many questions un-

answered because it does not address the soft areas of analysis

relating to throughput, task environment, and the operating

system software.

Unlike the other introductions in this book, the reader may
find it worthwhile to scan this one, read the chapters in the

section, and then return to this introduction when the system

has become somewhat familiar.

The IBM System/360 is the name given to a third-genera-

tion series of computers which constitute the current primary

IBM product line. They all have a common ISP but differ in inter-

preter speeds and PMS structure. Many PMS elements are

used in common, particularly K's, Ms's, and T's.

The System/360 series is presented both because IBM's

market dominance makes it the most prevalent current com-

puter and because its implementations span the largest per-

formance and price range of any series. The C('360) models

should be compared with one another (Table 1) to be aware

of their capabilities. Their introduction dates and their relation-

ship are shown in Fig. 1. Chapters 43, 44, and 32 discuss the

logical structure of the system, the implementations,
1 and the

microprogrammed Model 30.

A succinct description of the design goals and innovations

is given in the abstract of the paper Architecture of the IBM

System 360 [Amdahl et al., 1964a]:

Chapters 43 and 44 are from IBM Systems Journal, vol. 3, no. 2, 1964, which

was devoted exclusively to the System /360. The other articles (listed in the

bibliography) are recommended for additional details.

Model

1130'
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The architecture" of the newly announced IBM System/360
features four innovations:

1 An approach to storage which permits and exploits very

large capacities, hierarchies of speeds, read-only storage

for microprogram control, flexible storage protection, and

simple program relocation.

2 An input/output system offering new degrees of concur-

rent operation, compatible channel operation, data rates

approaching 5,000,000 characters/second, integrated

design of hardware and software, a new low-cost, multi-

ple-channel package sharing mainframe hardware, new

provisions for device status information, and a standard

channel interface between central processing unit and

input/output devices.

3 A truly general-purpose machine organization offering

new supervisory facilities, powerful logical processing

operations, and a wide variety of data formats.

4 Strict upward and downward machine-language compati-

bility over a line of six models having a performance

range factor of 50.

The above four featured innovations are all stated as IBM

Corporation design results. It seems better to analyze them in

terms of design constraints and implementation results. It

appears that the design constraints, from marketing and man-

agement directions, were compatibility (item 4 above) and the

use of common peripheral equipment (item 2 above). Thus we

can measure the 360 design in terms of how well it meets these

constraints. With some minor exceptions, all the peripheral

components existed at the time of the design and had been

used with other IBM computers; thus a goal was already real-

ized. A measure of the design can also be based on a compari-

son with alternative designs. In the following sections we sug-

gest that several forms of multiprocessing would yield higher

performance at lower cost. A difficult and important constraint,

though not mentioned above, is the necessity of program com-

patibility with almost all earlier IBM computers.

It should be noted that, at the outset of the IBM System/360

announcement, another company, RCA, adopted the 360 ISP

as a design constraint for its own future computer development.

Although some price-performance characteristics appear to be

better in the RCA series, the implementation scheme is similar.

"
The term architecture is used here to describe the attributes of a system as seen

by the programmer, i.e., the conceptual structure and functional behavior, as

distinct from the organization of the data flow and controls, the logical design,

and the physical implementation.

The lower RCA prices do not reflect entirely implementation and

technology but include RCA marketing and profit strategy. In

addition, of course, there should have been lower development

costs.

An interesting aspect of the design is the method used to

implement the individual computer models (of the range) and

their associated costs. From the standpoint of innovation, the

360 was the first computer series to cover a wide range. The

more basic P's (Models 20 ~ 65) were implemented via a

microprogrammed processor. This is based on a computer

program within an M(read only), i.e., a Read Only Storage/ ROS,

to interpret the common ISP. A payoff from this implementation

strategy is a solution to the "compatibility design constraint,"

which is the ability to provide compatibility with the customer's

previous (IBM) machine, which of course was not a member

of the 360 series. This is undoubtedly the most difficult con-

straint to meet in the P designs, and probably the most signifi-

cant real innovation. From the marketing viewpoint, it provided

the user with a crutch to go from a former IBM computer to

the System/360. This is accomplished through "emulation,"

which (as defined by IBM) means the ability of one C to inter-

pret another's programs at a reasonable performance level.

These emulations are realized by various microprogrammed P's

being designed to interpret both the 360 ISP and one or more

of IBM 704, 709, 1401, 1410, 1440, 1460, 1620, 7010, 7040,

7044, 7070, 7074, 7090, 7094.

Most of the above ISP's have a different structure from the

360 ISP. For example, the 1401 (Chap. 18) series instructions

and data are variable-length character strings; the 1620 has

variable-length data strings; the 704 series process fixed- and

floating-point data with single-address instructions; and the

7070 is a fixed-word decimal computer. Thus the 360 C's repre-

sent the first machines to be two logical processors in the same

physical implementation.

The emulated speeds are often better than that of the origi-

nal hardwired computer. This is not surprising, considering the

change in technology; it is a very attractive feature. The 360

Mp performance is often a factor of 5 to 10 times the "emu-

lated" computers; and the M(ROS) data rates are a factor of

25 times the Mp's. For example, the Model 65 emulating a 7090

runs faster than a hardwired 7090 (Table 1). The use of an

M(ROS) for defining an ISP is questionable if we ignore the

emulation constraint. Note, by way of evidence, that the hard-

wired models 91 and 44 have the lowest cost-to-performance
ratios in the series.

There are minor deviations in the particular models, but all
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implementations belong to a common ISP subset. The Model

20 and the Model 91, the extremes of the series, deviate most

from the standard 360 ISP. The range of models (Table 1)

shows the comparative effects of implementation on the actual

processing times. For example, the designers of the various C's

were constrained by memory bandwidths. Since the core mem-
ories have about the same cycle time (0.75 ~ 2.0 microsec-

onds), variation in bandwidth is obtained by increasing the data

path width from 8 to 64 bits and by increasing the number of

independent Mp's. By looking at just Mp bandwidth, for models

30 ~ 65, we obtain a range of 5.3 to 85 megabits/s, corre-

sponding to a performance range of about 1 to 16. By doubling

the number of independent memories, this factor can be in-

creased to 32. These models correspond to a Pc performance

range of 1 to 32. Although we might expect a narrower range

(based on Mp speed), the range can be increased by perform-

ance suppression (at the low end). Power range can be in-

creased by lowering the absolute performance of Model 30. This

is accomplished by making performance tradeoffs to lower cost.

Logic technology

The logic of the 360 series is realized in a hybrid technology,

composed partly of integrated-circuit techniques and partly of

the solid-state techniques standard in second-generation ma-

chines. It is a "thick-film" technology that deposits the circuitry

on a ceramic substrate. This is called Solid Logic Technology

(SLT) and is used solely by IBM. This production technique

allows only for the fabrication of passive circuit elements on

the substrate. The semiconductor elements (diodes and tran-

sistors) are produced independently, using standard semicon-

ductor production techniques on a wafer. The semiconductors

are then cut and bonded to the substrate, and the complete
SLT logic unit is encapsulated. The substrates correspond

roughly to logic elements (gates, inverters, flip-flops, etc.). The

SLT units are placed on larger printed-circuit boards.

Although SLT differs fundamentally from integrated-circuit

technology, the overall size of the final printed-circuit boards

is about the same. At the time the decision was made to develop
the technology, it was unclear that integrated-circuit technology
would reach mass-production state. Thus the SLT program was

an intermediate design prior to integrated-circuit technology.

The two approaches are about the same from the standpoint
of reliability, especially when one considers the soldered

printed-circuit mounting. The number of connections to the

printed-circuit board are about the same. The production tech-

nology of the 360 series is outstanding, perhaps surpassed only

by the 360 marketing plan.

The Instruction-set processor

The following discussion covers only the Pc. The instruction set

consists of two classes, Scientific ISP and Data Processing ISP,

which operate on the different data-types. These data-types

correspond roughly to the IBM 7090 (Chap. 41) and IBM 1401

(Chap. 18). For the scientific ISP they are half- and single-word

integers, address integers, single, double, and quadruple (Model

85) floating point, and logical words (boolean vectors); for the

data-processing ISP they are address or single-word integers,

multiple byte strings, and multiple digit decimal strings. These

many data-types give the 360 strength in the minds of its various

types of users. The many data types may be of questionable

utility and constrain the ISP design by having to perform few

operations, rather than having a more complete operation set

for a few basic data types. The viewpoint taken here is a biased

one; we feel that, unless a particular data-type adds significant

processing and storage capability, it should not be fundamental

to the ISP. The decimal-string integers appear to cost in storage

and processing time. Their redeeming virtues are that little or

no conversion is required at input or output time, and their

internal representation is easily recognized by people.

Advantages of general-registers organization

The ISP uses a general-register organization. The ISP power
can be compared with several similar general-register ISP

structures such as those of the UNIVAC 1107, 1108; the DEC
PDP-6, PDP-10; the SDS Sigma 5, Sigma 7; and the early

general-registers-organized machine Pegasus (Chap. 9). Of the

above machines the 360 Scientific ISP appears to be the

weakest in terms of instructions and the completeness of the

instruction set.

For example, in Pegasus, PDP-6, and the UNIVAC 1107

symmetry is provided in the instruction set. For any binary

operation b the following are possible:

GR^GR b Mp
GR^-GR b GR

Mp<-GR b Mp
Mp <-Mp b Mp

The 360 ISP provides only the first two. Additional instructions

(or modes) would increase the instruction length.
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In the System/360 the only advantage taken of general

registers is to make them suitable for use as index registers,

base registers, and arithmetic accumulators (operand storage).

Of course, the commitment to extend the general-purposeness

of these general registers would require more operations. Chap-

ter 3 (page 61) suggests advantages for general register

organizations.

The 360 has a separate set of general registers for floating-

point data. This provides more processor state and temporary

storage but again detracts from the general-purpose ability of

the existing registers. Special commands are required to ma-

nipulate the floating-point registers independent of the other

general registers. Unfortunately the floating-point instruction

set is not quite complete (e.g., fixed- to floating-point conver-

sion), and several instructions are needed to move data be-

tween the fixed and floating registers.

When multiple data-types are available, it is desirable to have

the ability to convert among them unless the operations are

complete in themselves. The System/360 might use more data

conversion instructions, for example, between the following:

1 Fixed precision integers and floating-point data

2 Address-size integers and any other data

3 Half-word integer and other data

4 Decimal and byte string and other data (decimal string

to and from byte string conversion is provided)

Some of the facilities are redundant and might be handled

by better but fewer instructions. For example, decimal strings

are not completely variable-length (they are variable up to 31

digits, stored in 16 bytes), and so essentially the same arith-

metic results could be obtained by using fixed multiple length

binary integers. This would remove the special decimal arith-

metic and still give the same result. If a large amount of fixed

field decimal or byte data were processed, then the binary-

decimal conversion instructions would be useful.

The communication instructions between Pc and Pio are

minimal. The Pc must set up Pio program data, but there are

inadequate facilities in Pc for quickly forming Pio instructions

(which are actually yet another data-type). There are, in effect,

a large number of Pio's as each device is independent of all

others. However, signaling of all Pio's is via a single interrupt

channel to Pc.

The Pc state consists of 26 words of 32 bits each:

1 Program state word, including the instruction counter (2

words)

2 Sixteen general registers (16 words)

3 Four 2-word floating-point general registers (8 words)

Many instructions must be executed (taking appreciable time)

to preserve the Pc state and establish a new one. A single

instruction would be preferable; even better would be an in-

struction to exchange processor states, as in the CDC 6600

(Chap. 39).

Addressing and multiprogramming

The methods used to address data in Mp have some disad-

vantages. It is impossible to fetch an arbitrary word in Mp in

a single instruction. The address space is limited to a direct

address of only 2 12
bytes. Any Mp access outside the range

requires an offset or base address to be placed in a general

register. Accesses to several large arrays may take significant

time if a base address has to be loaded each time. The reason

for using a small direct address is to save space in the in-

struction. We know of no published attempt to analyze the

tradeoffs, even of instruction efficiency alone, although un-

doubtedly such comparisons were made within IBM.

Another difficulty of the 360 addressing is the inhomogeneity

of the address space. Addressing is to the nearest byte, but

the system remains organized by words; thus, many addresses

are forced to be on word (and even double-word) boundaries.

For example, a double-precision data-type which requires two

words of storage must be stored with the first word beginning

at a multiple of an 8-byte address. (However, the Model 85,

which is a late entry in the series, allows arbitrary alignment

of data-types with word boundaries.) When a general register

is used as a base or index register, the value in the index register

must correspond to the length of the data-type accessed. That

is, for the ith value of a half integer, single integer, single

floating, double floating (long), and quadruple floating (ex-

tended), i must be multiplied by 2, 4, 4, 8, and 16, respectively,

to access the proper element.

A single instruction to load or store any string of bits in Mp
(as provided in the IBM Stretch) would provide a great deal of

generality. Provided the length were up to 64 bits, such an

instruction might eliminate the need for the more specialized

data-types.

A basic scheme for dynamic multiprogramming is nonexist-

ent (i.e., although static multiprogramming is done, relocation



566 Part 6 Computer families Section 3 I The IBM System/360—a series of planned machines which span a wide performance range

hardware is not present). Only a simple method of Mp protec-

tion is provided, using protection keys (see Chap. 43, page 597).

This scheme associates a 4-bit number (key) and a 1-bit write

protect with each 2 kby block, and each Pc access must have

the correct number. Both protection of Mp and assignment of

Mp to a particular task (greater than 24
tasks) are necessary

in a dynamic multiprogramming environment. Although the

architects of System/360 advocate its use for multiprogram-

ming, the operating system does not enforce conventions to

enable a program to be moved, once its execution is started.

Indeed, the nature of the 360 addressing is based on absolute

binary addresses within a program. The later experimental
Model 67 does, however, have a very nice scheme for protection,

relocation, and name assignment to program segments [Arden
et al., 1966].

PMS structures and implementations of the computer

The PMS structures of the various models in System/360 are

basically similar, except for the upper end of the series and for

the Model 44 (complete compatibility can be purchased as an

option). We take up the main group first and then discuss the

others individually.

Models 30, 40, 50, and 65

The PMS of Models 30, 40, and 50 is the tree-structured Mp-Pc
shown in Fig. 2.

1

They all use a P. microprogram, although

with different ISP's. Some gross characteristics are given in

Table 1. The Pc of Model 65 is also microprogrammed, but it

has hardwired Pio's. A PMS diagram of Model 65 (and Model

75) is given in Fig. 3.

The C structures with M(ROS) use a single physical P.mi-

croprogram to realize the Pc, the Pio('Multiplexor Channel),

and the Pio('Selector Channel). This technique of using a single

shared physical P for multiple logical P's with fast changing

of P. state is the same one that Pio('Multiplexor) uses. The

•The structure of the Mp's does not include the local M's used for access control,

i.e., the storage protect key mechanism, which it is hoped the student will forget

about (forever).

Mpl
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See Figures 1 1 to 16.

Fig. 3. PMS structure for IBM System/360 Models 65 and 75 PMS diagram.

Pio('Multiplexor) is equivalent to multiple Pio's. Within the

physical P both interrupts and polling are used to switch among
the P's. Polling is used to service the several P's since the main

program loop ot the ISP interpreter returns to a common point

each time the next instruction is fetched. That is, the interpre-

tation cycle for the 360 ISP starts by fetching the instruction,

proceeds to fetch the operands, executes the instruction, and

then returns results to Mp. The instruction-interpretation proc-

ess takes only a few Mp references for most instructions.

A few instructions require a long (or indefinite) interpreta-

tion time, e.g., character translate, edit, etc., since the opera-

tions are on character strings. Here, the iterative program loop

which operates on each character of the string must test the

attached K's to detect when the Pio interpreter is to be run for

data transfers. The long instructions can take several hundred

microseconds and cannot be interrupted; thus the response

time for an interrupt can be very poor. Figure 4 gives a simpli-

fied picture of the registers organization of a Model 50, but it

is also typical of Models 30, 40, and 65.

