
Section 2

The SDS 910-9300 series,

a planned family

The Scientific Data System 900-9000 series consists of the SDS

910, 920, 925, 930, 940, 945, and 9300 computers. The series

includes capabilities and features found in most 24-bit ma-

chines. The design implementation is among the best for 24-bit

machines, as measured by equipment utilization, the processor

state, implementation technology, and ease of use.

The first delivery dates for the members of the series are 910

(August, 1962), 920 (September, 1962), 925 (February, 1965),

930 (June, 1964), 940 (April, 1966), 945 (-1968), and 9300

(December, 1964).

The 910 and 920 were designed at the same time as a

planned series of compatible computers which spanned a range

of performance. The 910 has instructions which facilitate de-

fining 920 instructions by software. For example, these include

the multiply and divide step
1

(see page 544) instructions in

the 910 for programming the multiply and divide instruction

in the 920.

The I/O facility evolved to a clean structure, with the poten-

tial for having a high degree of T and Ms data-transfer concur-

rency at a comparatively low cost. The IBM 7094 should be

studied for a contrasting (more expensive) approach.

The instructions which help manipulate floating-point data

are interesting and useful. The machine's ability to execute

closed floating-point arithmetic subroutines is fairly good con-

sidering that the instructions are not hardwired.

The Programmed Operator (POP) instructions provide the

ability to define an instruction set for efficient encoding. The

idea appeared earlier in Atlas. However, the POP instruction

calls subprograms in primary memory, instead of in fixed

memory like Atlas.

A nice scheme 1
is described for increasing the memory

address space from 16,384 to 32,768 words. Other schemes

which switch memory banks, like those in the PDP-8 (Chap. 5)

We believe this appeared originally in the DEC PDP-1 introduced in November,

1960.

and in the 65,384-word 7094 II (Chap. 41), tend to be less

desirable and flexible.

The SDS 930 was used at the University of California (Berk-

eley) as the base machine for the design of the Berkeley Time

Sharing System (Chap. 24). SDS later marketed the system as

the SDS 940.

The 9300 was not a member of the original 910-930 series.

There is almost symbolic language program compatibility. Sev-

eral registers and extra memory transfer paths were added to

form the 9300 from the 930. The power of the 9300 is only

a factor of 2 times the 930 for simple instructions. However,

the hardwired floating-point instructions in the 9300 increases

the power over the 930 by a factor of almost 10 for arithmetic

problems. It is hard to believe that the incompatible 9300 was

a wise choice. (We suggest a more reasonable alternative could

have been a two-processor 930'. The 930' processor would be

a 930 but with hardwired floating-point arithmetic instructions.)

The 9300 has interesting twin-mode instructions for simulta-

neously operating on 12-bit data pairs. The 24-bit fixed-point

word is sufficient for the real-time applications for which the

computer was designed.

A flaw in the series is the sharing of K's among peripheral

T's and Ms's. This problem can be seen by looking at the PMS
structure (Chap. 42, Fig. 2, page 546). The connection to the

peripheral K from K('Channel) requires a continuous connection

during the data-transfer dialogue to Mp. This structure is espe-

cially bad in the case of a slow T, for example, a typewriter.

A single character transmission requires that K('W, 'Y) be

assigned to the typewriter during the complete message trans-

mission (at a connected time of 100 milliseconds/character).

The problem can be avoided by placing a character memory
in each slow KT. Multiple devices could then run concurrently

without requiring the elaborate K('W, 'Y) to be attached to them.

The structure does not preclude such an improvement.

A complete description of the input/output and interrupt

system is given and should be read carefully.

542

Chapter 42

The SDS 1 910-9300 series

Introduction

The SDS 910, 920, 925, and 930 form a compatible series of

computers. The 9300, though not compatible with the series, was

an outgrowth of it. The 9300 uses the Ms and T devices of the

930. The 940 was designed initially at the University of California,

Berkeley (see Chap. 24) for time sharing, and the 945 is a successor

to the 940. The word length is 24 bits, and one single address

instruction is encoded per word. The state of the machine consists

of Mp(2048 ~ 32768 w) and Mps('P/Program Counter, 'A/Accu-

mulator, 'B/Extended Accumulator, 'X/Index register).

