
Chapter 42

VAX-11/780—A Virtual Address
Extension to the DEC PDP-1 1 Family^

W. D. Strecker

Introduction

Large Virtual Address Space Minicomputers

Perhaps the most useful definition of a minicomputer* system is

based on price: depending on one's perspective such systems are

typically found in the $20K to $200K range. The twin forces of

market pull
—as customers build increasingly complex systems on

minicomputers—and technology push—as the semiconductor
industr\' provides increasingly lower cost logic and memor>'
elements—have induced minicomputer manufacturers to produce
systems of considerable performance and memory capacity. Such

systems are typified by the DEC PDP-11/70. From an architectur-

al point of view, the characteristic which most distinguishes many
of these systems from larger mainframe computers is the size of

the virtual address space: the immediately available address space
seen by an individual process. For many purposes the 65K byte
virtual address space typically provided on minicomputers (such
as the PDP-11) has not been and probably will not continue to be a

severe limitation. However, there are some applications whose

programming is impractical in a 65K byte virtual address space,
and perhaps most importantly, others whose programming is

appreciably simplified by having a large virtual address space.
Given the relative trends in hardware and software costs, the

latter point alone will insure that large virtual address space

minicomputers play an increasingly important role in minicom-

puter product oflferings.

In principle, there is no great challenge in designing a large
virtual address minicomputer system. For example, many of the

large mainframe computers could serve as architectural models for

such a system. The real challenge lies in two areas:

compatibility
—

very tangible and important; and simplicity
—

intangible but nonetheless important.
The first area is preserving the customer's and the computer

manufacturer's investment in existing systems. This investment
exists at many levels: basic hardware (principally busses and

peripherals); systems and applications software; files and data

bases; and personnel familiar with the programming, use, and

operation of the systems. For example, just recently a major
computer manufacturer abandoned a major eifort for new comput-

'AFIPS Proc. NCC, 1978, pp. 967-980.

716

er architectures in favor of evolving its current architectures

[McLean, 1977].

The second intangible area is the preservation of those attrib-

utes (other than price) which make minicomputer systems attrac-

tive. These include approachability, understandability, and ease
of use. Preservation of these attributes suggests that simply
modelling an extended virtual address minicomputer after a large
mainframe computer is not wholly appropriate. It also suggests
that during architectural design, tradeoffs must be made between
more than just performance, functionality, and cost. Performance
or functionality features which are so complex that they apprecia-

bly compromise understanding or ease of use must be rejected as

inappropriate for minicomputer systems.

VAX-II Overview

VAX-11 is the Virtual Address eXtention of PDP-11 architecture

[Bell et al, 1970; Bell and Strecker, 1976]. The most distinctive

feature of VAX-11 is the extension of the virtual address from 16
bits as provided on the PDP-11 to 32 bits. With the 8-bit byte the

basic addressable unit, the extension provides a virtual address

space of about 4.3 gigabytes which, even given rapid improve-
ment in memory technology, should be adequate far into the

future.

Since maximal PDP-11 compatibility was a strong goal, early
VAX-11 design efforts focused on literally extending the PDP-11:

preserving the existing instruction formats and instruction set and

fitting the virtual address extension around them. The objective
here was to permit, to the extent possible, the running of existing

programs in the extended virtual address environment. While

realizing this objective was possible (there were three distinct

designs), it was feft that the extended architecture designs were

overly compromised in the areas of efficiency, functionafity, and

programming ease.

Consequently, it was decided to drop the constraint of the

PDP-11 instruction format in designing the extended virtual

address space or native mode of the VAX-11 architecture. Howev-
er, in order to run existing PDP-11 programs, VAX-11 includes a

PDP-11 compatibility mode. Compatibility mode provides the

basic PDP-11 instruction set less only privileged instructions

(such as HALT) and floating point instructions (which are optional
on most PDP-11 processors and not required by most PDP-11
software).

In addition to compatibility mode, a number ofother features to

preserve PDP-11 investment have been provided in the VAX-11

architecture, the VAX-11 operating system VAXA'MS, and the

VAX-11/780 implementation of the VAX-11 architecture. These
features include:

1 The equivalent native mode data types and formats are
identical to those on the PDP-11. Also, while extended, the

VAX-11 native mode instruction set and addressing modes

Chapter 42
|

VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Family 717

are ver>' close to those on the PDP-11. As a consequence
VAX-11 native mode assembly language programming is

quite similar to PDP-11 assembly language programming.

2 The VAX-11/780 uses the same peripheral busses (Unibus

and Massbus) as the PDP-11 and uses the same peripher-

als.

3 The VAXA^MS operating system is an evolution of the

PDP-11 RSX-llM and IAS operating systems, offers a

similar although extended set of system services, and uses

the same command languages. Additionally, VAXA'MS

supports most of the RSX-llM/IAS system service requests

issued by programs executing in compatibility mode.

4 The VAXA'MS file system is the same as used on the

RSX-llM/IAS operating systems permitting interchange of

files and volumes. The file access methods as implemented

by the RMS record manager are also the same.