The actual System /360 ISP interpretation program in each

of the models is different. In addition, each model has micro-

programs for interpreting other ISP's through emulation. Tucker

[1967] discusses how the models were changed as the emula-

tion constraint was added. Table 1 gives the computers which

each of the models can emulate. A register structure of the

C('30) and the operation for the P.microprogram ISP are given

in Chap. 32, page 386. Tables 2 and 3 in Chap. 44 give the

additional parameters which influence the instruction inter-

pretation rate of the P.microprogram. The significant param-

eters for a P.microprogram are the M(ROS) hardware char-

acteristics (speed, size, and information width); the number

of fields in the M(ROS) instructions, which gives an indication

of the number of control functions performed in parallel; the

M(general register) rates and their location in the structure;

the Mp data rate; and the characteristics of M(temporary)

within P. The activity of transferring data from a K, via the

Pio('Selector), is done concurrently with normal instruction

interpretation in Models 30, 40, and 50. A program in M(ROS)

sets up the data transmission with Mp, and transmission is

controlled by an independent hardware control.

Model 20

This model is a subset of the System/360. It has eight 16-bit

general registers. It is possible to write programs which will run

on both the Model 20 and other models. Model 20 does not

have Pio's, and Pc issues instructions to control the attached

K's.

Model 25

The Model 25 is an interesting C. Perhaps some of the interest

of the authors is caused by the mystery (to the authors) as to

what its ISP is. Its ISP is no doubt described in maintenance
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manuals. We can make the following observations based on its

characteristics taken from its manual of Functional Character-

istics. These appear in Table 1. The observations are:

1 It has a very high-performance Mp, namely, Mp(core;

.9 fis/w; 16|24|32|48 kby; 2 by/w); the Mp power is al-

most that of a Model 50.

2 There is a relatively straightforward Pc which is micro-

programmed. The Pc uses Mp for its memory. The Sys-

tem/360 ISP is defined in conventional M(read,write).

Of the Mp(48 kby) 16 kby is reserved for a microprogram.

3 Its performance is between that of Models 20 and 30,

performing a 360 ISP instruction in about 80 fis.

4 The penalty paid (slowdown factor) to interpret the 360
ISP is therefore 80/1.8 ~ 45.

5 A small 180-nanosecond local store is used for operands.

6 The Pc cost appears to be about the lowest in the series.

We should ask ourselves:

1 Why do we want an intermediate-level P. microprogram
with its own M. read-only, as in the other processors?

These P's just seem to waste power.

2 Why should we bother to implement an intermediate-level

360 ISP? We know the final user will write programs in

a much higher level language. Thus two levels of inter-

pretation are required instead of one. It is assumed that

to program a given task will take, say, x fis if using the

360 ISP. We assume the same task programmed directly

in the Pc could take as short a time as x/45 jus if the Pc

were used directly.

We assume that if the P. microprogram, which is used to define

the System/360 ISP, were used to interpret a FORTRAN ISP,

the speed for a Model 25 FORTRAN ISP might easily approach

that of the Model 50.

Model 44

Model 44 does not use M(ROS), but its Pc and Pio are hard-

wired (Models 75 and 91 are also hardwired). The PMS structure

of the Model 44 is given in Fig. 5. Model 44 (and 91) stand

out as having better performance per unit of cost than their

nearest neighbors, which are implemented with M(ROS), as can

be seen from Table 1. It must be noted that Models 44 and

91 are not strictly compatible with the 360 ISP since they do

not process variable-string and variable-decimal-data formats,

although Model 44 options can make it completely compatible.

(Subroutines will probably perform satisfactorily for most ap-

plications.)

The PMS structure of the Model 44 (Fig. 5) is a tree. The

C('44) structure indicates 2-Pio('High Speed Multiplexor Chan-

nels/ HSMPX) which are between a P('Selector) and P('Multi-

plexor) in power, since a single physical P('HSMPX) with four

subchannels can behave as four independent Pio's. The orga-

nization of the Model 44 Pc registers is given in Fig. 6, which

reveals a straightforward implementation. The heavy lines in

Fig. 6 indicated an ORing of register outputs to form a single

data bus (usually 16 or 32 bits wide). The 16-bit crossover

function box allows the right and left halves (16 bits) of the

input to be exchanged when output. Almost all the units are

registers (except the adders, parity generators, and ORers). The

A, Ax, B, and Bx registers are used as the M.working for per-

forming instructions, where the x indicates an extension regis-

ter used in the 64-bit floating-point operations. The C register

T. console-

Hp core; 1 ps/w; 8192 ~

32768 w; S by/w; (8,1

parity) b/by

-Stm-r- Pc

. Pio('Mul tiplexor Channel)-

-Piopl ;lt: 'High Speed Mult

[plexor Channel/HSPMX

Pio(#l:4; 'HSPMX)

Stm KUO:^1
)
2

Sfx K(#0:1)
? -

. Sfx K(#0:1)

l

0nly 8 logical K's

See Figures 11 to 16.

Fig. 5. IBM System/360 Model 44 PMS diagram.
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Monool Ooto Entry from System Control Ponel_

Op Reg Reg for R,

Reg for R2
or X2

Address Generate

FPR'O

FPR'l M
FPR'2

.32]

FPR»3

_32l
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is a second operand register used for arithmetic and logical

operations.

Model 75

The PMS structure of Model 75 is given in Fig. 3. Models 65,

67, 75, and 91 all use the same basic Mp('2365; core). The S(n

Mp; mP), which switches between the n Mp modules and the

m Pc and Pio's, varies with model, however. C('65) and C('75)

use a simple time-multiplexed S in Pc, called the S('Bus Control

Unit/BCU). This S makes decisions about which P is to use

which Mp, rather than having each Mp arbitrate the P request-

ing service locally. When the memories are all about the same

speed, such an S is all right; however, it has severe limitations

when slow speed (8 microseconds for the large core store) and

high-speed memories (0.75 microsecond) are intermixed. The

principal difference between Models 65 and 75 is that C('75)

is hardwired and, depending on the size of the configuration,

may have lower cost/performance.

The simplified functional unit diagram of C('75) (Fig. 7) is

more abstract than the register interconnection diagram of a

C('44) (Fig. 6). From this description (Fig. 7) of the logic design,

one is able to conjecture what is necessarily within the instruc-

tion, execution, variable field length, and decimal functional

units. The diagram is presented at a nonuniform level at both

the PMS and register-transfer levels. There is somewhat more

detail than in the PMS structure (Fig. 3). The Model 75 is

possibly the first System/360 to require an intermediate-level

diagram between a PMS structure and a register-transfer dia-

gram. The instruction unit contains the instruction location

counter (part of the ISP) and is responsible for obtaining the

next instruction and the operands. Since there can be overlap

in the instruction fetching process, this unit is responsible for

holding a number of instructions and stores up to 128 bits

(2 double words) of instructions at a time. The execution unit

and the variable field and decimal units carry out operations

on data. The execution unit processes floating-point and

fixed-point data.

Model 67

The Model 67 was introduced in April, 1965, for the purpose
of time sharing. The entry was prompted by M.l.T.'s project

MULTICS. M.I.T. had ordered a GE 645 for experimental re-

search in time sharing. IBM formed a group for the development
of a time-shared computer and responded with the Model 67.

The Model 67 is essentially a Pc('65) with adequate S's for

multiprocessing and a K between Mp and Pc for multiprogram-

ming and memory mapping. Because of software uncertainties,

the Model 67 ran as a Model 65 in most installations (in 1968).

The University of Michigan and M.l.T.'s Lincoln Laboratory, the

first two customers having considered the MULTICS proposal,

were instrumental in outlining the specifications [Arden, et al

1966]. Several 67's have been delivered, and the software con-

tinues to evolve and be scheduled for completion (see Fig. 1).

Questions of costs per console must wait until the system is

stable enough to test and evaluate, although in April, 1969

IBM considered the system attractive (operational) enough to

market. The most significant outcome of the experiment to

date is:

1 The hardware seems capable of supporting a straight-

forward time-sharing system [Corbato et al., 1962]. Had
IBM first developed a simple system based on proved

concepts, they would be capable of undertaking research

into more complex systems like the version to which they

originally committed themselves. (Vendors should have

some basis of actual operating experience before com-

mitting a product to market.)

2 The problems of building really large-scale software sys-

tems are not fully understood yet.

3 The idea of a virtual memory with a large address space

(2
32
w) is excellent. Many storage allocation problems are

simplified by this concept. Unfortunately, the system
software builders seem well on their way to filling such

a memory. Thus the new freedom allows relaxation in

this level of programming.

4 There is a problem of getting users into Mp.core so that

Pc can be kept busy. Thus a swapping system is often

found waiting for Ms.drum or Ms. disk information. Work
at Carnegie-Mellon University using a Mp('LCS; core;

.5 ~ 1 mw; 8 by/w; 8 ju.s/w) seems to indicate that a

large number of users can have adequate response from

the Model 67 if the users reside in core and are not

subjected to swapping [Lauer, 1967; Fikes et al., 1968].

The above items relate to the software. The hardware (Fig.

8) is interesting from several aspects. First, there are adequate
facilities for memory mapping and program segmentation. This

general scheme is outlined in Fig. 9. In the Model 67 a user's

segment and page maps are in Mp, and these maps point to

physical Mp blocks of the program. Each time a reference is

made, the map is checked for the actual reference. In order

to avoid the accesses to Mp for each Mp reference, a K, with

an M(content address), is located between Pc and Mp to trans-
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Logical (virtual ) address from processor

Segment
number

Processor component

User segment table register

Segment
table

length

Segment table

origin

Page number
within segment

Word (cell)

within page

Segment table 2

Segment
table

length Page table length Origin of page table

Page tables for segments
2

^
Page
table

length

Origin of page

Address translation (user maps)

Primary memory component

Physical

page

Word (cell)

within page

"+"on addition operation
' access and activity information(reod,wnte,read only, etc.).

2 located in primary memory during execution

Fig. 9. Memory allocation using pages and segments.

Thus, for the several P's, an effective Mp request rate of 100

megabits/sec might be needed. The dataflow mismatch (be-

tween Mp and the P's) occurs because of the P's, the S (the

L's connecting P and Mp), the lack of P's, and the fact that

t.access = ~ % 1. cycle.

The Pio('2870), used in Model 65 and above, is described

at two structural levels in Fig. 3. The Pio includes a large

M.working to store the state of each of the logical Pio's. This

Pio state includes the instruction location counter, the control

state bits (active, running, interpreting an instruction, process-

ing data, etc.), and buffering (one 8-byte word). By having an

M. buffer, the demands on Mp from the Pio's are reduced by

a factor of 8. Although the expected data rate from many K's

does not require the extra M, there are possible times when

the uncertainty of the access times for Mp might cause data

loss. Since the M.working is necessary to store the Pio state,

the additional space for buffering is not expensive. An alterna-

tive design might use Mp for this buffering.

The four Pio('2860 Selector Channel)'s are implemented as

independent Pio's, using conventional hardwired logic and

buffering. However, they are packaged as one unit.

Model 85

The Model 85 was announced in February, 1968, with the goal

of being the highest-performance Model 360 in production. The

performance is ~(3 — 5) times the Model 65 and in some cases

outperforms a Model 91 [Conti et al., 1968].

The PMS diagram of the Model 85 is shown in Fig. 10. The

Pio, T, Ms structure is identical to that of Models 65 and 75

(Fig. 3). The two interesting aspects of the structure in Fig. 10

are the M(content addressable; 'Buffer Storage; 16|32 page;

1024 by/page) and the Pc. The pages are filled in groups of

64 bytes, as references to a particular physical block in Mp.core

are made. Conti [1968] gives running times for various pro-

grams as a function of buffer memory size. Multiprogramming

may degrade the performance more than any other case. This

process, which has been referred to as "look aside," or a "slave

memory," was suggested by Wilkes [1965]. It is completely

analogous to the Model 67 M(content„addressable; 8 w) which

is used to hold the segment-page map for a multiprogrammed

time-sharing system. It is also analogous to a one-level storage

system (Atlas; see Chap. 23) which is formed from two physical

M's whose performance differs significantly. Here, the effect

is to try to approximate a computer with a large Mp(80 ns/w)

by using a large Mp(l jis/w) and a small Mp(80 ns/w). The

CDC 7600 (page 475) has a similar structure, but the Mp-Ms

migration is under programmed control.

The P.microprogram used for controlling the Pc(K(' Exe-

cution Unit)) allows for great flexibility in the definition of ISP's.

An Mp(500 w) is available for the user; this may be loaded by

a program, and it specifies an ISP. One standard option is to

emulate the 704-7094 series.

The Model 85 removes the restriction of aligning words at

particular boundaries. Thus any logical word, independent of

its length, can be located at any physical location addressed

in bytes.
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Mp
1 S('Storage Control)-

M(' Buffer Storage)
4

-T(#l:3) L(#l:3) 2 —
L(in: 16 by; out: (8,l6)by) Pc6 T. console 5

I L('Direct)

^ptcore; ('185; M(#l :2; '2365-5; 1.04 ps/w; 262 kby))|('J85; M( t\:k; '2365-5;

1.04 ps/w; 262 kby)) ]
(' K85/2385 Model 1; .96 ps/w; 2 mby)| ('L85/2385 Model 2;

.96 ps/w; 4 mby) ; M('Protect ion Key Storage Elements; 128 ~ 1024 w; 6 b/w)

(16 + error) by/w; 8 b/by; sival* error detection and correction, double error

detection)

2
L(#1:3; Pio('2870 Multiplexor Channel)

3
, Pio(#l:2; '2860 Selector Channel) 3

;

8 by; (8,1 parity b/by))

3 See Figure 3 for Model 65 and 75.

4
M.buffer('Buffer Store; integrated circuit; (16384 ~ 32768) by: 80 ns/w; content

addressable; data: 1024 by; address: 9 ~ 12 b)

6
T.console((CRT; display), keyboard, (microfiche; reader))

D(operation: +; 80 ns ; 3 by) Mps(l6 w; 4 by/w)—
(

B
Pc :

=

—
K(' Instruction Unit)

M.bufferpnstruction;
80 nsH

(_2
w: 16 by/w J

operation: +,A,V,*2;|

_80 ns; 1,4,8 by J

. Mps (4 w; 8 by/w)

Lf- K( 'Execution Unit

—M. buffer

— M.parameter(read only; 80 ns/w; 2000 w)

— M. parameter (read write; 80 ns/w; 500 w)

C.microprog ramme d

Fig. 10. IBM System/360 Model 85 PMS diagram.

The Pc's data operation performance is impressive. A fixed-

point multiply is done in 0.4 ,us, and a floatingpoint multiply

takes 0.56 jus (not including accesses).

The datatype, extended floating-point number, is used in

Model 85. Thus a 24-, 56-, or 112-bit fraction part can be used.

Model 91

This model has a very low cost/performance ratio (see Table

1). Only about 20 Model 91 '3 were produced before it was

withdrawn from the market. It has the highest performance of

the series. The Mp is 0.75 jus, but 16 are overlapped to provide

a theoretically maximum bandwidth of 16 x 64/0.75 = 1,370

megabits/s. About 2.5 mega-instructions/s are executed; thus,

a total of 160 megabits/s of Mp are absorbed by Pc.

There are other interesting models in the '90 series; the

Model 92 was a paper machine, 1 and the Model 95 was unan-

nounced but produced, a version of the Model 91 with an Mp(in-

tegrated circuit; 60 ns/w; 8 by/w). The Model 91 is not covered

in any detail here because of space limitations. It is similar to

other very large computers in that many techniques are em-

ployed to obtain parallelism. The January, 1967, IBM Journal

of Research 1
is devoted to design issues of the Model 91.

Models 1130 and 1800

These computers are presented as reference points and have

nothing to do with the C('360). They are implemented outside

the System/360 framework but use its technology, and so cost

comparisons are still somewhat meaningful. These computers

See bibliography at the end of this chapter.
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are straightforward, and for a given task which does not use

floatingpoint arithmetic, they should perform as well as any

System/360 model. The arguments we use for the intermediate

Pc for the Model 25 apply equally well here, too. Namely, why
have such a complex ISP when simple ones will do just as well?

The programmed floatingpoint arithmetic times for a 4-jus

1800 and the "hardwired" (microprogrammed) System/360

Model 30 are compared in Table 2. We would expect the 2-jus

1800 to be better by a factor of 2. Note that the times are about

the same for Model 30 and the slower 1800. The cost/perform-

ance is especially low with the 1130 (Table 1). In Chap. 33 we

discuss the 1800. It is interesting to speculate why the 1130

and 1800 cannot be implemented within the System /360 frame-

work. Are they "loss leaders"? Are they in response to more

sophisticated, performance-oriented users?