These computers have been designed to process data originat-

ing from physical processes in real time. This design goal leads

to a priority interrupt system with many (1,024) levels. The multi-

ple interrupts facilitate programming and decrease the interrupt

response time. A 24-bit word or two 12-bit words are a reasonable

size for the problem types encountered. A multiple of 6 bits was

chosen because of the (then) standard 6-bit magnetic-tape charac-

ter. The relatively efficient storage representation and processing
of floating-point data allow these computers to be used for gen-

eral-purpose computation. However, only the 9300 has built-in

floating-point operations. The 9300 has extensive capability for

more general-purpose use. It is also used for operations on half-

length data.

The data types processed by the 910-930 include words, inte-

gers, addresses, and boolean vectors. Several special instructions

aid processing of types floating-point and double-length integers.

The 9300 processes the additional data-types single- and double-

length floating point. The 9300 has twin-mode instructions which

operate on two half-length data (12 b) simultaneously. The two's

complement representation is used for negative numbers.

The multiply, divide, and several other instructions are not

wired into the 910, and compatibility between the 910 and 920-930

cannot be completely obtained by programming, although the 910

is a subset of the 920-930. Likewise, a smaller minimum Mp is

available on the 910 (2,048 word versus 4,096 word). The 920 and

930 have identical instruction sets and differ in memory and logic

performance. The 930 has a t.cycle: 1.75 jus, and the 910-920 has

t.cycle: 8 jus. The more elaborate PMS structure of the 930 al-

lows for greater growth, (e.g., by having more access ports to Mp).

'Scientific Data Systems merged with Xerox Corporation in 1969. The
divisional name became Xerox Data Systems (XDS).

The 9300's instruction set is different from the 930's. There are

three index registers. The PMS structure is similar (and nearly

compatible) with the 930. There are more (and better) working

registers in the 9300 Pc to increase performance. The 9300 has

two memory-access links, and the Pc can fetch instructions and

data simultaneously. The instructions in the various C's appear

in Table 1 for comparison purposes.

The SDS 925, a 1.75-fis version of the SDS 910, was available

only for a brief time and will not be discussed further.

The machines process instructions (operations to the accumu-

lator) in the following times (microseconds):

Instruction 910 920 930 9300

Fixed-Point Add

544 Part 6 Computer families Section 2
[

The SDS 910-9300 series, a planned family

Table 1 SDS 910, 920, 930 and 9300 instruction sets 1

Mnemonic

Chapter 42 The SDS 910-9300 series 545

Table 1 SDS 910, 920, 930 and 9300 instruction sets (Continued)

Mnemonic Name Mnemonic Name

+ E0R M, T Exclusive OR

REGISTER

546 Part 6 Computer families Section 2 The SDS 910-9300 series, a planned family

Chapter 42 The SDS 910-9300 series 547

Priority

Interrupts

Parallel

Input/Output

TMCC
W

TMCC
Y

TMCC
C

Additional

Optional
Memories

TMCC
D

Multiple Access

to Memory
Feature

Multiple Access

to Memory
Feature

• Second Path

(| H---J i £5 t i i

MIC -— MIC DMC

Data

DACC

548 Part 6 Computer families Section 2 The SDS 910-9300 series, a planned family

The 9300 structure, though not given in the PMS diagram, is

essentially that of the 930 (Figs. 3 and 4). In the 9300, Mp has

three access ports or a S('Memory-Processor; 8 Mp; 3 P,K). The

Pc('9300) requires two of the access ports for independent access

of instructions and data, leaving one for K transfer to Ms and T. Programming Reference Manuals.

Instruction-set processor

The interesting parts of the ISP are discussed informally below.

The formal ISP description given in Appendix 1 of this chapter

should be read. The descriptions are partially taken from the SDS

Up to 1024 Priority

X X Interrupts X

Instruction/operand access

is overlapped when separate

memory modules are accessed

Core Memory

Expandable to 32, 768 words

Single-bit I/O
Control and Sense

24-bit I/O

SfDlS 9300

COMPUTER

Arithmetic

and Control

Input/Output Control

n
Instructions

Operands and

Time-Multiplexed
I/O

(')
Time-Multiplexed Communication Channels

(Up to 30 devices/channel)

24-bit

Word Parallel

I/O

Basic 4096-word Memory

=
,

"*t Optional 4096-word Memory I

-H_ _ _l

3 Optional 81 92-word Memory

I

'

=1 I

^Optional 16, 384-word Memory I

-H "

I I

i I

Multiple Access

A•\ i />•

to Memory

Data Multiplex

System

"\ /"V I _ I

(
E

) I
F

) (
c

) \
H

)

Direct Access Communication Channels

(Up to 30 devices/channel)

L
I

To/from Special Devices .. , . c'
L kj Memory Interface

I Connections*

Up to 128 Data

Subchannels

Note: Broken lines indicate optional hardware.