5 VAX-11 high level language compilers accept the same

source languages as the equivalent PDP-11 compilers and

execution of compiled programs gives the same results.

The coverage of all these aspects of VAX-11 is well beyond the

scope of any single paper. The remainder of this paper discusses

the design of the VAX-11 native mode architecture and gives an

overview of the VAX-11/780 system.

VAX-11 Native Architecture

Processor State

Like the PDP-11, VAX-11 is organized around a general register

processor state. This organization was favored because access to

operands stored in general registers is fast (since the registers are

internal to the processor and register accesses do not need to pass

through a memory management mechanism) and because only a

small number of bits in an instruction are needed to designate a

register. Perhaps most importantly, the registers are used (as on

the PDP-11) in conjunction with a large set of addressing modes

which permit unusually flexible operand addressing methods.

Some consideration was given to a pure stack based architec-

ture. However it was rejected because real program data suggests

the superiority of two or three operand instruction formats

[Myers, 1977b]. Actually VAX-11 is quite stack oriented, and

although it is not optimally encoded for the purpose, can easily be

used as a pure stack architecture if desired.

VAX-11 has 16 32-bit general registers (denoted R0-R15) which

are used for both fixed and floating point operands. This is in

contrast to the PDP-11 which has eight 16-bit general registers

and six 64-bit floating point registers. The merged set of fixed and

floating registers were preferred because it simplifies program-

ming and permits a more effective allocation of the registers.

Four of the registers are assigned special meaning in the VAX-11

architecture:

1 R15 is the program counter (PC) which contains the

address of the next byte to be interpreted in the instruction

stream.

2 R14 is the stack pointer (SP) which contains the address of

the top of the processor defined stack used for procedure
and interrupt linkage.

3 R13 is the frame pointer (FP). The VAX-11 procedure

calling convention builds a data structure on the stack

called a stack frame. FP contains the address of this

structure.

4 R12 is the argument pointer (AP). The VAX-11 procedure

calling convention uses a data structure called an argument
list. AP contains the address of this structure.

The remaining element of the user visible processor state

(additional processor state seen mainly by privileged procedures is

discussed later) is the 16-bit processor status word (PSW). The

PSW contains the N, Z, V, and C condition codes which indicate

respectively whether a previous instruction had a negative result,

a zero result, a result which overflowed, or a result which

produced a carry (or borrow). Also in the PSW are the IV, DV,

and FU bits which enable processor trapping on integer overflow,

decimal overflow, and floating underflow conditions respectively.

(The trapping on conditions of floating overflow and divide by zero

for any data type are always enabled.)

Finally, the PSW contains the T bit which when set forces a trap

at the end of each instruction. This trap is useful for program

debugging and analysis purposes.

Data Types and Formats

The VAX-11 data types are a superset of the PDP-11 data types.

Where the PDP-11 and VAX-11 have equivalent data types the

formats (representation in memory) are identical. Data type and

data format identity is one of the most compelling forms of

compatibility. It permits free interchange of binary data between

PDP-11 and VAX-11 programs. It facilitates source level compati-

bility between equivalent PDP-11 and VAX-11 languages. It also

greatly facilitiates hardware implementation of and software

support of the PDP-11 compatibihty mode in the VAX-11

architecture.

The VAX-11 data types divide into five classes:

1 Integer data types are the 8-bit byte, the 16-bit word, the

32-bit longword, and the 64-bit quadword Usually these

data types are considered signed with negative values

represented in two's complement form. However, for most

purposes they can be interpreted as unsigned and the

718 Part 3
I Computer Classes Section 4

I Maxicomputer*

VAX- 11 instruction set provides support for this interpreta-

tion.

Floating data types are the 32-bit floating and the 64-bit

double floating. These data types are binary normalized,

have an 8-bit signed exponent, and have a 25- or 57-bit

signed fraction with the redundant most significant fraction

bit not represented.

The variable bit field data type is to 32 bits located

arbitrarily with respect to addressable byte boundaries. A
bit field is specified by three operands: the address of a

byte, the starting bit position P with respect to bit of that

byte, and the size S of the field. The VAX- 11 instruction set

provides for interpreting the field as signed or unsigned.

The character string data type is to 65535 contiguous

bytes. It is specified by two operands; the length and

starting address of the string. Although the data type is

named "character string," no special interpretation is

placed on the values of the bytes in the character string.

The decimal string data types are to 31 digits. They are

specified by two operands: a length (in digits) and a starting

address. The primary data type is packed decimal with two

digits stored in each byte except that the byte containing

the least significant digit contains a single digit and the

sign. Two ASCII character decimal types are supported:

leading separate sign and trailing embedded sign. The

leading separate type is a "+," "—
," or "<blank>"

(equivalent to
" + ") ASCII character followed by to 31

ASCII decimal digit characters. A trailing embedded sign

decimal string is to 31 bytes which are ASCII decimal

digit characters except for the character containing least

significant digit which is an arbitrary encoding of the digit

and sign.

All ofthe data types except field may be stored on arbitrary byte

boundaries—there are no alignment constraints. The field data

type, of course, can start on an arbitrary bit boundary.