The PMS structure of the controls, terminals, secondary memories,

and special processors

There are many common components which attach to the C's

(Figs. 11 to 17). Most of the components which attach to a Pio

are not especially interesting, but they give an idea of the

behavior and parameters. For example, the expression T('1403

Model 3; line; printer; 1100 line/min; 132 char/line; 8 bits/

character; 64 — 240 character set) pretty well describes a

typical line printer. From the above description one can de-

duce the data rate of a T(line printer). It is 132 char/line x

1100 line/min x
•/„„ min/s x 8 b/char = 19.4 kb/s.

The channel-to-channel adapter control. The most interesting

group of components (outside the C structures) are the special

components shown in Fig. 11. The K('Channel to Channel

Adapter) allows two P's, either on the same or a different C,

to communicate with one another. This K is used in the con-

-l(C(Plo))
I

K(iChanne) to Channel Adapter-

use^ to transfer data among 2 C fs)

_L(C(Plo))

a. Interconnection of 2 computers (or within a comDuter)

for transmission of Information

— L(S('Selector Channel:

used in vlaae of regular channel))

P(block transfer; 'Storage to Storape Channel)

b. Processor for the transmission of information (vectors)

within Mp

_L(Pio)-,— S— K(#A; '2903 Special Control Unit/SCU)-Xi

S

l-S— K(#B; 'SCllJ-X
1

c. Interconnection to other controls and computers

LfSfSelector Channel, Models kk
, 65, 75:

used in place of regular Channel)

(array: '2938: microprogrammed: Mps (~ t-M w; 32 b/w) :

operations: (vector move, vector multiplication,

vector inner product, sum of vector elements, sum of

squares, convolution, difference equation, fixed float-

ing conversion); data lengths; scalar, vector, matrix;

data-types: fixed, floating)

d. Array Processor

l X := (C|K|T|Ms)

Fig. 11. IBM System/360 special P's and K's PMS diagrams.

Table 2 IBM 1800 (4 ,„s) and IBM System/360 Model 30 floating-

point arithmetic timing
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in a bus (or chained) fashion. Such a single interface to handle

a wide range of needs (high and low response and data rates)

via a single set of electrical conductors requires a great deal

of control information to be passed along the link. Therefore

a K must have a great deal of knowledge of the dialogue in

order to communicate. The hardware to attach to the I/O bus

at a K is costly and must be designed carefully. The K('SCU)

provides a rather simplified interface to the Pio. All I/O bus

synchronization control, communication protocol control,

buffering, and electrical isolation are within K('SCU). The

K('SCU) is fairly flexible, in that devices connected to it can

communicate with one another without Pio (see Fig. 11).

Storage-to-storage-channel processor. The P('Storage to Storage

Channel) is a special processor which performs the sole function

of transferring data blocks (a word vector) between one location

in Mp to another in Mp. It qualifies as a P, since it takes an

instruction from Mp containing the location and length, and

once the instruction is executed, another is fetched and exe-

cuted (if it exists). Thus the component has a well-defined

interpretation cycle and set of operations. This P is useful in

a multiprogrammed environment requiring programs to be

moved.

The 2938 array processor. The P.array('2938) is an extremely

interesting special P (Fig. 11). It can be connected to Models

44, 65, or 75. It has a limited instruction repertoire, but the

instructions it interprets are more complex than those in the

ISP of the Pc. The instructions are algorithms for operating on

an array (a vector or a matrix). These instructions include:

1 Vector move, similar to the P('Storage to Storage) de-

scribed above, with conversion either way between fixed

and floating point

2 An element-by-element vector sum

3 An element-by-element vector multiplication

4 A row-by-column vector inner product

5 A convolution multiply

6 The solution to a step in a difference equation

The P.array is microprogrammed, using an M(ROS), which
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-K('2<tl5) Sfx ('2415: magnetic tape:

18.75 in/s: area: (.5 in x 1800 ft):

(mode!
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for the instruction. This P has a ratio near one, as it is always

accessing data (and rarely instructions).

Secondary-memory structure. Figures 12 and 13 present the Ms

PMS structures. All the K's have an optional S, which can be

placed between the K and the S(P;K) to allow two Pio's to access

a common K (from either of two C's or two Pio's of the same

C). The K('2841 Storage Control) is interesting only in being

able to control a series of quite disparate devices, on a one-at-

a-time basis.

Figure 13 presents all the M(s; magnetic tape)'s. The

switch is interesting as it can be used for up to four K's to

access simultaneously any of 16 M.tapes. (The vast array of

very similar devices is due undoubtedly to marketing rather than

production or engineering reasons.) It should be noted that

there are two distinct M.tapes: conventional magnetic tape and

Hypertape. Hypertape is explicitly addressed and has built-in

error-correction coding.

Terminal structure. Figure 14 shows the T(cathode ray tube;

display) and T(audio; output). There are terminals for writing

and reading from photographic film (35 mm). The two ap-

proaches used for audio (vocal) output are noteworthy. One

uses an M.drum to record a fixed vocabulary of words; the other

uses an encoding mechanism to allow digital information stored

in Mp to be transferred via the K('7772 Audio Response) to

transforming a coded voice back to an audio output form. The

S at the output of the T(audio) provides for audio signals to

be switched on a word-by-word basis to any of several output

telephone lines.

The structure of the vast array of printing devices that can

attach to the C('360) is shown in Fig. 15. Some of the devices

are interesting, such as the one that reads pencil-marked or

typewritten paper. The main parameters of significance to PMS
are the rate the device reads paper together with the kind of

paper.

The T and K's which connect to external processes are given

in Fig. 16. The K('1827) is used to connect with analog proc-

esses and is actually part of the IBM 1800 computer system

(Chap. 33). The other K's are important, though not especially

interesting, since they provide the K to T(Teletypes), ^tele-

phone lines), and T(typewriters). The K('2701) and K('2702)

are built to transform unsynchronized parallel data from the

C into the synchronized serial form required by the telephone

line. The K('2701) controls a small number of lines of high data

rates; the K('2702) controls a large number of lines at low data

. K('2848)

Mfbuffer; 1 638 /i by)

— L
3

K('2840-l).

ffl :24; '2260 Display

Station; (CRT; display;

area: (4 x 9 in ): 960

char/page; 80 char/line

30 page/s ;
64 symbols/

_char ) ;(keyboard; input)_

—T(#l:24; typewriter printer

#1:6; '2250-2; (CRT;

display; area: 12 X 12

2
in /page; 1024 x 1024

(keyboard;poi nt/page

input)

—T(#l :6; light; pen; input)

—
Tp2280; film; writer; 35

[mm; 4096 x 4096 po

_T('228l; film; reader 35 mm)

M(buffer; analog; 32 ~ 128 words)

-Sfx'7770 Audio

Response ;

analog

"'7772 Audio

Response)

f rom:diqi tal :

to:analog

-Sfx-

Lp»l:48;

l_analog

Lpl:8;
7

[_analog ;

Telephone 1

speech

Telephone 1 ine

speech

ter; 35
"j

int/pagea

35 mm)

ne; |-

'I

l
L := (L(Pio('Selector| 'Multiplexor))

Dataphone))
2
L(Pio(' Selector

| 'Multiplexor))
3
L(Pio('Multiplexor))

l((!200 ~ 4800) b/s;

Fig. 14. IBM System/360 T(audio, display) PMS diagrams.

rates. The K('2702) is actually an array of up to 31 K's that

are time-multiplexed, using an M.core to hold the state of

each K.

Peripheral switching. For performance, communications, and

reliability reasons it is necessary to provide access to K's, M's,

or T's from several C's or Pio's. A sample structure of a pos-

sible configuration, using the above components, is given in

Fig. 17. The PMS diagram also shows the physical structure of

S(from:Pc; to:K).

Performance and costs

The System /360 series is perhaps the only group of computers

for which a valid comparison of performance and cost can be
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-KT('l442-N2; card; punch; 160 col/s)->

-KT(')442-N1; card; (reader; 400 card/min), (punch; 160 col/s); half duplex)-

-KT(card; reader, ('2501-B1; 600 card/min) I ( '2501- B2; 1000 card/mi n))<-

-KT('2520-B1 ; card; reader, punch; 500 card/min; half duplex)-

KT('2520; card; punch; ('model B2 ; 500 card/min) ](1rodel B3 ; 300 card/min))->

K('282l)-

u
2671-1; paper tape; reade

5,6,7,8 b/char; area: ~ 1 x

r; 1 kchar/sfU

x .1 in /charj

-K('2821)— S(3T)-r-T[#l :3; '1403; 1 ine printer; chain

('Model; line/min; col/line): (2

600; 132)1(3; 1100; 132)1(7; 600

120)|(N1; 1100; 132; 48,96,144,192,

240 symbol/char;

~'1404 Bill Feed; Printer Model 2~\ -

.600 lines/min; 132 col/line J

-Tp2540 card (reader; 1000 card/min)
,"|

<-

Upunch; 300 card/min); full duplex J

-KT('1053; character; printer; 14.8 char/s)-»

L
KTp

U

1231-N1; optical; pencil mark page; reader; area: (8.5 X 11) in /page;

.8 s/page

Tp 1285; optic

yn; 22 char/

L KTpl285; optical; printed character roll paper; reader; width: (.9375

r/col ; 300 char/s
'»]

i

-"C
1287 Models 1 and 2; optical; reader; handprinted; roll, document:

2,
.area: (2.25 x 3 in ) 1(5.9 9 i"

2
)

]-

'1418, 1428 'Models 1,2,3; optical; typewritten character; reader; area:

(2.75 x 3.66 in
2

) 1 (5.875 X 8.75 in
2

)|(2.33 x 4.18 in
2
)|(3 x 8.75 in

2
);

288 —420 documents/mi n

— L KT('1445 Printer-Nl; magnetic character line; printer; 190,240,525 lin/min)-»

—
L KTfmagnetic; character; reader; bank checks: ('1412; 950 document/mi n)

|
(' 1419; I

|_1
600 document/mi n) -*

1

L(f io( 'Selector I 'Multiplexor))

Fig. 15. IBM System/360 T(printer, reader, punch) PMS diagrams.

made. The models use essentially the same technology, imple-

ment the same ISP, and are probably constrained by a common

corporate profit goal. Even here, as we noted earlier, compari-

sons are difficult to make.

In Table 3 we present the costs for various PMS component

primitives. From this table, costs (relative to other components)

can be obtained. These costs are expressed as dollars per

second ($/s) to rent the equipment. They have been derived

from the IBM monthly rental prices. The computer prices are

based on estimates of minimum, average, and maximum con-

figurations in the Adams Computer Characteristics Quarterlij

[Adams Associates]. The conversion factors are
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K(#l:2; '2701)- - K(#l : 2)
a— L(#l:2; full duplex, telephone line)

_L(#1:2)
2 Stm KC2702) Stm T(#1:31) L

\ buffer;

31 w

(#1:31; Telephone Line;

50 ~ 600 b/s; start, stop,

asynchronous; to: T(Dataphone)

•

K(
'

1827)
" Stm

- L (Dataphone; digital; start stop control)-

-Tfanalog; input, output)-

1 27^0
[

'

27^* 1 Communications

Terminal; typewriter; 133 b/s

U.8 char/s; 9 b/char;

(M x 2) symbol /char

#1 :l*i

13<(.5 b/s;

9 b/char

"2712 Remote
-

]

—
l.p

2 kb/s;
~|

—
Sp2712

Remote!— L

Multiplexor J l_full duplexj |_Mul t iplexor J

#1 ;Hj

1 3*. 5 b/s;

9 b/char

1
L (P ioC Selector

|
'Multiplexor))

2
L(Pio('Multiplexor))

3 K := (KT('Bit Synchronous Data Adapter; l.2~ *40.8 kb/s)
|

KTC Telephone Line Adapter; 0- 600 b/s)
|

KTfParallel Data Adapter; (16~ W b/w))

Fig. 16. IBM System/360 T(telephone line, analog, typewriter) PMS diagrams.

$/s = 1/[(173.3 hour/month) x 3,600 s/hour]
= 1.6 x 10" 6 $/month

$/month = 0.625 x 10 B
$/s

The cost to buy, in dollars, is approximately

$ = 45 x ($/month)

$ = 45 x 0.625 x 106
($/s) = 2.82 x 10 7 x ($/s)

Table 1 is written as a single, large PMS expression, thus, the

attributes are:

Pc(cost: ($/s|$)) :
= c.Pc :

= cost of Pc alone

Mp(cost.avg) :
= c.Mp.avg :

= cost of average-size Mp for

a model

C(cost.mim) :
= c.C.min :

= cost of minimum-size com-

puter configuration

C(cost.avg:) :
= c.C.avg :

= cost of average-size computer

configuration

Primary memory

The graph of Fig. 18 gives the Mp costs, c, (in $/s) versus

memory size (information/i). The line i
= 1.43 x 10 7 x c is

P(io;#A) P(io;#B)
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Table 3 IBM System/360 component costs

Component

Mp (core; cost: $/(kby x s))

Mp ('Large Capacity Storage/LCS;
cost: $/(kby x s))

Pc ('20
1

25
1

30
1

40
1

44
1

50
1
65

1

67
1

75|85|91)

P.array ('2938)

Pio ("2860)

Pio ('2870)

Ms ('2415; magnetic tape)

K ('2415)

Ms ('2401; magnetic tape)

K ('2803
1
2804)

Ms ('7340 Hypertape)
K (-2802)

Ms ('2311; removable disk)

K ('2814; #1:8)

KMs ('2314; #1:9, removable

disk)

Ms ('2321 Data Cell)

K ('2814; #1:8)

Ms ('2303; drum)
K ('2814; #1:8)

Ms ('2301; drum)
K ('2820)

S ('2816; Ms.magnetic„tape; K)

T ('2741; typewriter)

T ('2260; display)

K ('2848; #1:8, 16, 24)

KT ('2250; display)

T ('2761; paper tape; reader)
K ('2822)

KT ('7772/7770; audio)

T ('1403/1404 line; printer)

K ('2821; #1:3)

KT ('1443| 1445; line; printer)

T ('2540; card; reader
| punch)

K ('2821; #1:3)

KT ('1442
1
2501

1
2520; card;

reader
| punch)

K ('2701 Data Adapter)

K ('2702; typewriter; Teletype)

Cost ($/s)

8

0.0001

II

II II

I II I

8

I I

I II

II

I I

0.001 0.01 0.1
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Model 85

0.1

0.001

0.000

12 13 14 15 16 17 18 19 20 21 22 23 24 Mp( i: log 2 (by))

Fig. 18. Graph of IBM System/360 core-memory cost versus core-memory size.

plotted in terms of $/(by/s) and allows us to compute the

purchase cost of a bit. The purchase cost of most Mp.core is

$0.25/bit, according to the line. The 8/iS Large Capacity Stor-

age/LCS cost is $0.032/bit. There appear to be slight cost

savings for large Mp's and a significant saving for lower per-

formance in the case of LCS, a factor of 8. A reasonable formula

for Mp cost is: c = (7 x 106 x i)/[t.cycle: (fis)]. This formula

would account for Model 50 Mp and LCS costs, but not Model

25 and 30 Mp costs. We really need an i

1/2 term in the formula

to make a good fit (and also a constant). The value i

1/2 should

be present, if purchase prices are related to manufacturing

costs, because coincident current selection cost is inherently

proportional to i

1/2
.

An odd pricing point is the Model 44; it was developed after

the other models and is either implemented better or priced

differently. The anomalies in Mp('65; 2 14
words), Mp('30; 2 14

words), Mp('40; 2 17
bytes), and Mp('44) are undoubtedly due

to pricing-strategy differences. In the case of the Model 30 the

incremental cost to increase the Mp size from 2 13 to 2 16
bytes

is the addition of only a different core array (with no change

in electronics), at a small incremental manufacturing cost of

goods.

The Mp size range within a model varies by a factor of 8

for Models 30, 40, 44, 50, 65, and 75, although by only a factor

of 4 at the ends of the line (Models 20 and 91). The Mp imple-

mentation is usually a single common set of electronics to drive

2 14
(16,384) words in a square or coincident-current-selection

system of 2 7
by 2 7

. These square points are indicated on the

graph, and they should be the most economical memories.

Smaller Mp's are implemented simply by using smaller core-

memory arrays, but with the same basic electronic configura-

tion, e.g., the Model 30 above. Larger Mp's are obtained by

replicating the whole Mp system including the core array and

the electronics.