I

Fig. 4. SDS 9300 computer-configuration diagram. (Courtesy of Scientific Data Systems.)

Chapter 42 The SDS 910-9300 series 549

Registers and memory (930)

The Pc state is declared in the ISP description. The ISP registers

are A, B, X, P, M, and miscellaneous bits for overflow, carry, etc.

Overflow can be turned on for arithmetic overflow in addition,

subtraction, multiplication, division, and left-shift instructions.

Data formats

General. A computer word, W, is 24 binary digits (bits) or 8 octal

digits. A word is numbered W<0:23> from left to right or alterna-

tively W<0:7) 8 .

Fixed-point data format. Fixed-point numbers are represented in

two's complement form with the sign at W<0>. A 23-bit fraction

W<1:23> can be assumed. The binary point is to the left of bit

position 1 (W<1». For integers, the binary point is to the right
of W<23>.

Floating-point data format. Subroutines perform double- and sin-

gle-precision floating-point arithmetic. A floating-point word is

defined as f<0:47> : = W[n:(n + 1)]<0:23>. Of course, single-

precision floating point requires less processing time.

The fractional portion (mantissa), f<0:38>, of a double-precision

floating-point number is a 39-bit proper fraction with the leading
bit being the sign bit and the binary point located to the left of

the most significant magnitude bit, f<l>.

The floating-point exponent is a 9-bit integer, f<39:47), with

the leading bit being the sign, f<39>. The standard routines operate
on both fraction and exponent in two's complement form. If F

represents the contents of the fractional field and E represents the

contents of the exponent field, the number has the form F X 2E .

Standard subroutines assume that the more significant word is

in the A register and that the less significant word is in the B

register. Correspondingly for Mp, the more significant word is in

Mp[x] and the least significant word in Mp[x + 1].

The single-precision floating-point representation is identical

to that of double-precision floating point; i.e., it takes two words.

However, the least significant bits of the mantissa, f<24:38), are

not processed; thus there is a saving in time but not in space for

using single precision.

Instruction word format (930)

The computer instruction word format is given in Fig. 5.

W<0> is the Relative Address bit, R. Standard software loading

programs use this bit; central processor decoding logic does not

use or sense this bit. A 1 in W<0> causes some loading programs

R X Instruction code 1

Bit 12'
Octal 1

digit

Address field

9 10 I

3 4
231

Fig. 5. SDS 930 instruction-format diagram.

to add the assigned location of the instruction to the address field

contents prior to actual storage into the assigned location.

W<1> is the Index Register bit, X. It determines whether or

not the index register will be added to calculate the effective

address.

W<2:8> is the Instruction Code field and determines the oper-
ation to be performed. The Programmed Operator facility is

selected by W<2>; it is part of the Tag field W<0:2>.

W<9) is the Indirect Address bit, I. It determines whether or

not e or M[e] is to be used as the effective address (see below).

W< 10:23) is the Address field and for most instructions repre-
sents the location of the operand called for by the instruction code.

Address modification. Index and indirect addressing, used singly
or in combination, perform address modification after bringing the

instruction from memory but before executing it. The instruction

remains in memory in its original form. The results of indexing

and/or indirect addressing form the "effective address," e.

indexinc If the content of the index bit in an instruction is a

1, prior to execution the computer adds the contents X< 10:23),

of the index register to the contents of the address field of the

instruction. This addition does not keep any overflow or carry

beyond the fourteenth address bit. This addition occurs prior to

any indirect action.

indirect addressing A 1 in the indirect address bit causes the

computer to decode the contents of the effective address, accessed

as described above, as if it were an instruction without an instruc-

tion code; that is, the address logic reinitiates address decoding,

using the word in the effective location (the memory cell whose

address is the effective address). This is an iterative process and

provides multilevel indirect and indexed addressing. Each level

of indirect addressing adds an additional cycle time to the in-

struction execution time.