Attributes of and symbolic representations for most of the data

types are given in Table 1 and Fig. 1.

Instruction Format and Address Modes

Most architectures provide a small number of relatively fixed

instruction formats. Two problems often result. First, not all

operands of an instruction have the same specification generality.

For example, one operand must come from memory and another

from a register; or one must come from the stack and another from

memory. Second, only a limited number of operands can be

accommodated: typically one or two. For instructions which

inherently require more operands (such as field or string instruc-

tions), the additional operands are specified in ad hoc ways: small

literal fields in instructions, specific registers or stack positions, or

packed in fields of a single operand. Both these problems lead to

increased programming complexity: they require superfluous

move type instructions to get operands to places where they can

be used and increase competition for potentially scarce resources

such as registers.

To avoid these problems two criteria were used in the design of

the VAX-11 instruction format: (1) all instructions should have the

"natural" number ofoperands and (2) all operands should have the

same generality in specification. These criteria led to a highly

Table 1 Data Types

Data type

Chapter 42 VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Family 719

WORD
15

1 |:A

LONGWORO
31

720 Part 3
I
Computer Classes Section 4 1 Maxicomputers

operand specifier is used in the normal way to evaluate a

base address. A copy of the contents of the register

designated in the index prefix is multipHed by the size (in

bytes) of the operand and added to the base address. The
sum is the final operand address. There are three advantag-
es to the VAX- 11 form of indexing: (a) the index is scaled by
the data size and thus the index register maintains a logical

rather than a byte offset into an indexed data structure, (b)

indexing can be applied to any of the address modes which

generate memory addresses and this results in a compre-
hensive set of indexed addressing methods, and (c) the

space required to specify indexing and the index register is

paid only when indexing is used.

The VAX-11 assembler syntax for the address modes is given in

Fig. 2. The bracketed
(j))

notation is optional and the programmer

rarely needs to be concerned with displacement sizes or whether

to choose literal or immediate mode. The programmer writes the

simple form and assembler chooses the address mode which

produces the shortest instruction length.

In order to give a better feeling for the instruction format and

assembler notation, several examples are given in Figs. 3 to 5. In

Fig. 3 is an instruction which moves a word from an address which

is 56 plus the contents of R5 to an address which is 270 plus the

contents of R6. Note, that the displacement 56 is representable in

a byte while the displacement 270 requires a word. The instruc-

tion occupies 6 bytes. In Fig. 4 is an instruction which adds 1 to a

longword in RO and stores the result at a memory address which is

the sum of A and 4 times the contents of R. This instruction

occupies 9 bytes. Finally, in Fig. 5 is a return from subroutine

instruction. It has no explicit operands and occupies a single byte.

The only significant instance where there is non-general

specification of operands is in the specification of targets for

Liieiai

(in^inedi.ite)

Chapter 42 ! VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Famiiy 721

branch instructions. Since invariably the target of a branch

instruction is a small displacement from the current PC, most

branch instructions simply take a one byte PC relative displace-

ment. This is exactly as ifbyte displacement mode were used with

the PC used as the register, except that the operand specifier byte
is not needed. Because of the pervasiveness of branch instructions

in code, this one byte saving results in a non-trivial reduction in

code size. An example of the branch instruction branch on equal is

given in Fig. 6.

Instruction Set

A major goal of the VAX- 11 instruction set design was to provide
for eflfective compiler generated code. Four decisions helped to

realize this goal:

1 A very regular and consistent treatment of operators. Thus,
for example, since there is a divide longword instruction,

there are also divide word and divide byte instructions.

2 An avoidance of instructions unlikely to be generated by a

compiler.

3 Inclusion of several forms of common operators. For

example the integer add instructions are included in three

forms: (a) one operand where the value one is added to an

operand, (b) two operands where one operand is added to a

second, and (c) three operands where one operand is added
to a second and the result stored in a third. Since the

VAX- 11 instruction format allows fully general specifica-
tions of the operands, VAX-11 programs often have the

structure (though not the encoding) of the canonic program
form proposed in Flynn [19-77],

4 Replacement of common instruction sequences with single
instructions. Examples of this include procedure calling,

multiway branching, loop control, and array subscript
calculation.

The effect of these decisions is reflected in several observations.

First, despite the larger virtual address and instruction set

support for more data types, compiler (and hand) generated code

for VAX-11 is typically smaller than the equivalent PDP-11 code

for algorithms operating on data types supported by the PDP-11.

Second, of the 243 instructions in the instruction set about 75

722 Part 3
I Computer Classes Section 4

I Maxicomputers

PC relative branch displacement. There are three uncondi-

tional branch instructions: the first taking a one byte PC
relative displacement, the second taking a word PC relative

displacement, and the third—called jump—taking a gener-

al operand specification. Paralleling these three instruc-

tions are three branch to subroutine instructions. These

push the current PC on the stack before transferring

control. The single byte return from subroutine instruction

returns from subroutines called by these instructions.

There is a set of branch on bit instructions which branch on

the state of a single bit and, depending on the instruction,

set, clear, or leave unchanged that bit.