An Mp size range of 8 for a given model presupposes a

certain structuring of problems. That is, the models assume

a fixed relationship between Pc capacity and Mp size require-

ments. An ideal system might let Pc power, Pc quantity, Mp
power, and Mp size be completely variable. These parameters

would all be selected independently to match the work load.
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Central processors

The relative Pc powers (in 360 instructions/s) and costs are

given in the graph of Fig. 19 and in Table 1. The most signifi-

cant fact from the graph is that the cost/power ratio is roughly

constant for each of the Pc's (especially if we ignore Model 44

and Model 50). Figure 19 gives the relative computing power

versus cost for various configurations. Table 1 also shows a

number of relationships. One interesting relationship (Table 1)

is the ratio of actual Pc power to maximum possible Pc power

for a model. This can be based on Mp utilization:

Actual Pc power

Maximum Pc power

Mp cycles utilized by Pc

Mp cycles available

This ratio must be less than 1 unless there are many Pc's or

a single Pc has more power than Mp. In every case, the Pc is

far from fully utilizing the Mp. The technique of buffering in-

structions in a local Pc memory can increase this ratio to be

>1 (although no computers ever do so). In the higher model

numbers the utilization is low because a large number of cycles

have to be available in order to avoid conflicts when a given

cycle is requested—using an Mp with a long t. cycle. In the case

of Model 25, the cycles are lost because the microprogram is

being executed from Mp. (A ratio of 0.045 indicates 21 cycles

are used for microprograms to every 1 of program.)

In the case of the Model 30 the power is limited by holding

the general registers in Mp. For example, by using an additional

fast M to hold the general registers and working data, the Pc

power could increase. Unfortunately, such a change might

cause the cost of other parts of the system to be increased,

so that it would not be just a simple incremental addition. The

C('30) performs well for the field-scan problem [Solomon, 1966]

(see Table 1). The data structure for the field-scan problem

coincides with the 1-byte Mp organization. C('65) and C('75)

perform the worst for field scan because of the mismatch

between Mp organization (8 bytes) and program data (1 byte).

C('65) and C('75) have the same Mp structure and hence

have the same potential power available from Mp. In the case

0.1

0.01

B

?
v>

B

0.0001

x Average size C

• Minimum size C

+ Pc only

x1130 /
^^+40 / j

\ „ M

0.001 0.01

Cost:( t/sec)

0.1

Fig. 19. Graph of IBM System/360 cost/ processing power ratio versus cost.
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of C('75) the power of the Mp is more nearly utilized. Unfortu-

nately for the more complex Mp structures, which have more

potential Mp cycles, the Pc is not able to utilize them. The C('65)

and C('75) have several registers concerned with obtaining the

next instruction and holding it for execution while other in-

structions are obtained (look-ahead). The hardwired Model 75

Pc may account for the improvement over the Model 65 P. mi-

croprogrammed.
The performance of C('20) is inaccurately high since it is

a limited subset of the 360 ISP. (C('20) does not have float-

ing-point or fixed-point multiply and divide instructions, and it

has only eight 16-bit general registers.) The hardwired Model

44 has a better cost/power characteristic than any of the other

C's, by any measured criteria (see Fig. 19). In the case of the

Model 44, the Pc price also includes Ms. disk. Perhaps the Model

44, designed initially for real-time scientific problem solving,

is priced more competitively with similar machines (DEC PDP-10

and SDS Sigma 5, 7), whereas the other models compete in

a performance-insensitive, competition-free market for gen-

eral-purpose business data processing. Thus its anomalous

position may be due to external market pressures and not

manufacturing cost.

The design of the IBM System/360 models is undoubtedly

predicated on the basis that performance or computing power

is proportional to the cost raised to some power, g, greater than

1: power = k x cost6 ; where g > l.
1 Almost all models follow

the above relationship with g > 1. When g > 1 there is an

advantage to have large configurations since the cost/computa-

tion will decrease. If g < 1, then an alternative implementation

for the 360 C's would simply use multiple C's or Pc's to obtain

the same power. Unfortunately, such an approach does not

provide for the interconnection of the components to function

as a single unit. In many cases a single task cannot be broken

into a number of parallel and independent subtasks. If the

performance for the system varied by a factor of 100, then 100

Pc's or C's would be placed together. From Table 1 we see a

power range of about 314 corresponds to a cost range of 65

to 114 (which tells us g < 2).

The following discussion takes computing power to be

measured by instructions per second and Mp (size; t. cycle).

Costs are measured in dollars per second of rental time. The

graph (Fig. 20) shows the relationship to computing power p

and costs. The power (actually p.Pc) is taken from the meas-

ures of instruction times for certain fixed work. Solomon ob-

'Herb Grosch [Grosch, 1953] first noted this relationship and estimated g to be

2; thus we use g for this exponent. Adams suggested g =
'/2 [Adams, 1962].

See also The Economics of Computers [Sharpe, 1969].

served Grosch's law to hold for Models 30, 40, 50, 65, and 75.

This line is drawn in Fig. 20 for C(cost. average). Considering

Models 20, 25, 44, 85, and 91, a line with a less steep slope

might fit the points better. If we consider C(cost. minimum),

g < 2; considering only Pc, a g = 1 might be appropriate (see

Fig. 20) in which the power/cost is essentially constant with

cost.

Pc(cost)/Mp(cost.avg) :
= c.Pc/c.avg.Mp = ~~ 1.1, the ra-

tio of processor to memory cost

C(cost.min)/C(cost.avg) :
= c.min.C/c.avg.C= — 0.47, the

ratio of the smallest computer configuration to an average

configuration

Pc(cost)/C(cost.avg) :
= c.Pc/c.avg.C = ~ 0.23, the ratio

of processor to computer cost

These are averages over all the series and can be rather

misleading. For example, in higher-numbered models the

C(cost.min)/C(cost.avg) :
= c.min.C/c.avg.C is about 0.6.

whereas in lower-numbered models the ratio is 0.3. We might

have expected this, since it indicates that a higher proportion

of system cost is in Ms and T on lower-number models.

An alternative computer series based on multiprocessing

In this section we suggest an alternative design providing a wide

range of computing power but using multiprocessing. That is,

rather than building a higher-performance model, we would

have multiple lower-performance models. On the surface, this

appears feasible only if the cost of the processor is a relatively

small part of the computer, and if for a particular configuration

there are memory cycles available in the system (so that a more

costly memory system is not required). It is also desirable that

the proposed multiprocessor configurations have rather large

Mp's so that it can be assumed there will be several jobs in

Mp waiting to run; i.e., we should be able to multiprogram rather

than do parallel processing. These conditions are satisfied with

the System/360 models. Although we do not address the ques-

tion of development cost, it is clear that a multiprocessor

system would have a lower development cost because fewer

processors would be required. Within IBM we can assume that

the development cost tends to go to zero because of the large

production; unfortunately, even for IBM, the training cost for

servicemen and salesmen does not go to zero but is propor-

tional to the number of products. Thus, we would anticipate

savings by having a smaller line.

The multiprocessor view is presented in Table 4; namely, we

suggest dropping Models 20, 30, 40, 50, 65, 75, 85, and 91.
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0.0001 0.001

See Table 1 for definition

0.01
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Fig. 20. Graph of IBM System/360 relative processing power versus cost.

These would be replaced with only Models 25 and 44. Note there

are Pc's in Table 4 (other than 25 and 44) which when multi-

processed can perform better for lower cost, e.g., 2 Model 65's

are >1 Model 75, for about the same cost. Admittedly there

are major problems in multiprocessing with 11 Pc's, but other

existence proofs [Anderson, 1961] have shown that two to four

Pc's can be effective (Chap. 36). If we ignore Models 85 and 91,

the worst case is for a maximum of four Pc's needed to obtain

the power of model 40. Note that in the above cases the proces-

sor cost is about one-half the cost of a single Pc. This factor

of 2 might be used to answer critics of the scheme. The reasons

against the scheme are: There have to be good switches be-

tween Mp and Pc's; there has to be communication among the

Pc's (which is about the same as what the Pc-Pio communica-

tion should be); and there has to be knowledge of the program

environment to split tasks apart to run in parallel.

A less radical suggestion is also presented in Table 4:

namely, examining the number of processor models which can

be used to provide processing power for the next highest model.

Actually, if we carry this view further and were forced to build

such a system, the view that the ideal machines are the Model

25 and 44 would undoubtedly change. Model 25 and 44 exist

and can be used for the argument. The reader should note that

there is a major flaw in our argument using a Model 25. The

microprogrammed Model 25 Pc cost should include a 16-kby

memory for the microprogram (actually one Mp should be

included for each Pc to avoid memory-request conflict). Alter-

natively, if we use the Model 25 directly without a microprogram,

we would lose performance range. With our present knowledge
of multiprocessors, a responsible engineer would hardly suggest

building a multiprocessor system with 11 processors as a sure-

fire money-making venture. A more reasonable alternative

would be to use the multiprocessor Model 75 as an alternative

to Models 85 and 91. A reasonably safe alternative would be

three basic processors and a four-processor multiprocessor

structure. For a power range of 320:1, then the processors

could be 1, 20, 80, giving powers of 1, 2, 3, 4, 20, 40, 60, 80,

160, 240, 320. This structure would leave a gap of a factor of
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Table 4 IBM System/360 Pc (power: cost) and an alternative design based on multiprocessors



Chapter 43

The structure of system/360 1

Part I—Outline of the logical structure

G. A. Blaauw / F. P. Brooks, Jr.

Summary A general introductory description of the logical structure of

system/360 is given. In addition, the functional units, the principal regis-

ters and formats, and the basic addressing and sequencing principles of

the system are indicated.

In the system/360 logical structure, processing efficiency and

versatility are served by multiple accumulators, binary addressing,

bit-manipulation operations, automatic indexing, fixed and variable

field lengths, decimal and hexadecimal radices, and floating-point

as well as fixed-point arithmetic. The provisions for program

interruption, storage protection, and flexible CPU states contribute

to effective operation. Base-register addressing, the standard in-

terface between channels and input/output control units, and the

machine-language compatibility among models contribute to flex-

ible configurations and to orderly system expansion.

system 360 is distinguished by a design orientation toward

very large memories and a hierarchy of memory speeds, a broad

spectrum of manipulative functions, and a uniform treatment of

input/output functions that facilitates communication with a

diversity of input/output devices. The overall structure lends

itself to program-compatible embodiments over a wide range of

performance levels.

The system, designed for operation with a supervisory pro-

gram, has comprehensive facilities for storage protection, program
relocation, nonstop operation, and program interruption. Privi-

leged instructions associated with a supervisory operating state

are included. The supervisory program schedules and governs the

execution of multiple programs, handles exceptional conditions,

and coordinates and issues input/output (I/O) instructions. Relia-

bility is heightened by supplementing solid-state components with

built-in checking and diagnostic aids. Interconnection facilities

permit a wide variety of possibilities for multisystem operation.
The purpose of this discussion is to introduce the functional

units of the system, as well as formats, codes, and conventions

essential to characterization of the system.

'IBM Sys. /, vol. 3, no. 2, pp. 119-135, 1964.

Functional structure

The system/360 structure schematically outlined in Fig. 1 has

seven announced embodiments. Six of these, namely, Models 30,

40, 50, 60, 62, and 70, will be treated here. 1 Where requisite I/O

devices, optional features, and storage capacity are present, these

six models are logically identical for valid programs that contain

explicit time dependencies only. Hence, even though the allow-

able channels or storage capacity may vary from model to model

(as discussed in Chap. 44), the logical structure can be discussed

without reference to specific models.

Input/output

Direct communication with a large number of low-speed terminals

and other I/O devices is provided through a special multiplexor
channel unit. Communication with high-speed I/O devices is

accommodated by the selector channel units. Conceptually, the

input/output system acts as a set of subchannels that operate

concurrently with one another and the processing unit. Each

subchannel, instructed by its own control-word sequence, can

govern a data transfer operation between storage and a selected

I/O device. A multiplexor channel can function either as one or

as many subchannels; a selector channel always functions as a

single subchannel. The control unit of each I/O device attaches

to the channels via a standard
mechanical-electrical-programming

interface.

Processing

The processing unit has sixteen general purpose 32-bit registers
used for addressing, indexing, and accumulating. Four 64-bit

floating-point accumulators are optionally available. The inclusion

of multiple registers permits effective use to be made of small

high-speed memories. Four distinct types of processing are pro-
1 A seventh embodiment, the Model 92, is not discussed in this paper. This
model does not provide decimal data handling and has a few minor differ-

ences arising from its highly concurrent, speed-oriented organization. A
paper on Model 92 is planned for future publication in the IBM Systems
Journal.

588
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STORAGE ARITHMETIC AND LOGIC

Fig. 1. Functional schematic of System/360.

vided: logical manipulation of individual bits, character strings and

fixed words; decimal arithmetic on digit strings; fixed-point binary

arithmetic; and floating-point arithmetic. The processing unit,

together with the central control function, will be referred to as

the central processing unit (CPU). The basic registers and data

paths of the CPU are shown in Fig. 2.

The CPU's of the various models yield a substantial range in

performance. Relative to the smallest model (Model 30), the in-

ternal performance of the largest (Model 70) is approximately 50:1

for scientific computation and 15: 1 for commercial data processing.

MAIN
STORAGE
AND
LARGE

CAPACITY
STORAGE
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STORAGE ADDRESS MAIN STORAGE

INSTRUCTIONS

COMPUTER
SYSTEM
CONTROL

I

INDEXED
ADDRESS

FIXED POINT
OPERATIONS

16
GENERAL
REGISTERS

VARIABLE
FIELD-LENGTH
OPERATIONS

FLOATING-POINT
OPERATIONS

4 FLOATING-POINT REGISTERS

Fig. 2. Schematic of basic registers and data paths.

tional conditions, loads and relocates programs and data, manages

storage, and supervises scheduling and execution of multiple pro-

grams. To a problem programmer, the supervisory program and

the control equipment are indistinguishable.

The functional structure of system/360, like that of most

computers, is most concisely described by considering the data

formats, the types of manipulations performed on them, and the

instruction formats by which these manipulations are specified.

Information formats

The several system/360 data formats are shown in Fig. 3. An 8-bit

unit of information is fundamental to most of the formats. A

consecutive group of n such units constitutes a field of length n.

Fixed-length fields of length one, two, four, and eight are termed

bytes, halfwords, words, and double words, respectively. In many

instructions, the operation code implies one of these four fields

as the length of the operands. On the other hand, the length is

explicit in an instruction that refers to operands of variable length.

The location of a stored field is specified by the address of the

leftmost byte of the field. Variable-length fields may start on any

byte location, but a fixed-length field of two, four, or eight bytes

must have an address that is a multiple of 2, 4, or 8, respectively.

Some of the various alignment possibilities are apparent from

Fig. 3.

Storage addresses are represented by binary integers in the

system. Storage capacities are always expressed as numbers of

bytes.

Processing operations

The system/360 operations fall into four classes: fixed-point arith-

metic, floating-point arithmetic, logical operations, and decimal

arithmetic. These classes differ in the data formats used, the

registers involved, the operations provided, and the way the field

length is stated.

Fixed-point arithmetic

The basic arithmetic operand is the 32-bit fixed-point binary word.

Halfword operands may be specified in most operations for the

sake of improved speed or storage utilization. Some products and

all dividends are 64 bits long, using an even-odd register pair.

Because the 32-bit words accommodate the 24-bit address, the

entire fixed-point instruction set, including multiplication, division,
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-DOUBLE WORD

WORD

- HALFWORD -

BYTE- BYTE-

HALFWORD FIXED POINT NUMBER

FULLWORD FIXED-POINT NUMBER
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INTEGER

31
INTEGER

SHORT FLOATING-POINT NUMBER

S CHARACTERISTIC
24

FRACTION

WORD

BYTE-

LONG FLOATING POINT NUMBER

HALFWORD -

BYTE- -BYTE *

CHARACTERISTIC
56
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VARIABLE-LENGTH LOGICAL INFORMATION

CHARACTER CHARACTER CHARACTER

Fig. 3. The data formats.

shifting, and several logical operations, can be used in address

computation. A two's complement notation is used for fixed-point

operands.

Additions, subtractions, multiplications, divisions, and com-

parisons take one operand from a register and another from either

a register or storage. Multiple-precision arithmetic is made con-

venient by the two's complement notation and by recognition of

the carry from one word to another. A pair of conversion instruc-

tions, CONVERT TO BINARY and CONVERT TO DECIMAL,

provide transition between decimal and binary radices without

the use of tables. Multiple-register loading and storing instructions

facilitate subroutine switching.