930 memory extension control registers. Core memory in the 930

is expandable to 32,768 words. However, the address field in the

550 Part 6 Computer families Section 2
|

The SDS 910-9300 series, a planned family

instruction format is 14 bits long, allowing direct access of only

up to 16,384 words. Memory extension in the 930 contains two

3-bit memory extension registers, EM2 and EM3, and allows

addressing of memories of 32,768 words. The program loads either

or both of the registers and activates them as desired. Each register

can become the most significant digit (fifth octal) of any operand

address.

The program uses the first extension register, EM3, by calling

for an address with an 11 2
in the most and next most significant

address bits, respectively (a 3 for the most significant octal digit).

The program calls for EM2, the second extension register, by

setting the same two address bits to 10
2 (a 2 for the most significant

octal digit). In this way, normal addressing compatible with the

910 and 920 occurs by setting a 3 in EM3, and a 2 in EM2.

910-930 instructions

Programmed Operators (POP's) enable subroutines to be called

with a single instruction. This provides definable instructions of

the same form as built-in machine instructions. The computer
decodes the operation codes 1008

~ 177g as special instructions

and transfers to a subroutine whose address is uniquely determined

by the code. The computer records the address of the POP in-

struction at location together with an indirect address bit so

that the program continuity may be maintained. By indirect

addressing which refers to location 0, which in turn refers to the

POP instruction, the subroutine can gain access to the effective

address of the operand associated with the POP instruction.

The instruction set for the computers in this series is listed in

Table 1. The table should be used to compare the machines.

There are two instructions in the 910 which are not in the 920

or 930: Multiply Step and Divide Step. These instructions facilitate

writing subroutines for multiplication and division. The Multiply

Step (MUS) instruction is defined:

MUS -+ (B<23> - A *- A + M[e]; next AB <- AB/2);

9300 instructions

The instruction word format in the central processor is shown in

Fig. 6.

Bit

Octal

digit

Instruction code Address field

8 9

3

Fig. 6. SDS 9300 instruction-format diagram.

W<0) contains the Indirect Address bit I.

W<1:2> contains the Index Register bits X<0:1>.

W<0:2> is called the Tag field.

W<3:8) contains the Instruction code; the contents of this field

determine the operation to be performed.

W(9:23) contains the Address; for most instructions, the con-

tents of this field represent the memory location of the operand
called for by the instruction code.

Address modification. Each index register contains an unsigned

base address of 15 magnitude bits and a signed increment of 9

bits. The increment contains 8 magnitude bits and a sign bit and

is held in two's complement form.

Index registers are modified by adding the signed-increment

value to the base address using two's complement arithmetic. Since

the increment and base address fields are of unequal lengths, the

sign bit (bit 0) of the increment field is extended six positions to

the left prior to the addition. This 15-bit sum is then stored in

the base address field of the index register. The index register may
be incremented by any value from — 256 10 to 255

10 using a single

instruction. Incrementing and testing for a "terminal condition"

is done by the instruction Increase Index And Branch (BRX), as

follows:

If the index register has been negatively incremented, a ter-

minal condition exists when the base address has been reduced

below the zero value.

If the index register has been positively incremented, a terminal

condition exists when the resultant base address has been increased

beyond the maximum address value (0777778).

If the terminal condition exists, the next instruction is taken

in sequence. If the terminal condition does not exist, program
control is transferred to the location specified.

The instruction set for the 9300 is given in Table 1.

Pc implementation

All the processors of the series have basically similar register

configurations because of the common Instruction-set Processor.

However, the increasing complexities of the machines can be seen

by comparing the register structures of the 910-930 (Fig. 7) with

the 9300 (Fig. 8). The figures show both the registers accessible

to the program or defined by the ISP (denoted by °) and the

temporary registers which are necessary for the implementation.

910, 920, 930 registers (Fig. 7)

ISP registers ("). The A register is the main accumulator of the

computer. The B register is an extension of the A register. The

Chapter 42 The SDS 910-9300 series 551

552 Part 6 Computer families Section 2
|

The SDS 910-9300 series, a planned family

Chapter 42 The SDS 910-9300 series 553

6o Data Subchannel/DSC (Internal Interlace).

6b Data Subchannel (External Interlace).

7 Memory Interface Connection/MIC link. A component has

a link to Mp.

Methods 1 to 3 above are completely under control of a pro-

gram and are simple time-independent instructions (or methods)

of transferring data to K's (and onto KT or KMs). The ISP descrip-

tion (Appendix 1 of this chapter) has a detailed description of the

I/O devices and these I/O instructions.