The add compare and branch instructions are used for

loop control. A step operand is added to the loop control

operand and the sum compared against a limit operand.

The result of the comparison determines whether the

branch is taken. The sense of the comparison is based on

the sign of the step operand. Optimizations of loop control

include the add one and branch instructions which assume

a step of one and the subtract one and branch instructions

which assume a step of minus one and a limit of zero.

The case instructions implement the computed go to in

FORTRAN and case statements in other languages. A
selector operand is checked to see that it lies in range and is

then used to select one of table of PC relative branch

displacements following the instruction.

6 Queue instructions—^The queue representation is a doubly
linked circular list. Instructions are provided to insert an

item into a queue or to remove an item from a queue.

7 Character string instructions—^The general move character

instruction takes five operands specifying the lengths and

starting addresses of the source and destination strings and

a fill character to be used if the source string is shorter than

the destination string. The instruction functions correctly

regardless of string overlap. An optimized move character

instruction assumes the string lengths are equal and takes

three operands. Paralleling the move instructions are two

compare character instructions. The move translated char-

acters instruction is similar to the general move character

instruction except that the source string bytes are translat-

ed by a translation table specified by the instruction before

being moved to destination string. The move translated

until escape instruction stops if the result of a translation

matches the escape character specified by one of its

operands. The locate and skip character instructions find

respectively the first occurrence or non-occurrence of a

character in a string. The scan and span instructions find

respectively the first occurrence or non-occurrence of a

character within a specified character set in a string. The

match characters instruction finds the first occurrence of a

substring within a string which matches a specified pattern

string.

8 Packed decimal instructions—A conventional set of arith-

metic instructions is provided. The arithmetic shift and

round instruction provides decimal point scaling and

rounding. Converts are provided to and from longword

integers, leading separate decimal strings, and trailing

embedded decimal strings. A comprehensive edit instruc-

tion is included.

VAX-11 Procedure Instructions

A major goal of the VAX-11 design was to have a single system

wide procedure calling convention which would apply to all

inter-module calls in the various languages, calls for operating

system services, and calls to the common run time system. Three

VAX-11 instructions support this convention: two call instructions

which are indistinguishable as far as the called procedure is

concerned and a return instruction.

The call instructions assume that the first word of a procedure is

an entry mask which specifies which registers are to be used by

the procedure and thus need to be saved. (Actually only RO-Rll

are controlled by the entry mask and bits 15:12 of the mask are

reserved for other purposes.) After pushing the registers to be

saved on the stack, the call instruction pushes AP, FP, PC, a

longword containing the PSW and the entry mask, and a zero

valued longword which is the initial value of a condition handler

address. The call instruction then loads FP with the contents ofSP

and AP with the argument list address. The appearance of the

stack frame after the call is shown in the upper part of Fig. 7.

The form of the argument list is shown in the lower part of Fig.

7. It consists of an argument count and list of longword arguments

which are typically addresses. The CALLG instruction takes two

operands: one specifying the procedure address and the other

specifying the address of the argument list assumed arbitrarily

located in memory. The CALLS instruction also takes two

operands: one the procedure address and the other an argument

count. CALLS assumes that the arguments have been pushed on

the stack and pushes the argument count immediately prior to

saving the registers controlled by the entry mask. It also sets bit

13 of the saved entry mask to indicate a CALLS instruction was

used to make the call.

The return instruction uses FP to locate the stack frame. It

loads SP with the contents of FP and restores PSW through PC by

popping the stack. The saved entry mask controls the popping and

restoring of Rll through RO. Finally if the bit indicating CALLS
was set, the argument list is removed from the stack.

Memory Management Design Alternatives

Memory management comprises the mechanisms used (1) to map
the virtual addresses generated by processes to physical memory
addresses, (2) to control access to memory (i.e., to control whether

a process has read, write, or no access to various areas of memory),

and (3) to allow a process to execute even if all of its virtual address

space is not simultaneously mapped to physical memory (i.e., to

Chapter 42 VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Family 723

i

724 Part 3
I
Computer Classes Section 4

{
Maxicomputers

VIRTUAL ADDRfSS

n - ViRTUAt PAGI NUMBER- -•-•— BYTf WITHIN PAGE-

P«OC.RA« Rtr-lC'N

I CONKOl tEGiCN
1 STSIEM KEGiON
I I RESERVED

f^i'SICAL ADDRESS

vr -PAGE FRAME NUMBER - -BVTE WIlHIN PAGE-

Fig. 9. Virtual and physical addresses.

basic unit of mapping. Bits 29:9 specify a virtual page number

(VPN). Bits 31:30 select the virtual address region. The mecha-

nism of mapping consists of using the region select bits to select a

page table which consists of page table entries (PTEs). After a

check that it is not too large, the VPN is used to index into the

page table to select a PTE. The PTE contains either (1) 21-bit

physical page frame number which is concatenated with the nine

low order byte in page bits to form a 30-bit physical address shown

in the lower part of Fig. 9, or (2) an indication that the virtual page

accessed is not in physical memory. The latter case is called a page

fault. Instruction execution in the current procedure is suspended
and control is transferred to an operating system procedure which

will cause the missing virtual page to be brought into physical

memory. At this point instruction execution in the suspended

procedure can resume transparently.