Floating-point arithmetic

Floating-point numbers may occur in either of two fixed-length

formats—short or long. These formats differ only in the length of
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the fractions, as indicated in Fig. 3. The fraction of a floating-point

number is expressed in 4-bit hexadecimal (base 16) digits. In the

short format, the fraction has six hexadecimal digits; in the long

format, the fraction has 14 hexadecimal digits. The short length

is equivalent to seven decimal places of precision. The long length

gives up to 17 decimal places of precision, thus eliminating most

requirements for double-precision arithmetic.

The radix point of the fraction is assumed to be immediately

to the left of the high-order fraction digit. To provide the proper

magnitude for the floating-point number, the fraction is considered

to be multiplied by a power of 16. The characteristic portion, bits

1 through 7 of both formats, is used to indicate this power. The

characteristic is treated as an excess 64 number with a range from

— 64 through +63, and permits representation of decimal numbers

with magnitudes in the range of 10~ 78 to 1075 .

Bit position in either format is the fraction sign, S. The

fraction of negative numbers is carried in true form.

Floating-point operations are performed with one operand from

a register and another from either a register or storage. The result,

placed in a register, is generally of the same length as the operands.

Logical operations

Operations for comparison, translation, editing, bit testing, and

bit setting are provided for processing logical fields of fixed and

variable lengths. Fixed-length logical operands, which consist of

one, four, or eight bytes, are processed from the general registers.

BIT POSITIONS-

I1

-> 01

00-

4567

0000

0001

0010

0011

0100

0101

ono

0111

1000

1001

1010

1011

1100

1101

1110

mi

00
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BIT POSITI0NS-
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NULL



594 Part 6 Computer families Section 3 I The IBM System/360-a series of planned machines which span a wide performance range

addition, subtraction, multiplication, division, and comparison.

The decimal digits through 9 are represented in the 4-bit

binary-coded-decimal form by 0000 through 1001, respectively.

The patterns 1010 through 1111 are not valid as digits and are

interpreted as sign codes: 1011 and 1101 represent a minus, the

other four a plus. The sign patterns generated in decimal arithme-

tic depend upon the character set preferred. For EBCDIC, the

patterns are 1100 and 1101; for the code of Fig. 5, they are 1010

and 1011. The choice between the two codes is determined by

a mode bit.

Decimal digits, packed two to a byte, appear in fields of variable

length (from 1 to 16 bytes) and are accompanied by a sign in the

rightmost four bits of the low-order byte. Operand fields can be

located on any byte boundary, and can have lengths up to 31 digits

and sign. Operands participating in an operation have independent

lengths. Negative numbers are carried in true form. Instructions

are provided for packing and unpacking decimal numbers. Packing

of digits leads to efficient use of storage, increased arithmetic

performance, and improved rates of data transmission. For purely

decimal fields, for example, a 90,000-byte/second tape drive reads

and writes 180,000 digits/second.

Instruction formats

Instruction formats contain one, two, or three halfwords, depend-

ing upon the number of storage addresses necessary for the opera-

tion. If no storage address is required of an instruction, one half-

word suffices. A two-halfword instruction specifies one address; a

three-halfword instruction specifies two addresses. All instructions

must be aligned on halfword boundaries.

The five basic instruction formats, denoted by the format

mnemonics RR, RX, RS, SI, and SS are shown in Fig. 6. RR denotes

a register-to-register operation, RX a register and indexed-storage

operation, RS a register and storage operation, SI a storage and

immediate-operand operation, and SS a storage-to-storage opera-

tion.

In each format, the first instruction halfword consists of two

parts. The first byte contains the operation code. The length and

format of an instruction are indicated by the first two bits of the

operation code.

The second byte is used either as two 4-bit fields or as a single

8-bit field. This byte is specified from among the following:

Four-bit operand register designator (R)

Four-bit index register designator (X)

Four-bit mask (M)

Four-bit field length specification (L)

Eight-bit field length specification

Eight-bit byte of immediate data (I)

The second and third halfwords each specify a 4-bit base

register designator (B), followed by a 12-bit displacement (D).

Addressing

An effective storage address E is a 24-bit binary integer given,

in the typical case, by

E = B + X + D

where B and X are 24-bit integers from general registers identified

by fields B and X, respectively, and the displacement D is a 12-bit

integer contained in every instruction that references storage.

The base B can be used for static relocation of programs and

data. In record processing, the base can identify a record; in array

calculations, it can specify the location of an array. The index X

can provide the relative address of an element within an array.

Together, B and X permit double indexing in array processing.

The displacement provides for relative addressing of up to 4095

bytes beyond the element or base address. In array calculations,

the displacement can identify one of many items associated with

an element. Thus, multiple arrays whose indices move together

are best stored in an interleaved manner. In the processing of

records, the displacement can identify items within a record.

In forming an effective address, the base and index are treated

as unsigned 24-bit positive binary integers and the displacement

as a 12-bit positive binary integer. The three are added as 24-bit

binary numbers, ignoring overflow. Since every address is formed

with the aid of a base, programs can be readily and generally

relocated by changing the contents of base registers.

A zero base or index designator implies that a zero quantity

must be used in forming the address, regardless of the contents

of general register 0. A displacement of zero has no special signifi-

cance. Initialization, modification, and testing of bases and indices

can be carried out by fixed-point instructions, or by BRANCH
AND LINK, BRANCH ON COUNT, or BRANCH ON INDEX

instructions. LOAD EFFECTIVE ADDRESS provides not only a

convenient housekeeping operation, but also, when the same

register is specified for result and operand, an immediate register-

incrementing operation.

Sequencing

Normally, the CPU takes instructions in sequence. After an in-

struction is fetched from a location specified by the instruction
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FIRST HALFWORD SECOND HALFWORD THIRD HALFWORD

RR FORMAT

RX FORMAT

RS FORMAT

REGISTER
OPERANDS
1 2

OP CODE

7 8 11 12 IS

STORAGE
OPERAND

2

OP CODE

7 S 11 12 15

REGISTER
OPERANDS
1 3

16 19 20

STORAGE
OPERAND

2

OP CODE

7 8 11 12 IS

IMMEDIATE
OPERAND

2
^^_

SI FORMAT

SS FORMAT

OPCODE

OPERAND
LENGTHS
1 2

OP CODE

16 19 20

STORAGE
OPERAND

1

16 19 20

STORAGE
OPERAND

1^^

STORAGE
OPERAND

2
^\m

12 15 16 19 20

Fig. 6. Five basic instruction formats.

counter, the instruction counter is increased by the number of

bytes in the instruction.

Conceptually, all halfwords of an instruction are fetched from

storage after the preceding operation is completed and before

execution of the current operation, even though physical storage

word size and overlap of instruction execution with storage access

may cause the actual instruction fetching to be different. Thus,

an instruction can be modified by the instruction that immediately

precedes it in the instruction stream, and cannot effectively modify

itself during execution.

Branching

Most branching is accomplished by a single BRANCH ON CON-
DITION operation that inspects a 2-bit condition register. Many

of the arithmetic, logical, and I/O operations indicate an outcome

by setting the condition register to one of its four possible states.

Subsequently a conditional branch can select one of the states

as a criterion for branching. For example, the condition code

reflects such conditions as non-zero result, first operand high,

operands equal, overflow, channel busy, zero, etc. Once set,

the condition register remains unchanged until modified by

an instruction execution that reflects a different condition

code.

The outcome of address arithmetic and counting operations

can be tested by a conditional branch to effect loop control. Two

instructions, BRANCH ON COUNT and BRANCH ON INDEX,

provide for one-instruction execution of the most common arith-

metic-test combinations.
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The remaining seven deal with improper addresses, attempted

execution of privileged instructions, and similar conditions.

A supervisor-call interruption results from execution of the

instruction SUPERVISOR CALL. Eight bits from the instruction

format are placed in the interruption code of the old PSW, per-

mitting a message to be associated with the interruption. SUPER-

VISOR CALL permits a problem program to switch CPU control

back to the supervisor.

Through an external interruption, a CPU can respond to signals

from the interruption key on the system control panel, the timer,

other CPU's, or special devices. The source of the interruption

is identified by an interruption code in bits 24 through 31 of the

PSW.

The occurrence of a machine check (if not masked off) termi-

nates the current instruction, initiates a diagnostic procedure, and

subsequently effects a machine-check interruption. A machine

check is occasioned only by a hardware malfunction; it cannot

be caused by invalid data or instructions.

Interrupt priority

Interruption requests are honored between instruction executions.

When several requests occur during execution of an instruction,

they are honored in the following order: (1) machine check, (2)

program or supervisor call, (3) external, and (4) input/output.

Because the program and supervisor-call interruptions are mutu-

ally exclusive, they cannot occur at the same time.

If a machine-check interruption occurs, no other interruptions

can be taken until this interruption is fully processed. Otherwise,

the execution of the CPU program is delayed while PSW's are

appropriately stored and fetched for each interruption. When the

last interruption request has been honored, instruction execution

is resumed with the PSW last fetched. An interruption subroutine

is then serviced for each interruption in the order (1) input/output,

(2) external, and (3) program or supervisor call.

Program status

Overall CPU status is determined by four alternatives: (1) stopped

versus operating state, (2) running versus waiting state, (3) masked

versus interruptable state, and (4) supervisor versus problem state.

In the stopped state, which is entered and left by manual

procedure, instructions are not executed, interruptions are not

accepted, and the timer is not updated. In the operating state,

the CPU is capable of executing instructions and of being inter-

rupted.

In the running state, instruction fetching and execution pro-

ceeds in the normal manner. The wait state is typically entered

by the program to await an interruption, for example, an I/O

interruption or operator intervention from the console. In the wait

state, no instructions are processed, the timer is updated, and I/O

and external interruptions are accepted unless masked. Running
versus waiting is determined by the setting of a bit in the current

PSW.

The CPU may be interruptable or masked for the system,

program, and machine interruptions. When the CPU is interrupt-

able for a class of interruptions, these interruptions are accepted.

When the CPU is masked, the system interruptions remain pend-

ing, but the program and machine-check interruptions are ignored.

The interruptable states of the CPU are changed by altering mask

bits in the current PSW.

In the problem state, processing instructions are valid, but all

I/O instructions and a group of control instructions are invalid.

In the supervisor state, all instructions are valid. The choice of

problem or supervisor state is determined by a bit in the PSW.

Supervisory facilities

Timer

A timer word in main storage location 80 is counted down at a

rate of 50 or 60 cycles per second, depending on power line

frequency. The word is treated as a signed integer according to

the rules of fixed-point arithmetic. An external interrupt occurs

when the value of the timer word goes from positive to negative.

The full cycle time of the timer is 15.5 hours.

As an interval timer, the timer may be used to measure elapsed

time over relatively short intervals. The timer can be set by a

supervisory-mode program to any value at any time.

Direct control

Two instructions, READ DIRECT and WRITE DIRECT, provide

for the transfer of a single byte of information between an external

device and the main storage of the system. These instructions are

intended for use in synchronizing CPU's and special external

devices.

Storage protection

For protection purposes, main storage is divided into blocks of

2,048 bytes each. A four-bit storage key is associated with each

block. When a store operation is attempted by an instruction, the

protection key of the current PSW is compared with the storage

key of the affected block. When storing is specified by a channel

operation, a protection key supplied by the channel is used as the
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comparand. The keys are said to match if equal or if either is zero.

A storage key is not part of addressable storage, and can be

changed only by privileged instructions. The protection key of the

CPU program is held in the current PSW. The protection key of

a channel is recorded in a status word that is associated with the

channel operation.

When a CPU operation causes a protection mismatch, its

execution is suppressed or terminated, and the program execution

is altered by an interruption. The protected storage location

always remains unchanged. Similarly, protection mismatch due to

an I/O operation terminates data transmission in such a way that

the protected storage location remains unchanged.

Multisystem operation

Communication between CPU's is made possible by shared control

units, interconnected channels, or shared storage. Multisystem

operation is supported by provisions for automatic relocation,

indication of malfunctions, and CPU initialization.

Automatic relocation applies to the first 4,096 bytes of storage,

an area that contains all permanent storage assignments and

usually has special significance for supervisory programs. The

relocation is accomplished by inserting a 12-bit prefix in each

address whose high-order 12 bits are zero. Two manually set

prefixes permit the use of an alternate area when storage malfunc-

tion occurs; the choice between prefixes is preserved in a trigger

that is set during initial program loading.

To alert one CPU to the possible malfunction of another, a

machine-check signal from a given CPU can serve as an external

interruption to another CPU. By another special provision, initial

program loading of a given CPU can be initiated by a signal from

another CPU.

Input/output

Devices and control units

Input/output devices include card equipment, magnetic tape

units, disk storage, drum storage, typewriter-keyboard devices,

printers, teleprocessing devices, and process control equipment.

The I/O devices are regulated by control units, which provide

the electrical, logical, and buffering capabilities necessary for I/O

device operation. From the programming point of view, most

control-unit and I/O device functions are indistinguishable.

Sometimes the control unit is housed with an I/O device, as in

the case of the printer.

A control unit functions only with those I/O devices for which

it is designed, but all control units respond to a standard set of

signals from the channel. This control-unit-to-channel connection,

called the I/O interface, enables the CPU to handle all I/O

operations with only four instructions.

I/O instructions

Input/output instructions can be executed only while the CPU

is in the supervisor state. The four I/O instructions are START

I/O, HALT I/O, TEST CHANNEL, and TEST I/O.

START I/O initiates an I/O operation; its address field speci-

fies a channel and an I/O device. If the channel facilities are free,

the instruction is accepted and the CPU continues its program.

The channel independently selects the specified I/O device. HALT

I/O terminates a channel operation. TEST CHANNEL sets the

condition code in the PSW to indicate the state of the channel

addressed by the instruction. The code then indicates one of the

following conditions: channel available, interruption condition in

channel, channel working, or channel not operational. TEST I/O

sets the PSW condition code to indicate the state of the addressed

channel, subchannel, and I/O device.

Channels

Channels provide the data path and control for I/O devices as

they communicate with main storage. In the multiplexor channel,

the single data path can be time-shared by several low-speed

devices (card readers, punches, printers, terminals, etc.) and the

channel has the functional character of many subchannels, each

of which services one I/O device at a time. On the other hand,

the selector channel, which is designed for high-speed devices, has

the functional character of a single subchannel. All subchannels

respond to the same I/O instructions. Each can fetch its own

control word sequence, govern the transfer of data and control

signals, count record lengths, and interrupt the CPU on exceptions.

Two modes of operation, burst and multiplex, are provided

for multiplexor channels. In burst mode, the channel facilities are

monopolized for the duration of data transfer to or from a particu-

lar I/O device. The selector channel functions only in the burst

mode. In multiplex mode, the multiplexor channel sustains several

simultaneous I/O operations: bytes of data are interleaved and

then routed between selected I/O devices and desired locations

in main storage.

At the conclusion of an operation launched by START I/O
or TEST I/O, an I/O interruption occurs. At this time a channel

status word (CSW) is stored in location 64. Figure 8 shows the

CSW format. The CSW provides information about the termina-

tion of the I/O operation.

Successful execution of START I/O causes the channel to
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Table 2 System/360 instructions

Branching and

status switching

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mi

fix Format

Fixed-point halfword
and branching

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mi

AS. SI Format

Branching
status switching
and shifting

lOOOxxxx

SS Format

Fixed-point fullword
and logical

OOOlxxxx

Floating-point

long

OOlOxxxx

Floating-point

short
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I/O operation, or by operator intervention at the I/O device,

enable the CPU to provide appropriate programmed response to

conditions as they occur in I/O devices or channels. Conditions

responsible for I/O interruption requests are preserved in the I/O

devices or channels until recognized by the CPU.

During execution of START I/O, a command can be rejected

by a busy condition, program check, etc. Rejection is indicated

in the condition code of the PSW, and additional detail on the

conditions that precluded initiation of the I/O operation is pro-

vided in a CSW.

Manual control

The need for manual control is minimal because of the design of

the system and supervisory program. A control panel provides the

ability to reset the system; store and display information in main

storage, in registers, and in the PSW; and load initial program
information. After an input device is selected with the load unit

switches, depressing a load key causes a read from the selected

input device. The six words of information that are read into main

storage provide the PSW and the CCWs required for subsequent

operation.