Single-bit control and sense

Two instructions provide for single-bit ON/OFF control signals.

The first, EOM, transmits a control signal and a 14-bit address

to an external device or a function within the computer. The

second, SKS, selects an external device or computer function and

skips in response to a false (0) signal. Up to 16,384 control signals

can be sent and 16,384 input signals tested theoretically. (A more

reasonable number of physical destinations would be 50.) Execu-

tion of an EOM causes a signal of approximately 1.4 microseconds

duration to be transmitted.

£OAf instruction format. EOM is used to select a specific I/O

device by placing a 1 in its select register. EOM requires one cycle.

W<2> = 0.

W<0:1) is reserved for special system address bits.

W<3:8> contains the EOM instructions code, 02.

W<10:11) contains the system mode specifier.

W< 12:23) contains the 12-bit address field that specifies the

special system destinations.

SKS format. The SKS instruction format has each corresponding

bit field identical to the system EOM format. Execution of an SKS

causes a 14-bit address to be presented to all K's; the K being

addressed responds and is tested. If the addressed external K

supplies a "set" signal to the central processor, the computer

executes the next instruction in sequence from the SKS. If no signal

is set, the computer skips the next instruction in sequence and

executes the following instruction. No registers are affected except

the P register. SKS requires two or three Mp cycles if no skip or

skip, respectively, is executed.

Word parallel instructions

Two instructions, Parallel Output (POT) and Parallel Input (PIN),

permit any word in Mp to be presented in parallel on a physical

connector to a K or, inversely, permit signals sent from a K to

be stored in Mp. The execution of a POT or PIN instruction sends

a signal to the external device involved in the input/output oper-

ation, which notifies the device to send its data word as soon as

it is operational. When the device becomes operational during a

Read or PIN operation, it transmits a Ready signal to the central

processor while at the same time presenting a data word to Pc.

During the execution of a POT instruction, the central proc-

essor transmits a signal to the external device, alerting it to receive

a data word. When the device becomes operational, it transmits

a Ready signal to the central processor, which releases the data

word to the external device.

Selective input/output with these devices is accomplished by

preceding POT or PIN with an EOM to alert (select) the desired

device by a specific address. Ry preceding the POT or PIN with

an SKS, the Ready signal of the special device can be tested after

the execution of the EOM but prior to execution of the parallel

transfer instruction; a possible Pc "hangup" can thus be avoided.

The Ready signal can also set one of the priority interrupts.

PIN stores the contents of 24 input lines in parallel in the

effective-memory location. PIN or POT requires four cycles plus

any waiting time for Ready.

Interrupt

The interrupt provides program control of input/output opera-

tions, aids in programming simultaneous input/output and com-

pute operations, and allows immediate recognition of special

external conditions by causing Pc to execute an instruction in a

selected Mp location at the end of the execution cycle of the

current instruction. Without disturbing the program register, the

processor executes an instruction in one of a selected set of mem-

ory locations. A Mark Place and Branch (BRM) instruction in this

location saves the contents of the program register, EM3, EM2,

and overflow indicator and transfers to the particular interrupt

servicing routine required. To exit from the interrupt service

routine, a Branch Unconditionally (RRU) instruction using indirect

addressing returns control to the next instruction in proper se-

quence in the main program; it also clears the interrupt. Processor

state (that is, A, R, Overflow, and X) must be preserved and

restored by the program if the registers are used by the program.

The priority interrupt system has up to 1,024 interrupts ar-

ranged in levels. The levels have priority according to a priority

number; the higher priority levels have a smaller number. Inter-

rupt channels are installed in Pc in groups of 16. The assignment

of physical memory locations to interrupt levels is shown in Ap-

pendix 1 of this chapter; the assignment is in order of decreasing

priority from location 200g (highest) to 1477g (lowest). Interrupt

requests can also be programmed. The power fail-safe (for power

554 Part 6 Computer families Section 2
|

The SDS 910-9300 series, a planned family

supply off) interrupts and out-of-order interrupts have the highest

priority.

Besides the interrupt mechanism just discussed, there is also

a single instruction interrupt. This permits the execution of only

one instruction before automatically being cleared and returning

to the program that was interrupted. For example, if an external

clock source is connected to the computer so that it pulses an

interrupt line at set intervals, the program can maintain a pro-

grammed real-time clock. Each time the external pulse causes an

interrupt, the program executes the single instruction, Memory
Increment (MIN), to add 1 to the memory word selection for use

as a programmed real-time clock. (The main program can examine

this memory location whenever necessary to determine how many
time increments have elapsed since the clock was started.)