The page table for the system region is defined by the system

base register which contains the physical address of the start of the

system region page table and the system length register which

contains the length of the table. Thus the system page table is

contiguous in physical memory.
The per process space page tables are defined similarly by the

program and control region base registers and length registers.

However, the base registers do not contain physical addresses:

rather, they contain system region virtual addresses. Thus the per

process page tables are contiguous in the system region virtual

address space and are not necessarily contiguous in physical

memory. This placement of the per process page tables permits

them to be paged and avoids what would otherwise be a serious

physical memory allocation problem.

Access Control

At a given point in time a process executes in one of four access

modes. The modes from most privileged to least are called kernel.

executive, supervisor and user. The use of these modes by
VAXA'MS is as follows:

1 Kernel—Interrupt and exception handling, scheduling,

paging, physical I/O, etc.

2 Executive—Logical I/O as provided by RMS.

3 Supervisor
—The command interpreter.

4 User—User procedures and data.

The accessibility of each page (read, write, or no access) from

each access mode is specified in the PTE for that page. Any

attempt to improperly access a page is suppressed and control is

transferred to an operating system procedure. The accessibility is

assumed hierarchically ordered: if a page is writable from any

given mode, it is also readable; and if a page is accessible from a

less privileged mode, it is accessible from a more privileged

mode. Thus, for example, a page can be readable and writable

from kernel mode, only readable from executive mode, and

inaccessible from supervisor and user modes.

A procedure executing in a less privileged mode often needs to

call a procedure which executes in a more privileged mode: e.g., a

user program needs an operating system service performed. The

access mode is changed to a more privileged mode by executing a

change mode instruction which transfers control to a routine

executing at the new access mode. A return is made to original

access mode by executing a return from exception or interrupt

instruction (REI).

The current access mode is stored in the processor status

longword (PSL) whose low order 16 bits comprise the PSW. Also

stored in the PSL is the previous access mode; i.e., the access

mode from which the current access mode was called. The

previous mode information is used by the special probe instruc-

tions which validate arguments passed in cross access mode calls.

Procedures running at each of the access modes require a

separate stack with appropriate accessibility. To facilitate this,

each piocess has four copies of SP which are selected according to

the current access mode field in the PSL. A procedure always

accesses the correct stack by using R14.

In an earlier section, it was stated that the VAX-11 standard

CALL instruction is used for all calls including those for operating

system services. Indeed procedures do call the operating system

using the CALL instruction. The target of the CALL instruction is

the minimal procedure consisting of an entry mask, a change

mode instruction, and a return instruction. This access mode

changing is transparent to the caUing procedure.

Interrupts and Exceptions

Interrupts and exceptions are forced changes in control flow other

than that explicitly indicated by the executing program. The

Chapter 42
|

VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Family 725

distinction between them is that interrupts are normally unrelat-

ed to the currently executing program while exceptions are a

direct consequence of program execution. Examples of interrupt

conditions are status changes in I/O devices while examples of

exception conditions are arithmetic overflow or a memory man-

agement access control violation.

VAX-11 provides a 31 priority level interrupt system. Sixteen

levels (16-31) are provided for hardware while 15 levels (1-15) are

provided for software. (Level is used for normal program

execution.) The current interrupt priority level (IPL) is stored in a

field in the PSL. When an interrupt request is made at a level

higher than IPL, the current PC and PSL are pushed on the stack

and new PC obtained from a vector selected by the interrupt

requester (a new PSL is generated by the CPU). Interrupts are

serviced by routines executing with kernel mode access control.

Since interrupts are appropriately serviced in a system wide

rather than a specific process context, the stack used for interrupts

is defined by another stack pointer called the interrupt stack

pointer. (Just as for the multiple stack pointers used in process

context, an interrupt routine accesses the interrupt stack using

R14.) An interrupt service is terminated by execution of an REI

instruction which loads PC and PSL from the top two longwords
on the stack.

Exceptions are handled like interrupts except for the following:

(1) since exceptions arise in a specific process context, the kernel

mode stack for that process is used to store PC and PSL and (2)

additional parameters (such as the virtual address causing a page

fault) may be pushed on the stack.

Process Context Switching

From the standpoint of the VAX-11 architecture, the process state

or context consists of:

1 The 15 general registers R0-R13 and R15.

2 Four copies of R14 (SP): one for each of kernel, executive,

supervisor, and user access modes.

3 The PSL.

4 Two base and two limit registers for the program and

control region page tables.

This context is gathered together in a data structure called a

process control block (PCB) which normally resides in memory.
While a process is executing, the process context can be consid-

ered to reside in processor registers. To switch from one process

to another it is required that the process context from the

previously executing process be saved in its PCB in memory and

the process context for the process about to be executed to be

loaded from its PCB in memory. Two VAX-11 instructions support

context switching. The save process context instruction saves the

complete process context in memory while the load process

context instruction loads the complete process context from

memory.

I/O

Much like the PDP-11, VAX-11 has no specific I/O instructions.