Instruction set

The system/360 instructions, classified by format and function,

are displayed in Table 2. Operation codes and mnemonic abbrevi-

ations are also shown. With the previously described formats in

mind, much of the generality provided by the system is apparent

in this listing.
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Part II—System implementations

W. Y. Stevens

Summary The performance range desired of system/360 is obtained by

variations in the storage, processing, control, and channel functions of the

several models. The systematic variations in speed, size, and degree of

simultaneity that characterize the functional components and elements of

each model are discussed.

A primary goal in the system/360 design effort was a wide range

of processing unit performances coupled with complete program

compatibility. In keeping with this goal, the logical structure of

the resultant system lends itself to a wide choice of components
and techniques in the engineering of models for desired perform-

ance levels.

This paper discusses basic choices made in implementing six

system/360 models spanning a performance range of fifty to one.

It should be emphasized that the problems of model implementa-
tion were studied throughout the design period, and many of the

decisions concerning logical structure were influenced by difficul-

ties anticipated or encountered in implementation.

Performance adjustment

The choices made in arriving at the desired performances fall into

four areas:

Main storage

Central processing unit (CPU) registers and data paths

Sequence control

Input/output (I/O) channels

Each of the adjustable parameters of these areas can be subordi-

nated, for present purposes, to one of three general factors: basic

speed, size, and degree of simultaneity.

'IBM Sys. J, vol. 3, no. 2, 136-143, 1964.

Main storage

Storage speed and size

The interaction of the general factors is most obvious in the area

of main storage. Here the basic speeds vary over a relatively small

range: from a 2.5-jusec cycle for the Model 40 to a 1.0-jusec cycle

for Models 62 and 70. However, in combination with the other

two factors, a 32:1 range in overall storage data rate is obtained,

as shown in Table 1.

Most important of the three factors is size. The width of main

storage, i.e., the amount of data obtained with one storage access,

ranges from one byte for the Model 30, two bytes for the Model

40, and four bytes for the Model 50, to 8 bytes for Models 60,

62, and 70.

Another size factor, less direct in its effect, is the total number

of bytes in main storage, which can make a large difference in

system throughput by reducing the number of references to exter-

nal storage media. This number ranges from a minimum of 8192

bytes on Model 30 to a maximum of 524,288 bytes on Models 60,

62, and 70. An option of up to eight million more bytes of slower-

speed, large-capacity core storage can further increase the

throughput in some applications.

Interleaved storage

Simultaneity in the core storage of Models 60 and 70 is obtained

by overlapping the cycles of two storage units. Addresses are

staggered in the two units, and a series of requests for successive

words activates the two units alternately, thus doubling the

maximum rate. For increased system performance, this technique
is less effective than doubling the basic speed of a single unit, since

the access time to a single word is not improved, and successive

references frequently occur to the same unit. This is illustrated

by comparing the performances of Models 60 and 62, whose only
difference is the choice between two overlapped 2.0-fisec storage
units and one single 1.0-/*sec storage unit, respectively. The per-
formance of Model 62 is approximately 1.5 times that of Model 60.

602
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Table 1 System/360 main storage characteristics
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time of 2.0 usee. In Model 40, the registers are located in a small

core-storage unit, called local storage, with a read-write time of

1.25 /usee. Here, the operation of the local storage may be over-

lapped with main storage. In Model 50, the registers are in a local

storage with a read-write time of only 0.5 fisec. In Model 60/62,

the local storage has the logical characteristics of a core storage

with nondestructive read-out; however, it is actually constructed

as an array of registers using the 30-nsec family of logic circuits,

and has a read-write time of 0.25 fisec. In Model 70, the general

and floating-point registers are implemented with 6-nsec logic

circuits and communicate directly with the adder and other data

paths.

The two principal measures of size in the CPU are the width

of the data paths and the number of bytes of high-speed working

registers.

Data path organization

Model 30 has an 8-bit wide (plus parity) adder path, through which

all data transfers are made, and approximately 12 bytes of working

registers.

Model 40 also has an 8-bit wide adder path, but has an addi-

tional 16-bit wide data transfer path. Approximately 15 bytes of

working registers are used, plus about 48 bytes of working locations

in the local storage, exclusive of the general and floating-point

registers.

Model 50 has a 32-bit wide adder path, an 8-bit wide data path

used for handling individual bytes, approximately 30 bytes of

working registers, plus about 60 bytes of working locations in the

local storage.

Model 60/62 has a 56-bit wide main adder path, an 8-bit wide

serial adder path, and approximately 50 bytes of working registers.

Model 70 has a 64-bit wide main adder, an 8-bit wide exponent

adder, an 8-bit wide decimal adder, a 24-bit wide addressing adder,

and several other data transfer paths, some of which have incre-

menting ability. The model has about 100 bytes of working registers

plus the 96 bytes of floating point and general registers which, in

Model 70, are directly associated with the data paths.

The models of system/360 differ considerably in the number

of relatively independent operations that can occur simultaneously

in the CPU. Model 30, for example, operates serially: virtually all

data transfers must pass through the adder, one byte at a time.

Model 70, however, can have many operations taking place at the

same time. The CPU of this model is divided into three units that

operate somewhat independently. The instruction preparation unit

fetches instructions from storage, prepares them by computing
their effective addresses, and initiates the fetching of the required

data. The execution unit performs the execution of the instruction

prepared by the instmction unit. The third unit is a storage bus

control which coordinates the various requests by the other units

and by the channels for core-storage cycles. All three units nor-

mally operate simultaneously, and togc^'ier provide a large degree

of instruction overlap. Since each of the units contains a number

of different data paths, several data transfers may be occurring

on the same cycle in a single unit.

The operations of other system/360 models fall between those

mentioned. Model 50, for example, can have simultaneous data

transfers through the main adder, through an auxiliary byte trans-

fer path, and to or from local storage.

Sequence control

Complex instruction sequences

Since the system/360 has an extensive instruction set, the CPU's

must be capable of executing a large number of different sequences

of basic operations. Furthermore, many instructions require se-

quences that are dependent on the data or addresses used. As

shown in Table 3, these sequences of operations can be controlled

by two methods; either by a conventional sequential logic circuit

that uses the same types of circuit modules as used in the data

paths or by a read-only storage device that contains a micro-

program specifying the sequences to be performed for the different

instructions.

Model 70 makes use of conventional sequential logic control

mainly because of the high degree of simultaneity required. Also,

a sufficiently fast read-only storage unit was not available at the

time of development. The sequences to be performed in each of

the Model 70 data paths have a considerable degree of independ-
ence. The read-only storage method of control does not easily lend

itself to controlling these independent sequences, but is well

adapted where the actions in each of the data paths are highly

coordinated.

Read-only storage control

The read-only storage method of control is described elsewhere

[Peacock, 19??]. This microprogram control, used in all but the

fastest model of system/360, is the only method known by which

an extensive instruction set may be economically realized in a

small system. This was demonstrated during the design of Model

60/62. Conventional logic control was originally planned for this

model, but it became evident during the design period that too

many circuit modules were required to implement the instruction

set, even for this rather large system. Because a sufficiently fast

read-only storage became available, it was adopted for sequence
control at a substantial cost reduction.
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Table 3 System/360 sequence control characteristics

Type

Cycle time (/isec)

Width of read-only storage word (available bits)

Number of read-only storage words available

Number of gate-control fields in read-only storage

word

Model
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Table 4 System/360 channel characteristics
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The Structure of system/SBO^

Part I—Outline of the Logical Structure

G. A. Blaauw / F. P. Brooks, Jr.

Summary A general introductory description of the logical structure of

system/360 is given. In addition, the functional units, the principal

registers and formats, and the basic addressing and sequencing principles

of the system are indicated.

In the system/360 logical structure, processing efficiency and

versatility are served by multiple accumulators, binary address-

ing, bit-manipulation operations, automatic indexing, fixed and

variable field lengths, decimal and hexadecimal radices, and

floating-point as well as fixed-point arithmetic. The provisions for

program interruption, storage protection, and flexible CPU states

contribute to effective operation. Base-register addressing, the

standard interface between channels and input/output control

units, and the machine-language compatibility among models

contribute to flexible configurations and to orderly system expan-

sion.

system/360 is distinguished by a design orientation toward

very large memories and a hierarchy of memory speeds, a broad

spectrum of manipulative fiinctions, and a uniform treatment of

input/output functions that facilitates communication with a

diversity of input/output devices. The overall structure lends itself

to program-compatible embodiments over a wide range of

performance levels.

The system, designed for operation with a supervisory pro-

gram, has comprehensive facilities for storage protection, pro-

gram relocation, nonstop operation, and program interruption.

Privileged instructions associated with a supervisory operating

state are included. The supervisory program schedules and

governs the execution of multiple programs, handles exceptional

conditions, and coordinates and issues input/output (I/O) instruc-

tions. Reliability is heightened by supplementing solid-state

components with built-in checking and diagnostic aids. Intercon-

nection facilities permit a wide variety of possibilities for multi-

system operation.

The purpose of this discussion is to introduce the functional

units of the system, as well as formats, codes, and conventions

essential to characterization of the system.

'IBM Sys. ], vol. 3, no. 2, 1964, pp. 119-135.

Functional Structure

The system/360 structure schematically outlined in Fig. 1 has

seven announced embodiments. Six of these, namely, Models 30,

40, 50, 60, 62, and 70, will be treated here.^ Where requisite I/O

devices, optional features, and storage capacity are present, these

six models are logically identical for valid programs that contain

explicit time dependencies only. Hence, even though the allowa-

ble channels or storage capacity may vary from model to model (as

discussed in Chap. 41), the logical structure can be discussed

without reference to specific models.

Input/Output

Direct communication with a large number of low-speed termi-

nals and other I/O devices is provided through a special multi-

plexor channel unit. Communication with high-speed I/O devices

is accommodated by the selector cha.nne\ units, Conceptually, the

input/output system acts as a set of subchannels that operate

concurrently with one another and the processing unit. Each

subchannel, instructed by its own control-word sequence, can

govern a data transfer operation between storage and a selected

I/O device. A multiplexor channel can function either as one or as

many subchannels; a selector channel always functions as a single

subchannel. The control unit of each I/O device attaches to the

channels via a standard mechanical-electrical-programming inter-

face.

Processing

The processing unit has sixteen general purpose 32-bit registers

used for addressing, indexing, and accumulating. Four 64-bit

floating-point accumulators are optionally available. The inclusion

of multiple registers permits effective use to be made of small

high-speed memories. Four distinct types of processing are

provided: logical manipulation of individual bits, character strings

and fixed words; decimal arithmetic on digit strings; fixed-point

binary arithmetic; and floating-point arithmetic. The processing

unit, together with the central control function, will be referred to

as the central processing unit (CPU). The basic registers and data

paths of the CPU are shown in Fig. 2.

The CPU's of the various models yield a substantial range in

performance. Relative to the smallest model (Model 30), the

internal performance of the largest (Model 70) is approximately

50:1 for scientific computation and 15:1 for commercial data

processing.

^A seventh embodiment, the Model 92, is not discussed in this paper. This

model does not provide decimal data handling and has a few minor

differences arising from its highly concurrent, speed-oriented organiza-

tion. A paper on Model 92 is planned for future publication in the IBM

Systems Journal.
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STORAGE ADDRESS MAIN STORAGE

INSTRUCTIONS

COMPUTER
SYSTEM
CONTROL

I

INDEXED
ADDRESS

FIXED-POINT
OPERATIONS

VARIABLE
FIELD LENGTH
OPERATIONS

FLOATING-POINT
OPERATIONS

16
GENERAL
REGISTERS

4 FLOATING-POINT REGISTERS

Fig. 2. Schematic of basic registers and data paths.

consecutive group of n such units constitutes a field of length n.

Fixed-length fields of length one, two, four, and eight are termed

bytes, halfwords, words, and double words, respectively. In

many instructions, the operation code implies one of these four

fields as the length of the operands. On the other hand, the length

is explicit in an instruction that refers to operands of variable

length.

The location of a stored field is specified by the address of the

leftmost byte of the field. Variable-length fields may start on any

byte location, but a fixed-length field of two, four, or eight bytes

must have an address that is a multiple of 2, 4, or 8, respectively.

Some of the various alignment possibilities are apparent from

Fig. 3.

Storage addresses are represented by binary integers in the

system. Storage capacities are always expressed as numbers of

bytes.

Processing Operations

The system/360 operations fall into four classes: fixed-point

arithmetic, floating-point arithmetic, logical operations, and

decimal arithmetic. These classes differ in the data formats used,

the registers involved, the operations provided, and the way the

field length is stated.

Fixed-Point Arithmetic

The basic arithmetic operand is the 32-bit fixed-point binary

word. Halfword operands may be specified in most operations for

the sake of improved speed or storage utilization. Some products

and all dividends are 64 bits long, using an even-odd register pair.

Because the 32-bit words accommodate the 24-bit address, the

entire fixed-point instruction set, including multiplication, divi-

sion, shifting, and several logical operations, can be used in

address computation. A two's complement notation is used for

fixed-point operands.

Additions, subtractions, multiplications, divisions, and compar-

isons take one operand from a register and another from either a

register or storage. Multiple-precision arithmetic is made conve-

nient by the two's complement notation and by recognition of the

carry from one word to another. A pair of conversion instructions,

CONVERT TO BINARY and CONVERT TO DECIMAL, provide

transition between decimal and binary radices without the use of

tables. Multiple-register loading and storing instructions facilitate

subroutine switching.

Floating-Ibint Arithmetic

Floating-point numbers may occur in either of two fixed-length

formats—short or long. These formats differ only in the length of

the fractions, as indicated in Fig, 3. The fraction of a floating-point
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-DOUBLE WORD-

• WORD -

ent- -BYTE-

FULLWORD FIXED-POINT NUMBER

- HALFWORD -

BYTE-

HALFWORD FIXED POINT NUMBER
15

INTEGER

31
INTEGER

SHORT FLOATING POINT NUMBER

CHARACTERISTIC
24

FRACTION

LONG FLOATINGPOINT NUMBER

- WORD-

 HALFWORD - - HALFWORD -

•ByTE- - BYTE -

^
CHARACTERISTIC

56
FRACTION

PACKED DECIMAL NUMBER
4

DIGIT
4

DIGIT
4

DIGIT

ZONED DECIMAL NUMBER
4

ZONE
4

DIGIT
4

ZONE
4

DIGIT

FIXED-LENGTH LOGICAL INFORMATION

LOGICAL DATA

VARIABLE-LENGTH LOGICAL INFORMATION

CHARACTER CHARACTER CHARACTER

Fig. 3. The data formats.

number is expressed in 4-bit hexadecimal (base 16) digits. In the

short format, the fraction has six hexadecimal digits; in the long

format, the fraction has 14 hexadecimal digits. The short length is

equivalent to seven decimal places of precision. The long length

gives up to 17 decimal places of precision, thus eliminating most

requirements for double-precision arithmetic.

The radix point of the fraction is assumed to be immediately to

the left of the high-order fraction digit. To provide the proper

magnitude for the floating-point number, the fraction is consid-

ered to be multiplied by a power of 16. The characteristic portion,

bits 1 through 7 of both formats, is used to indicate this power.

The characteristic is treated as an excess 64 number with a range

from —64 through -(-63, and permits representation of decimal

numbers with magnitudes in the range of 10"™ to 10™

Bit position in either format is the fraction sign, S. The

fraction of negative numbers is carried in true form.

Floating-point operations are performed with one operand from

a register and another from either a register or storage. The
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result, placed in a register, is generally of the same length as the

operands.

Logical Operations

Operations for comparison, translation, editing, bit testing, and

bit setting are provided for processing logical fields of fixed

and variable lengths. Fixed-length logical operands, which con-

sist of one, four, or eight bytes, are processed from the general

registers. Logical operations can also be performed on fields of

up to 256 bytes, in which case the fields are processed from left

to right, one byte at a time. Moreover, two powerfiil scanning

instructions permit byte-by-byte translation and testing via

tables. An important special case of variable-length logical

operations is the one-byte field, whose individual bits can be

tested, set, reset, and inverted as specified by an 8-bit mask in

the instruction.

Character Codes

Any 8-bit character set can be processed, although certain

restrictions are assumed in the decimal arithmetic and editing

operations. However, all character-set-sensitive, I/O equipment
assumes either the Extended Binary-Coded-Decimal Interchange

Code (EBCDIC) of Fig. 4 or the code of Fig. 5, which is an

eight-bit extension of a seven-bit code proposed by the Interna-

tional Standards Organization.