Interrupts can be single or normal-instruction interrupts in any

combination desired.

An interrupt has three operational states: inactive, waiting, and

active states.

In the inactive state, no interrupt signal has been received into

the level and none is currently being processed by its interrupt

servicing subroutine.

In the waiting state, an interrupt has been received but is not

being processed. This situation may arise when an interrupt of

higher priority is being processed. When all higher waiting inter-

rupts have been processed, this level goes to the active state.

In the active state, the interrupt has caused the main program
to recognize its presence and has transferred to its assigned inter-

rupt location where it is being processed.

Two program control features are Arm/Disarm and Enable/

Disable. Arm/Disarm controls whether an interrupt can proceed

from the inactive state to the waiting state. When armed, an

interrupt signal sets the interrupt to the waiting state. Enable/

Chapter 42 I The SDS 910-9300 series 555

Disable operates on the entire interrupt system. (When the inter-

rupt system is enabled, interrupts can occur.)

Communications channels—Kio('ChanneT) s

Kio('Communication Channels) provide buffering, input/output
control, and data transmission simultaneously with computation.
There can be up to eight independent communication channels

and a large number of subchannels in a single system. Figure 9

shows the registers in a K('Channel).

Each channel can control up to 30 KT's or KMs's. The channel

handles character, word assembly and disassembly, input/output

parity detection and generation, data transmission to and from

memory, and end-of-transmission detection.

All channels are bidirectional and can communicate with 6-bit

character devices or word devices in 6, 12, and 24 bits. The main

program that initializes a K specifies the number of characters to

be contained in each word during the transmission.

The channel interlace controls the transfer of the data words

going through the associated channel buffer, supplies the memory
address of data coming from or going to memory, and maintains

the word count determining the number of words transferred. This

interlace information can be either in K hardware (external inter-

lace) or in Mp (internal interlace). The terminal interrupts, End

of Record and Zero Word Count, come from the interlace and

are under its control.

The time-multiplexed channels use the memory-access logic of

Pc to transmit input and output of data words and require two

memory cycles (see Fig. 2). Each direct-access channel has inde-

pendent memory-access logic and requires one memory cycle (see

Fig. 2).

Communication-channel description. Up to 30 peripheral devices

(K's for T or Ms) may be connected to one K('Channel) (Fig. 9).

Each device has a unique, 2-digit, octal address by which it is

selected for an input/output operation. To select the peripheral

device, the program loads the proper unit address into the 6-bit

Unit Address Register (UAR) in the channel. This address selects

both the device and, if appropriate, the function to be performed.

Placing a nonzero unit address in the unit address register connects

the peripheral unit addressed to the channel, and the unit becomes
active. When the UAR contains a zero address, or any time that

a terminal or initial condition clears the contents of UAR, the

channel becomes inactive.

The 24-bit data Word Assembly Register (WAR) contains the

data word actively being received or transmitted during an input
or output operation. During input, 6-bit characters (plus parity)

enter the Single-Character Register (SCR) where the channel
buffer assembles them, one at a time, into the WAR.

The channel interlace contains two working registers: the Word
Count Register (WCR) and the Memory Address Register (MAR).
A channel may have these registers either in K or in Mp. In the

setup sequence for an interlaced input/output operation, the POT
instruction transmits to the interlace a data word made up of the

word count (that is, length) and the starting address of the data

block. The 15-bit Word Count Register (WCR) contains the data

word count during a data transfer. The number of data words is

decremented by 1, and the new count replaces the old one in the

WCR for each word transmitted.

The Memory Address Register (MAR) contains the starting
destination or source address in memory of the transmitted data.

The memory locations to or from which data words are to be

transmitted enter the MAR at the same time the word count does.

During transmission of data, the interlace increments the MAR
after each word as it decrements the contents of the WCR. These
two registers provide the interlace control of block transmissions.

Obviously, if the interlace control registers are in Mp, then two
extra accesses are required for each word transferred.