Rather, I/O devices and device controllers are implemented with

a set of registers which have addresses in the physical memory
address space. The CPU controls I/O devices by writing these

registers; the devices return status by writing these registers and

the CPU subsequently reading them. The normal memory
management mechanism controls access to I/O device registers

and a process having a particular device's registers mapped into its

address space can control that device using the regular instruction

set.

Compatibility Mode

As mentioned in the VAX-11 overview, compatibility mode in the

VAX-11 architecture provides the basic PDP-11 instruction set

less privileged and floating point instructions. Compatibility mode
is intended to support a user as opposed to an operating system

environment. Normally a compatibility mode program is com-

bined with a set of native mode procedures whose purpose is to

map service requests from some particular PDP-11 operating

system environment into VAXA'MS services.

In compatibility mode the 16-bit PDP-11 addresses are zero-

extended to 32-bits where standard native mode mapping and

access control apply. The eight 16-bit PDP-11 general registers

overmap the native mode general registers R0-R6 and R15 and

thus the PDP-11 processor state is contained wholly within the

native mode processor state.

Compatibility mode is entered by setting the compatibility

mode bit in the PSL. Compatibility mode is left by executing a

PDP-11 trap instruction (such as used to make operating service

requests), and on interrupts and exceptions.

VAX-11/780 Implementation

VAX-11/780

The VAX-11/780 computer system is the first implementation of

the VAX-11 architecture. For instructions executed in compatibili-

ty mode, the VAX-11/780 has a performance comparable to the

PDP-11/70. For instructions executed in native mode, the -11/780

has a performance in excess of the -11/70 and thus represents the

new high end of the -11 (LSI-11, PDP-11, VAX-11) family.

A block diagram of the -11/780 system is given in Fig. 10. The

system consists of a central processing unit (CPU), the console

subsystem, the memory subsystem, and the I/O subsystem. The

726 Part 3
I
Computer Classes Section 4

I Maxicomputers

OfCMAI AM)
CHAIAC'f* I'lINC

CACHI MfMCMtV
Mtwott imiTjii^

I

u* ro IM iTiis

:^

ur to4ior*i

Fig. 10. VAX-11/780 system.

CPU and the memory and I/O subsystems are joined by a high

speed synchronous bus called the Synchronous Backplane Inter-

connect (SBI).

CPU

The CPU is a microprogrammed processor which implements the

native and compatibility mode instruction sets, the memory
management, and the interrupt and exception mechanisms. The
CPU has 32-bit main data paths and is built almost entirely of

conventional Schottky TTL components.
To reduce effective memor\' access time the CPU includes an

8K byte write through cache or buffer memory. The cache

organization is 2-vvay associative with an 8-byte block size. To

reduce delays due to writes, the CPU includes a write buffer. The
CPU issues the write to the buffer and the actual memory write

takes place in parallel with other CPU activity.

The CPU contains a 128 entry address translation buffer which

is a cache of recent virtual to physical translations. The buffer is

divided into two 64 entry sections: one for the per process regions

and one for the system region. This division facilitates permitting
the system region translations to remain unaffected by a process
context switch.

A fourth buffer in the CPU is the 8-byte instruction buffer. It

serves two purposes. First, it decomposes the highly variable

instruction format into its basic components and, second, it

constantly fetches ahead to reduce delays in obtaining the

instruction components.
The CPU includes two standard clocks. The programmable

real-time clock is used by the operating system for local timing

purposes. The time-of-year clock with its own battery backup is

the long term time references for the operating system. It is

automatically read on system startup to eliminate the need for

manual entry of data and time.

The CPU includes 12K bytes of writable diagnostic control store

(WDCS) which is used for diagnostic purposes, implementation of

certain instructions, and for future microcode changes. As an

option for very sophisticated users, another 12K bytes of writable

control store is available.

A second option is the floating point accelerator (FPA). Al-

though the basic CPU implements the full floating point instruc-

tion set, the FPA provides high speed floating point hardware. It is

logically invisible to programs and only affects their running time.

Console Subsystem

The console subsystem is centered around an LSI-II computer
with 16K bytes of RAM and 8K bytes of ROM (used to store the

LSI-11 bootstrap, LSI-11 diagnostics, and console routines). Also

included are a floppy disk, an interface to the console terminal,

and a port for remote diagnostic purposes.
The floppy disk in the console subsystem serves multiple

purposes. It stores the main system bootstrap and diagnostics and

serves as a medium for distribution of software updates.

SBI

The SBI is the primary control and data transfer path in the

-11/780 system. Because the cache and write buffer largely

decouple the CPU performance from the memory access time, the

SBI design was optimized for bandwidth and reliability rather

than the lowest possible access time.

The SBI is a synchronous bus with a cycle time of 200 nsec. The
data path width of the SBI is 32 bits. During each 200 nsec cycle
either 32 bits of data or a 30-bit physical address can be

transferred. Since each 32-bit read or write requires transmission

of both address and data, two SBI cycles are used for a complete
transaction. The SBI protocol permits 64-bit reads or writes using
one address cycle and two data transfer cycles: the CPU and I/O

subsystem use this mode whenever possible. For read transactions

the bus is reacquired by the memory in order to send the data:

thus the bus is not held during the memory access time.