Decimal Arithmetic

Decimal arithmetic can improve performance for processes

requiring few computational steps per datum between the source

input and the output. In these cases, where radix conversion from

decimal to binary and back to decimal is not justified, the use of

registers for intermediate results usually yields no advantage over

storage-to-storage processing. Hence, decimal arithmetic is pro-

BIT POSITIONS-

u
-* 01

00-

4567

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

nil

00
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BIT POSITIONS-
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01 10 11 00
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mnemonics RR, RX, RS, SI, and SS are shown in Fig. 6. RR
denotes a register-to-register operation, RX a register and

indexed-storage operation, RS a register and storage operation, SI

a storage and immediate-operand operation, and SS a storage-to-

storage operation.

In each format, the first instruction halfword consists of two

parts. The first byte contains the operation code. The length and

format of an instruction are indicated by the first two bits of the

operation code.

The second byte is used either as two 4-bit fields or as a single

8-bit field. This byte is specified from among the following:

Four-bit operand register designator (R)

Four-bit index register designator (X)

Four-bit mask (M)

Four-bit field length specification (L)

Eight-bit field length specification

Eight-bit byte of immediate data (I)

The second and third halfwords each specify a 4-bit

base register designator (R), followed by a 12-bit displacement

(D).

Addressing

An effective storage address E is a 24-bit binary integer given, in

the typical case, by

E = B + X + D

where B and X are 24-bit integers from general registers

FIRST HALFWORD SECOND HALFWORD

RR FORMAT

RX FORMAT

RS FORMAT

SI FORMAT

SS FORMAT

REGISTER
OPERANDS
1 2

OP CODE

7 8 11 12 IS

STORAGE
OPERAND

2

OP CODE

U 12 IS

STORAGE
OPERAND

2

OP CODE

11 12 IS

IMMEDIATE
OPERAND

2

STORAGE
OPERAND

1

OPCODE

OPERAND
LENGTHS
1 2

OP CODE L L

16 19 2C

STORAGE
OPERAND

1

^-^w

7 8 11 12 IS 16 1920

THIRD HALFWORD

STORAGE
OPERAND

2

Fig. 6. Five basic instruction formats.
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identified by fields B and X, respectively, and the displacement D
is a 12-bit integer contained in every instruction that references

storage.

The base B can be used for static relocation of programs and

data. In record processing, the base can identify a record; in array

calculations, it can specify the location of an array. The index X
can provide the relative address of an element within an array.

Together, B and X permit double indexing in array processing.

The displacement provides for relative addressing of up to 4095

bytes beyond the element or base address. In array calculations,

the displacement can identify one of many items associated with

an element. Thus, multiple arrays whose indices move together

are best stored in an interleaved manner. In the processing of

records, the displacement can identify items within a record.

In forming an effective address, the base and index are treated

as unsigned 24-bit positive binary integers and the displacement

as a 12-bit positive binary integer. The three are added as 24-bit

binary numbers, ignoring overflow. Since every address is formed

with the aid of a base, programs can be readily and generally

relocated by changing the contents of base registers.

A zero base or index designator implies that a zero quantity

must be used in forming the address, regardless of the contents of

general register 0. A displacement of zero has no special

significance. Initialization, modification, and testing of bases and

indices can be carried out by fixed-point instructions, or by
BRANCH AND LINK, BRANCH ON COUNT, or BRANCH ON
INDEX instructions. LOAD EFFECTIVE ADDRESS provides

not only a convenient housekeeping operation, but also, when the

same register is specified for result and operand, an immediate

register-incrementing operation.

Sequencing

Normally, the CPU takes instructions in sequence. After an

instruction is fetched from a location specified by the instruction

counter, the instruction counter is increased by the number of

bytes in the instruction.

Conceptually, all halfwords of an instruction are fetched from

storage after the preceding operation is completed and before

execution of the current operation, even though physical storage

word size and overlap of instruction execution with storage access

may cause the actual instruction fetching to be different. Thus, an

instruction can be modified by the instruction that immediately

precedes it in the instruction stream, and cannot effectively

modify itself during execution.

Branching

Most branching is accomplished by a single BRANCH ON
CONDITION operation that inspects a 2-bit condition register.

Many of the arithmetic, logical, and I/O operations indicate an

outcome by setting the condition register to one of its four

possible states. Subsequently a conditional branch can select one

of the states as a criterion for branching. For example, the

condition code reflects such conditions as non-zero result, first

operand high, operands equal, overflow, channel busy, zero, etc.

Once set, the condition register remains unchanged until modi-

fied by an instruction execution that reflects a different condition

code.

The outcome of address arithmetic and counting operations can

be tested by a conditional branch to effect loop control. Two

instructions, BRANCH ON COUNT and BRANCH ON INDEX,

provide for one-instruction execution of the most common
arithmetic-test combinations.

Program Status Word

A program status word (PSW), a double word having the format

shown in Fig. 7, contains information required for proper
execution of a given program. A PSW includes an instruction

address, condition code, and several mask and mode fields. The

active or controlling PSW is called the current PSW. By storing

the current PSW during an interruption, the status of the

interrupted program is preserved.

Interruption

Five classes of interruption conditions are distinguished: input/

output, program, supervisor call, external, and machine check.

For each class, two PSW's, called old and new, are maintained

in the main-storage locations shown in Table 1. An interruption in

a given class stores the current PSW as an old PSW and then takes

the corresponding new PSW as the current PSW. If, at the

conclusion of the interruption routine, old and current PSW's are

interchanged, the system can be restored to its prior state and the

interrupted routine can be continued.

The system mask, program mask, and machine-check mask bits

in the PSW may be used to control certain interruptions. When
masked off, some interruptions remain pending while others are

merely ignored. The system mask can keep I/O and external

interruptions pending, the program mask can cause four of the 15

program interruptions to be ignored, and the machine-check

mask can cause machine-check interruptions to be ignored. Other

interruptions cannot be masked off.

Appropriate CPU response to a special condition in the

channels and I/O units is facilitated by an I/O interruption. The

addresses of the channel and I/O unit involved are recorded in the

old PSW. Related information is preserved in a channel status

word that is stored as a result of the interruption.

Unusual conditions encountered in a program create program

interruptions. Eight of the fifteen possible conditions involve

overflows, improper divides, lost significance, and exponent
underflow. The remaining seven deal with improper addresses.
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state, the CPU is capable of executing instructions and of being

interrupted.

In the running state, instruction fetching and execution pro-

ceeds in the normal manner. The wait state is typically entered by
the program to await an interruption, for example, an I/O

interruption or operator intervention from the console. In the

wait state, no instructions are processed, the timer is updated,

and I/O and external interruptions are accepted unless masked.

Running versus waiting is determined by the setting of a bit in the

current PSW.
The CPU may be interruptable or masked for the system,

program, and machine interruptions. When the CPU is interrup-

table for a class of interruptions, these interruptions are accepted.

When the CPU is masked, the system interruptions remain

pending, but the program and machine-check interruptions are

ignored. The interruptable states of the CPU are changed by

altering mask bits in the current PSW.
In the problem state, processing instructions are valid, but all

I/O instructions and a group of control instructions are invalid.

In the supervisor state, all instructions are valid. The choice

of problem or supervisor state is determined by a bit in the

PSW.

Supervisory Facilities

rimer

A timer word in main storage location 80 is counted down at a rate

of50 or 60 cycles per second, depending on power line frequency.

The word is treated as a signed integer according to the rules of

fixed-point arithmetic. An external interrupt occurs when the

value of the timer word goes from positive to negative. The ftiU

cycle time of the timer is 15.5 hours.

As an interval timer, the timer may be used to measure elapsed

time over relatively short intervals. The timer can be set by a

supervisory-mode program to any value at any time.

Direct Control

Two instructions, READ DIRECT and WRITE DIRECT, provide

for the transfer of a single byte of information between an external

device and the main storage of the system. These instructions are

intended for use in synchronizing CPU's and special external

devices.

Storage Protection

For protection purposes, main storage is divided into blocks of

2,048 bytes each. A four-bit storage key is associated with each

block. When a store operation is attempted by an instruction, the

protection key of the current PSW is compared with the storage

key of the aflFected block. When storing is specified by a channel

operation, a protection key supplied by the channel is used as the

comparand. The keys are said to match if equal or if either is zero.

A storage key is not part of addressable storage, and can be

changed only by privileged instructions. The protection key of the

CPU program is held in the current PSW. The protection key of a

channel is recorded in a status word that is associated with the

channel operation.

When a CPU operation causes a protection mismatch, its

execution is suppressed or terminated, and the program execution

is altered by an interruption. The protected storage location

always remains unchanged. Similarly, protection mismatch due to

an I/O operation terminates data transmission in such a way that

the protected storage location remains unchanged.

Multisystem Operation

Communication between CPU's is made possible by shared

control units, interconnected channels, or shared storage. Multi-

system operation is supported by provisions for automatic reloca-

tion, indication of malfunctions, and CPU initialization.

Automatic relocation applies to the first 4,096 bytes of storage,

an area that contains all permanent storage assignments and

usually has special significance for supervisory programs. The
relocation is accomplished by inserting a 12-bit prefix in each

address whose high-order 12 bits are zero. Two manually set

prefixes permit the use of an alternate area when storage

malfunction occurs; the choice between prefixes is preserved in a

trigger that is set during initial program loading.

To alert one CPU to the possible malfunction of another, a

machine-check signal from a given CPU can serve as an external

interruption to another CPU. By another special provision, initial

program loading of a given CPU can be initiated by a signal from

another CPU.

Input/Output

Devices and Control Units

Input/output devices include card equipment, magnetic tape

units, disk storage, drum storage, typewriter-keyboard devices,

printers, teleprocessing devices, and process control equipment.
The I/O devices are regulated by control units, which provide the

electrical, logical, and bufiPering capabilities necessary for I/O

device operation. From the programming point of view, most

control-unit and I/O device functions are indistinguishable.

Sometimes the control unit is housed with an I/O device, as in the

case of the printer.

A control unit fiinctions only with those I/O devices for which it

is designed, but all control units respond to a standard set of
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signals from the channel. This control-unit-to-channel connec-

tion, called the I/O interface, enables the CPU to handle all I/O

operations with only four instructions.

I/O Instructions

Input/output instructions can be executed only while the CPU is

in the supervisor state. The four I/O instructions are START I/O,

HALT I/O, TEST CHANNEL, and TEST I/O.

START I/O initiates an I/O operation; its address field specifies a

channel and an I/O device. If the channel facilities are free, the

instruction is accepted and the CPU continues its program. The

channel independently selects the specified I/O device. HALT I/O

terminates a channel operation. TEST CHANNEL sets the

condition code in the PSW to indicate the state of the channel

addressed by the instruction. The code then indicates one of the

following conditions: channel available, interruption condition in

channel, channel working, or channel not operational. TEST I/O

sets the PSW condition code to indicate the state of the addressed

channel, subchannel, and I/O device.

Channels

Channels provide the data path and control for I/O devices as they

communicate with main storage. In the multiplexor channel, the

single data path can be time-shared by several low-speed devices

(card readers, punches, printers, terminals, etc.) and the channel

has the functional character of many subchannels, each of which

services one I/O device at a time. On the other hand, the selector

channel, which is designed for high-speed devices, has the

functional character of a single subchannel. All subchannels

respond to the same I/O instructions. Each can fetch its own
control word sequence, govern the transfer of data and control

signals, count record lengths, and interrupt the CPU on excep-
tions.

Two modes of operation, burst and multiplex, are provided for

multiplexor channels. In burst mode, the channel facilities are

monopolized for the duration of data transfer to or from a

particular I/O device. The selector channel functions only in the

burst mode. In multiplex mode, the multiplexor channel sustains

several simultaneous I/O operations: bytes of data are interleaved

and then routed between selection I/O devices and desired

locations in main storage.

At the conclusion of an operation launched by START I/O or

TEST I/O, an I/O interruption occurs. At this time a channel

status word (CSW) is stored in location 64. Figure 8 shows the

CSW format. The CSW provides information about the termina-

tion of the I/O operation.

Successful execution of START I/O causes the channel to fetch a

channel address word from main-storage location 72. This word

specifies the storage-protection key that governs the I/O opera-

tion, as well as the location of the first eight bytes of information

that the channel fetches from main storage. These 64 bits

comprise a channel command word (CCW). Figure 9 shows the

CCW format.

Channel Program

One or more CCW's make up the channel program that directs

channel operations. Each CCW points to the next one to be

fetched, except for the last in the chain which so identifies itself.

Six channel commands are provided: read, write, read back-

ward, sense, transfer in channel, and control. The read command
defines an area in main storage and causes a read operation from

the selected I/O device. The write command causes data to be

written by the selected device. The read-backward command is

akin to the read command, but the external medium is moved in

the opposite direction and bytes read backward are placed in

descending main storage locations.

The control command contains information, called an order,

that is used to control the selected I/O device. Orders, peculiar to

the particular I/O device in use, can specify such functions as

rewinding a tape unit, searching for a particular track in disk

KEY COMMAND ADDRESS

STATUS COUNT

32 47 4

Bits through 3 contain th« storag* protactlon kay utad in tha oparatlon,
Bitt 4 through 7 contain zerot.
Bits 8 through 32 specify tha location of tha last CCW usad-
Bits 32 through 47 contain tn I/O davica status byta and a channal-statut

byta. Tha status bytas provida such mformatton as data-chack. chang.
ins chack. control-unit and. ate.

Bits 48 through 63 contain tha rasidual count of tha last CCW usad.

Fig. 8. Channel status word format.
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COMMAND CODE DATA ADDRESS

mFLAGS M COUNT

32 36 37 39 40

Bits through 7 tp«cify the command code.
Bits 8 through 31 specify the location of a byte in mam storage.
Bits 32 through 36 are flag bits.

Bit 32 causes the address portion of the neitt CCW to be used
Bit 33 causes the command code and data address in the next

CCW to be used.

4B 63

Bit 34 causes a possible incorrect length indication to be suppressed.
Bit 35 suppresses the transfer of information to mam storage.
Bit 36 causes an interruption.

Bits 37 through 39 must contain zeros.

Bits 40 through 47 are ignored.
Bits 48 through 63 specify the number of bytes in the operation.

Fig. 9. Channel command word format.

storage, or line skipping on a printer. In a functional sense, the

CPU executes I/O instructions, the channels execute commands,

and the control units and devices execute orders.

The sense command specifies a main storage location and

transfers one or more bytes of status information from the selected

control unit. It provides details concerning the selected I/O

device, such as a stacker-full condition of a card reader or a

file-protected condition of a magnetic-tape reel.

A channel program normally obtains CCW's from a consecutive

string of storage locations. The string can be broken by a

transfer-in-channel command that specifies the location of the

next CCW to be used by the channel. External documents, such

as punched cards or magnetic tape, may carry CCW's that can be

used by the channel to govern the reading of the documents.

The input/output interruptions caused by termination of an I/O

operation, or by operator intervention at the I/O device, enable

the CPU to provide appropriate programmed response to condi-

tions as they occur in I/O devices or channels. Conditions

responsible for I/O interruption requests are preserved in the I/O

devices or channels until recognized by the CPU.

During execution of START I/O, a command can be rejected by

a busy condition, program check, etc. Rejection is indicated in the

condition code of the PSW, and additional detail on the conditions

that precluded initiation of the I/O operation is provided in a

CSW.

Manual Control

The need for manual control is minimal because of the design of

the system and supervisory program. A control panel provides the

ability to reset the system; store and display information in main

storage, in registers, and in the PSW; and load initial program
information. After an input device is selected with the load unit

switches, depressing a load key causes a read from the selected

input device. The six words of information that are read into main

storage provide the PSW and the CCW's required for subsequent

operation.

Instruction Set

The system/360 instructions, classified by format and function,

are displayed in Table 2. Operation codes and mnemonic abbrevi-

ations are also shown. With the previously described formats in

mind, much of the generality provided by the system is apparent

in this listing.

Table 2 {opposite) System/360 instructions
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begin
ckhwadO next

ckpr{) next

HH[MAR] = M0R<16:31>
end,

readwd :=

begin
ckwdadO next

ckrdpr( ) next
MBR = MW[HAR]
end.

wrwd

1 Write a 1/2 word routine

I Read a word routino

t Write a word routine

begin
cfcwdadO next

ckpr{ ) next

MW[HAR] = HBH
end. ^

12rch := I Fetch of 1.2 operand if possible or a load

begin I of zero into the MBR if L2 field is exhausted.
DECODE lauxZ eql >>

begin
:= begin

laux2 = lauxZ -{tc) 1 next
HAR = amar2 + laux2 next
rdbyteO
end,

1 := MBR =

end
end.

adrio := I Device addressing for I/O instructions
begin
chareg = {01 + R[B1])< 15 : 8> : devreg = (01 + R[B1])<7:0>
end.