Arbitration of the SBI is distributed: each interface to the SBI

has a specific priority and its own bus request line. When an

interface wishes to use the bus, it asserts its bus request line.

If at the end of a 200 nsec cycle there are no interfaces of

higher priority requesting the bus, the interface takes control

of the bus.

Extensive checking is done on the SBI. Each transfer is parity

checked and confirmed by the receiver. The arbitration process
and general observance of the SBI protocol are checked by each

SBI interface during each SBI cycle. The processor maintains a

Chapter 42 VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Family 727

running 16-cycle history ofthe SBI: any SBI error condition causes

this history to be locked and preserved for diagnostic purposes.

Memory Subsystem

The memory subsystem consists ofone or two memory controllers

with up to IM bytes ofmemory on each. The memory is organized
in 64-bit quadwords with an 8-bit ECC which provides single bit

error correction and double bit error detection. The memory is

built of 4K MOS RAM components.
The memory controllers have buffers which hold up to four

memory requests. These buffers substantially increase the utiliza-

tion of the SBI and memory by permitting the pipelining of

multiple memory requests. If desired, quadword physical ad-

dresses can be interleaved across the memory controllers.

As an option, battery backup is available which preserves the

contents of memory across short term power failures.

I/O Subsystem

The I/O subsystem consists of buffered interfaces or adapters
between the SBI and the two types of peripheral busses used on

PDP-11 systems: the Unibus and the Massbus. One Unibus

adapter and up to four Massbus adapters can be configured on a

VAX-11/780 system.

The Unibus is a medium speed multiplexor bus which is used as

a primary memory as well as peripheral bus in many PDP-11

systems. It has an 18-bit physical address space and supports byte
and word transfers. In addition to implementing the Unibus

protocol and transmitting interrupts to the CPU, the Unibus

adapter provides two other functions. The first is mapping 18-bit

Unibus addresses to 30-bit SBI physical addresses. This is

accomplished in a manner substantially identical to the virtual to

physical mapping implemented by the CPU. The Unibus address

space is divided into 512 512-byte pages. Each Unibus page has a

page table entry (residing in the Unibus adapter) which maps
addresses in that page to physical memory addresses. In addition

to providing address translation, the mapping permits contiguous
transfers on the Unibus which cross page boundaries to be

mapped to discontiguous physical memory page frames.

The second function performed by the Unibus adapter is

assembling 16-bit Unibus transfers (both reads and writes) into

64-bit SBI transfers. This operation (which is applicable only to

block transfers such as from disks) appreciably reduces SBI traffic

due to Unibus operations. There are 158-byte buffers in the

Unibus adapter permitting 15 simultaneous buffered transactions.

Additionally there is an un-buffered path through the Unibus

adapter permitting an arbitrary number of simultaneous un-

buffered transfers.

The Massbus is a high speed block bus used primarily for disks

and tapes. The Massbus adapter provides much the same

functionality as the Unibus adapter. The physical addresses into

which transfers are made are defined by a page table: again this

permits contiguous device transfers into discontiguous physical

memory.

Buffering is provided in the Massbus adapter which minimizes

the probability of device overruns and assembles data into 64-bit

units for transfer over the SBI.

References

Bell and Strecker [1976]; Bell et al. [1970]; Flynn [1977]; Levy and
Eckhouse [1980]; McLean [1977]; Myers [1977b]; Needham
[1972]; Needham and Walker [1977]; Organick [1972]; Schrocker

and Saltzer [1971].

APPENDIX 1 VAX-11 INSTRUCTION SET

Integer and Floating Point Logical Instructions

MOV- Move(B,W,L,F,D,Q)t
MNEG- Move Negated(B,W,L,F,D)
MCOM- Move Complemented(B,W,L)
MOVZ- Move Zero-Extended(BW,BL,WL)
CLR- Clear(B,W,L=F,Q=D)
CVT- Convert(B,W,L,F,D)(B,W,L,F,D)
CVTR-L Convert Rounded(F,D) to Longword
CMP- Compare(B,W,L,F,D)
TST- Test(B,W,L,F,D)
BIS-2 Bit Set(B,W,L)2-Operand
BIS-3 Bit Set(B,W,L)3-Operand
BIC-2 Bit Clear(B,W,L)2-Operand
BIC-3 Bit Clear(B,W,L)3-Operand
BIT- Bit Test(B,W,L)
XOR-2 Exclusive OR(B,W,L)2-Operand
XOR-3 Exclusive OR(B,W,L)3-Operand
ROTL Rotate Longword
PUSHL Push Longword

Integer and Floating Point Arithmetic Instructions

INC- Increment(B,W,L)
DEC- Decrement(B,W,L)
ASH- Arithmetic Shift(L,Q)
ADD-2 Add(B,W,L,F,D)2-Operand
ADD-3 Add(B,W,L,F,D)3-Operand
ADWC Add with Carry
ADAWI Add Aligned Word Interlocked

tB =
byte, W = word, L =

longword, F -

Q =
quadword, S =

set, C = clear.

floating, D = double floating.

72S Part 3
I
Computer Classes Section 4

I
Maxicomputers

SUB-2 Subtract(B,W,L,F,D)2-Operand
SUB-3 Subtract(B,W, L, F, D)3-Operand
SBWC Subtract with Carry
MUL-2 Multiply(B,W,L,F,D)2-Operand
MUL-3 Multiply(B,W,L,F,D)3-Operand
EMUL Extended Multiply
DIV-2 Divide(B,W,L,F,D)2-Operand
DIV-3 Divide(B,\V, L, F, D)3-Operand
EDIV Extended Divide

EMOD- Extended Modulus(F,D)
POLY- Polynomial Evaluation(F,D)

Index Instruction

INDEX Compute Index

Packed Decimal Instructions

MOVP Move Packed

CMPP3 Compare Packed 3-Operand
CMPP4 Compare Packed 4-Operand
ASHP Arithmetic Shift Round and Packed

ADDP4 Add Packed 4-Operand
ADDP6 Add Packed 6-Operand
SUBP4 Subtract Packed 4-Operand
SUBP6 Subtract Packed 6-Operand
MULP Multiply Packed

DIVP Divide Packed

C\TLP Convert Long to Packed

C\TPL Convert Packed to Long
CVTPT Convert Packed to Trailing

C\TTP Convert Trailing to Packed

CVTPS Convert Packed to Separate

CVTSP Convert Separate to Packed

EDITPC Edit Packed to Character String

Character String Instructions

MOVC3 Move Character 3-Operand
MOVC5 Move Character 5-Operand
MOVTC Move Translated Characters

MOVTUC Move Translated Unit Character

CMPC3 Compare Characters 3-Operand
CMPCS Compare Characters 5-Operand
LOCC Locate Character

SKPC Skip Character

SCANC Scan Characters

SPANC Span Characters

MATCHC Match Characters

Variable-Length Bit Field Instructions

EXTV Extract Field

EXTZV Extract Zero-Extended Field

INSV Insert Field

CMPV Compare Field

CMPZV Compare Zero-Extended Field

FFS Find First Set

FFC Find First Clear

Branch on Bit Instructions

BLB- Branch on Low B(S,C1)

BB- Branch on Bit(S,Cl)

BBS- Branch on Bit Set and(S,Cl)Bit

BBC Branch on Bit Clear and(Set, Clear)Bit

BBSSI Branch on Bit Set and Set Bit Interlocked

BBCCI Branch on Bit Clear and Clear Bit Interlocked

Queue Instructions

INSQUE Insert Entry in Queue
REMQUE Remove Entry from Queue

Address Manipulation Instructions

MOVA- Move Address(B,W,L=F,Q=D)
PUSHA- Push Address(B,W,L=F,Q=D)on Stack

Processor State Instructions

PUSHR Push Registers on Stack

POPR Pop Registers from Stack

MOVPSL Move from Processor Status Longword
BISPSW Bit Set Processor Status Word
BICPSW Bit Clear Processor Status Word

Unconditional Branch and Jump Instructions

BR- Branch with(B,W)Displacement

JMP Jump

Branch on Condition Code

BLSS Less Than

BLSSU Less Than Unsigned

(BCS) (Carry Set)

BLEQ Less Than or Equal

BLEQU Less Than or Equal Unsigned

BEQL Equal

(BEQLU) (Equal Unsigned)

BNEQ Not Equal

(BNEQU) (Not Equal Unsigned)

BGTR Greater Than

BGTRU Greater Than Unsigned

BGEQ Greater Than or Equal

BGEQU Greater Than or Equal Unsigned

(BCC) (Carry Clear)

BVS Overflow Set

BVC Overflow Clear

Chapter 42 VAX-11/780—A Virtual Address Extension to the DEC PDP-11 Family 729

Loop and Case Branch

ACB- Add, Compare and Branch(B,W,L,F,D)

AOBLEQ Add One and Branch Less Than or Equal
AOBLSS Add One and Branch Less Than

SOBGEQ Subtract One and Branch Greater Than or Equal
SOBGTR Subtract One and Branch Greater Than
CASE- Case on(B,W,L)

Subroutine Call and Return Instructions

BSB Branch to Subroutine with(B,W,) Displacement
JSB Jump to Subroutine

RSB Return from Subroutine

Procedure Call and Return Instructions

CALLG Call Procedure with General Argument List

CALLS Call Procedure with Stack Argument List

RET Return from Procedure

REI Return from Exception or Interrupt
PROBER Probe Read
PROBEW Probe Write

Privileged Processor Register Control Instructions

SVPCTX Save Process Context

LDPCTX Load Process Context

MTPR Move to Process Register
MFPR Move from Processor Register

Special Function Instructions

CRC Cyclic Redundancy Check
BPT Breakpoint Fault

XFC Extended Function Call

NOP No Operation
HALT Halt

Access Mode Instructions

CHM Change Mode to (Kernel, Executive, Supervisor,

User)