I Set fixed point condition codessetfcc :=

begin
CC = next
DECODE R[R1]<0> =>

begin
:' IF R(R1] -> CO = 2.

1 := CC  1

end next
IF ovf => CC = 3 next

checker(ovr and FPOPMS. 8)
end,

opex := (checker('l. 1)), 1 Illegal op-code

begin
t2 * ILC next I Save instruction length

IF intvec<0> and MCHKMK => ! Handle priority (1) interrupts
begin
fflkopsw = PSW next

mkopsw<16:31> = next
scnout = PSW next
PSW = mknpsw; intvec<0:2) =

end next

I Handle priority (2) interruptsIf 1ntvec<l> ->

begin
svcpsw = PSW next
PSW = svnpsw: intvec<l> '

end next

IF intvec<2> •>

begin
propsw = PSW next
PSW ' prnpsw; intvec<2> =

end next

IF intvec<3> and CHAMSK >> 1 Handle priority (3) interrupts
begin
INTCDE = extreg next

exopsw = PSW next
PSW = exnpsw: intvec<3> -

end next

IF intvec<4> and iomsk => I Handle priority (4) Interrupts
begin
INICOE = devreg next
ioopsw = PSW next
PSW = ionpsw; intvec<4> '

end next

INTCDE = 0: ILC = t2
end

•Instruction. Interpretat ion"»{us}

start(maln) :
begin
stopbit ' next

run{)
end.

I Reset ILC & interrupt code

begin
IF not stopbit =>

begin
IF not WAITST => icycle() next

int() next
RESTART run
end

end.

icycle :=

begin
ifetch( ) next

iexec(} next
It-axtf => (iexecO next
end.

I Instruction interpretation cycle

f =
0)

I Instruction fetchifetch :»

beg in

MAR = PC next
readhw( ) next
1R<0:15> = MBR<16:31>; ILC = (MBR<16> + H8R<17>) + 1;

PC = PC + {(MBR<16> + HBR<17>) + 1)
•

2; ovf = next
If ILC gtr 1 =>

begin
MAR = HAR + 2 next

readhw( ) next
1R<16;31> = MBR<16:31> next
IF ILC gtr 2 =>

begin
MAR = MAR * 2 next

readhw( ) next
IH<32:47> - HBH<I6:31>
end

end
end

•Instruct ion. Execution** (us)

exec :
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APPENDIX 1 (Cont'd.;

DCCOnc opcode =>

beg in

Dl := MVN().

"D2:"FD := no.Op{),

ottierwise := opex()
end

end.

I RR instructions

SPH := I Set program mask

begin
PSW<34:39> = R[R1]<2:7>
end,

BALR := ! Branch and link register
beg in

t24 = R[R2]<8:31> next

R[R1] = PSW<32:63> next
IF R2 => PC = t24

end.

! Opcode decoding

I Move numerics

! Opcodes not shown in this summary

I Instruction descriptions not

I included in this summary.

t RX instructions

STH :
= ! Store halfword

MBR = R[Rl]<16i31> next

wrhw( )

end.

RS. SI instructions

SSH := I Set system mask

begin
checker(PROaST. 2) next ! Privileged state check

r(ibyte( )
next

PSW<0:7> ' hibyte
end.

t SS instructions

t Move numericsMVH :
=

begin
lauxl = 0: laux2 = next
mvnl :

= beg in

MAR = amar2 * laux2 next

rdby te( ) next
MAR = amarl + lauxl; t4 = HBR<28:31> next

rdbyte( ) next
MBR<28:31> = t4 next

wrbyteO next
IF LFLD gtr Iaux2 =>

beg in

lauxl - lauxl + 1; laux2 = laux2 + 1 next

RESTART invnl

end
end

end.

1 End of S370 summary description
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—System Implementations

W. Y. Stevens

Summary The performance range desired of system/360 is obtained by
variations in the storage, processing, control, and channel functions of the

several models. The systematic variations in speed, size, and degree of

simultaneity that characterize the functional components and elements of

each model are discussed.

A primary goal in the system/360 design effort was a wide range
of processing unit performances coupled with complete program
compatibility. In keeping with this goal, the logical structure of

the resultant system lends itself to a wide choice of components
and techniques in the engineering of models for desired perform-
ance levels.

This paper discusses basic choices made in implementing six

system/360 models spanning a performance range of fifty to one.

It should be emphasized that the problems of model implementa-
tion were studied throughout the design period, and many of the

decisions concerning logical structure were influenced by difficul-

ties anticipated or encountered in implementation.

Performance Adjustment

The choices made in arriving at the desired performances fall into

four areas:

Main storage

Central processing unit (CPU) registers and data paths

Sequence control

Input/output (I/O channels)

Each of the adjustable parameters of these areas can be subordi-

nated, for present purposes, to one of three general factors: basic

speed, size, and degree of simultaneity.

Main Storage

Storage Speed and Size

The interaction ofthe general factors is most obvious in the area of
main storage. Here the basic speeds vary over a relatively small

'IBM Sys. J, vol. 3, no. 2, 1964, pp, 136-143.

range: from a 2.5-p.sec cycle for the Model 40 to a 1.0-jjisec cycle
for Models 62 and 70. However, in combination with the other
two factors, a 32:1 range in overall storage data rate is obtained, as

shown in Table 1.

Most important of the three factors is size. The width of main

storage, i.e., the amount of data obtained with one storage access,

ranges from one byte for the Model 30, two bytes for the Model
40, and four bytes for the Model 50, to eight bytes for Models 60,

62, and 70.

Another size factor, less direct in its effect, is the total number
of bytes in main storage, which can make a large difference in

system throughput by reducing the number of references to

external storage media. This number ranges from a minimum of
8192 bytes on Model 30 to a maximum of524,288 bytes on Models

60, 62, and 70. An option of up to eight million more bytes of

slower-speed, large-capacity core storage can further increase the

throughput in some applications.

Interleaved Storage

Simultaneity in the core storage of Models 60 and 70 is obtained

by overlapping the cycles of two storage units. Addresses are

staggered in the two units, and a series of requests for successive

words activates the two units alternately, thus doubling the

maximum rate. For increased system performance, this technique
is less effective than doubUng the basic speed of a single unit,
since the access time to a single word is not improved, and
successive references frequently occur to the same unit. This is

illustrated by comparing the performances of Models 60 and 62,
whose only difference is the choice between two overlapped
2.0-n.sec storage units and one single 1.0-p,sec storage unit,

respectively. The performance of Model 62 is approximately 1.5

times that of Model 60.

CPU Registers and Data Paths

Circuit Speed

System/360 has three families of logic circuits, as shown in Table

2, each using the same solid-logic technology. One family, having
a nominal delay of 30 nsec per logical stage or level, is used
in the data paths of Models 30, 40, and 50. A second and faster

family with a nominal delay of 10 nsec per level is used in Models
60 and 62. The fastest family, with a delay of 6 nsec, is used in

Model 70.

The fundamental determinant of CPU speed is the time

required to take data from the internal registers, process the data

through the adder or other logical unit, and return the result to a

register. This cycle time is determined by the delay per logical

circuit level and the number of levels in the register-to-adder

path, the adder, and the adder-to-register return path. The

711
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Table 1 System/360 Main Storage Characteristics
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of working registers are used, plus about 48 bytes of working

locations in the local storage, exclusive of the general and

floating-point registers.

Model 50 has a 32-bit wide adder path, an 8-bit wide data path

used for handling individual bytes, approximately 30 bytes of

working registers, plus about 60 bytes of working locations in the

local storage.

Model 60/62 has a 56-bit wide main adder path, an 8-bit wide

serial adder path, and approximately 50 bytes of working regis-

ters.

Model 70 has a 64-bit wide main adder, an 8-bit wide exponent

adder, an 8-bit wide decimal adder, a 24-bit wide addressing

adder, and several other data transfer paths, some of which have

incrementing ability. The model has about 100 bytes of working

registers plus the 96 bytes of floating point and general registers

which, in Model 70, are directly associated with the data paths.

The models of system/360 differ considerably in the number of

relatively independent operations that can occur simultaneously

in the CPU. Model 30, for example, operates serially: virtually all

data transfers must pass through the adder, one byte at a time.

Model 70, however, can have many operations taking place at the

same time. The CPU of this model is divided into three units that

operate somewhat independently. The instruction preparation

unit fetches instructions from storage, prepares them by comput-

ing their efiiective addresses, and initiates the fetching of the

required data. The execution unit performs the execution of the

instruction prepared by the instruction unit. The third unit is a

storage bus control which coordinates the various requests by the

other units and by the channels for core-storage cycles. All three

units normally operate simultaneously, and together provide a

large degree of instruction overlap. Since each of the units

contains a number of difierent data paths, several data transfers

may be occurring on the same cycle in a single unit.

The operations of other system/360 models fall between those

mentioned. Model 50, for example, can have simultaneous data

transfers through the main adder, through an auxiliary byte

transfer path, and to or from local storage.

Sequence Control

Complex Instruction Sequences

Since the system/360 has an extensive instruction set, the CPU's

must be capable of executing a large number of difiFerent

sequences of basic operations. Furthermore, many instructions

require sequences that are dependent on the data or addresses

used. As shown in Table 3, these sequences of operations can be

controlled by two methods; either by a conventional sequential

logic circuit that uses the same types of circuit modules as used in

the data paths or by a read-only storage device that contains a

microprogram specifying the sequences to be performed for the

difierent instructions.

Model 70 makes use of conventional sequential logic control

mainly because of the high degree of simultaneity required. Also,

a sufficiently fast read-only storage unit was not available at the

time of development. The sequences to be performed in each of

the Model 70 data paths have a considerable degree of indepen-

dence. The read-only storage method of control does not easily

lend itself to controlling these independent sequences, but is well

adapted where the actions in each of the data paths are highly

coordinated.

Read-Only Storage Control

The read-only storage method of control is described elsewhere

[Peacock, n.d.]. This microprogram control, used in all but the

fastest model of system/360, is the only method known by which

an extensive instruction set may be economically realized in a

small system. This was demonstrated during the design of Model

60/62. Conventional logic control was originally planned for this

model, but it became evident during the design period that too

many circuit modules were required to implement the instruction

set, even for this rather large system. Because a sufficiently fast

read-only storage became available, it was adopted for sequence
control at a substantial cost reduction.

The three factors of speed, size, and simultaneity are applicable

Table 3 System/360 Sequence Control Characteristics

Model
30

Model
40

Model
50

Model
60162

Model
70

Type

Cycle time (/isec)

Width! of read-only storage word (available bits)

Number of read-only storage words available

Number of gate-control fields in read-only storage
word

read-only read-only read-only read-only sequential

storage
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to the read-only storage controls of the various system/360

models. The speed of the read-only storage units corresponds to

the cycle time of the CPU, and hence varies from 1,0 (xsec per

access for Model 30 down to 0.25 jjisec for Models 60 and 62.

The size of read-only storage can vary in two ways—in width

(number of bits per word) and in number of words. Since the bits

of a word are used to control gates in the data paths, the width of

storage is indirectly related to the complexity of the data paths.

The widths of the read-only storages in system/360 range from 60

bits for Models 30 and 40 to 100 bits for Models 60 and 62. The

number of words is affected by several factors. First, of course, is

the number and complexity of the control sequences to be

executed. This is the same for all models except that Model 60/62

read-only storage contains no sequences for channel functions.

The number of words tends to be greater for the smaller models,

since these models require more cycles to accomplish the same

function. Partially offsetting this is the fact that the greater degree
of simultaneity in the larger systems often prevents the sharing of

microprogram sequences between similar functions.

system/360 emplo\'s no read-only storage simultaneity in the

sense that more than one access is in progress at a given time.

However, a single read-only storage word simultaneously controls

several independent actions. The number of different gate control

fields in a word provides some measure of this simultaneity.

Model 30 has 9 such fields. Model 60/62 has 16.

Input/Output Channels

Channel Design

The system/360 input/output channels may be considered from

two viewpoints; the design of a channel itself, or the relationship

of a channel to the whole system.

From the viewpoint of channel design, the raw speed of the

components does not vary, since all channels use the 30-nsec

family of circuits. However, the different channels do have access

to different speeds of main storage and, in the three smaller

models, different speeds of local storage.

The channels differ markedly in the amount of hardware

devoted exclusively to channel use, as shown in Table 4. In the

Model 30 multiplexor channel, this hardware amounts only to

three 1-byte wide data paths, 11 latch bits for control, and a

simple interface polling circuit. The channel used in Models 60,

62, and 70 contains about 300 bits of register storage, a 24-bit wide

adder, and a complete set of sequential control circuits. The

Table 4 System/360 Channel Characteristics

Model
30

Model
40

Model
50

Model
60162

Model
70

Selector channels

Maximum number attachable

Approximate maximum data rate on one channel in

Kbypst

Uses CPU data paths for:

iniation and termination

byte transfers

storage word transfers

chaining
CPU and I/O overlap possible

Mtdtiplexor channels

Maximum number attachable

Minimum number of subchannels

Maximum number of subchannels

Maximum data rate in byte interleaved mode (Kbyps)
Maximum data rate in burst mode (Kbyps)
Uses CPU data paths for all functions

CPU and I/O overlap possible in byte mode
CPU and I/O overlap possible in burst mode

2
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amount of hardware provided for other channels is somewhere in

between these extremes.

The disparity in the amount of channel hardware reflects the

extent to which the channels share CPU hardware in accomplish-

ing their functions. Such sharing is done at the expense of

increased interference with the CPU, of course. This interference

ranges from complete lock-out of CPU operations at high data

rates on some of the smaller models, to interference only in

essential references to main storage b\' the channel in the large
models.

Channel/System Relationship

When the channels are viewed in their relationship to the whole

system, the three factors of speed, size, and simultaneity take on a

diflerent aspect. The channel is viewed as a system component,
and its effect on system throughput and other system capabilities

is of concern. The speeds of the channels vary from a maximum
rate of about 16 thousand bytes per second (byte interleaved

mode) on the multiplexor channel of Model 30 to a maximum rate

of about 1250 thousand bytes per second on the channels of

Models 60, 62, and 70. The size of each of the channels is the

same, in the sense that each handles an 8-bit byte at a time and
each can connect to eight different control units. A slight size

diflference exists among multiplexor channels in terms of the

maximum number of subchannels.

The degree of channel simultaneity differs considerably among
the various models of system/360. For example, operation of the

Model 30 or 40 multiplexor channels in burst mode inhibits all

other activity on the system, as does operation of the special

high-speed channel on Model 50. At the other extreme, as many
as six selector channels can be operating concurrently with the

CPU on Models 60, 62, or 70. A second type of simultaneity
is present in the multiplexor channels available on Models 30,

40, and 50. When operating in byte interleaved mode, one of

these channels can control a number of concurrently operat-

ing input/output devices, and the CPU can also continue

operation.

Differences in Application Emptiasis

The models of system/360 differ not only in throughput but also in

the relative speeds of the various operations. Some of these

relative differences are simply a result of the design choices

described in this paper, made to achieve the desired overall

performance. The more basic differences in relative performance
of the various operations, however, were intentional. These
differences in emphasis suit each model to those applications

expected to comprise its largest usage.

Thus the smallest system is particularly aimed at traditional

commercial data processing applications. These are characterized

by extensive input/output operations in relation to the internal

processing, and by more character handling than arithmetic. The
fast selector channels and character-oriented data paths of Model
30 result from this emphasis. But despite this emphasis, the

general-purpose instruction set of system/360 results in much
better scientific application performance for Model 30 than for its

comparable predecessors.

On the other hand, the large systems are expected to find

particularly heavy use in scientific computation, where the

emphasis is on rapid floating-point arithmetic. Thus Models 60,

62, and 70 contain registers and adders that can handle the full

length of a long format floating-point operand, yet do character

operations one byte at a time.

No particular emphasis on either commercial or scientific

applications characterizes the intermediate models. However,
Models 40 and 50 are intended to be particularly suitable for

communication-oriented and real-time applications. For example,
Model 50 includes a multiplexor channel, storage protection, and
a timer as standard features, and also provides the ability to share

main storages between two CPU's in a multiprocessing arrange-
ment.
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