Memory interface connection link

Once a computer is equipped with a multiple-access-to-memory
feature, one or more Memory Interface Connections (MIC) can

be attached. The MIC is a general interface to the computer that

allows special devices to access Mp. It preserves the integrity of

the memory by generating the parity of incoming data words and

checking the parity of words read from memory to indicate mem-

ory failures. The device that is connected to the MIC must hold

both the data and the address until the transmission to/from

memory is completed (that is, MIC does not have registers).

Conclusions

The SDS computers appear to be the first attempt to design several

computers at the same time with a common ISP. Over a longer
time span other compatible computers were added to the original
910 and 920 as technology (and marketing) dictated. The series

is characteristic of well-designed typical 24-bit computers. Ry

increasing the arithmetic capability, the series could also be used

more generally.

References

Scientific Data Systems Reference Manuals for the 930 and 9300 computers

556 Part 6 Computer families
Section 2 The SDS 910-9300 series, a planned family

APPENDIX 1 SDS 930 ISP DESCRIPTION

Appendix 1

Chapter 42 The SDS 910-9300 series 557

Instruction Interpretation Process

558 Part 6 Computer families
Section 2 The SDS 910-9300 series, a planned family

CXA -> (A <-X);

Chapter 42 The SDS 910-9300 series 559

Breakpoint Test Group

((BPT 1 A BPT<1>) V (BPT 2 A BPT<2>) V (BPT 3 A BPT^>) V (BPT 1(A BPT<1)>))
-> (P <- P + 1

Memory Extension Register Control Group

SET -> (instruction<!7> -» (EM2 <- i nstruct ion<21 :23>) ;

instruction<l6> -> (EM3 <-
i nstruct ion<!8:20>)) ;

EXT -^condition -> (P <- P + 1);

condition := ((i nstruct ion<22> A (EM2 2)) A (i nstruct ion<23> A (EM3 • 3)))

POP -> (M[0]<D,9:23> t-OvDlCP; P *-'00
g

+ popj;ode); programmed operator; 64 user defined instructions catted via
subroutine link in M[0]

EOM -> lO^i nstruct i on^xecut ion ;

POT -> lO^i nstruct ionjaxecut ion ;

PIN -» lOjji nstruct ionjexecut ion;

SKS -> IO w i nstruct ionjaxecut ion ;

)

Input-Output Control from the Pa

KT and KMs State
Devices consist of the following parts:

IOJ)evice[0:77777
8

]

IO tJOutput[0:777778]<0:23>

tO UJinput[0:77777g]<0:23>
IO LJReady[0:77777 8

]

IO,JSelect[0:77777 8
]

io^unitxOH'O

10 Instruction Set

EOM -» (io^uni t c- •) J

POT ~» (lO^Selectllo^unit] A lOJteadyt io^uni t] -> (

lOJJutputtiouunit] <- M[e]j io^unit *- 0) :

lO^SelectCio^unit] A -i lOJteadyt io^unl t] -» (POT)):

PIN -» (lO^Selectfjojunit] A lOJteady [io^n i t] -> (

M[e] «- IOJnput[io,junit]; iojunit «- 0) ;

lO^Selectljo^ni t] A -. lO^Ready [io^uni t] -» (PIN));

SKS -»(io l_1
unit *-e: next

(lO l_Jselect[io U(unit] a IOJ*eady [io^un 1 1] -» {

P «-P + 1);

iojunit <-0);

Interrupt System States

Interrupt

IJ*Q[0:63]<0:15>

IJ)N[0:63]<0:15>

I^Signal [0:63]<0:15> := t^RQ[0 :63]<0: 1 5> A I jON[0: 63]<0: 15>

KtJaddress<0:5>

l

1Jaddress<0:3>

see the definition of the 10 instruction set below

end Instruction^xecution; not including Input Output
instructions

name Cor address) of a specific 10 device: the EOM command
is first given to select the specific device: subseauent
commands are implicitly to the selected device

Input and Output Data buffers associated with specific
devices

bit for each device to denote when device is ready to trans-
mit data

a bit within each device denoting it has been selected for
an operation

the particular io device selected by the EOM command;

command to select or address the device: energize output M

output data command

wait until ready

input data command

wait until ready

sVip if signal is not set

controls whether interrupts will be processed

array of 1024 interrupt reauests

array of interrupt enable to enable or inhibit interrupt
reauests

group number

level number within a group of the active interrupt

560 Part 6 Computer families Section 2
[

The SDS 910-9300 series, a planned family

The Iuiddress and Kjiddress combine C200
8

+ 20* x K address + Ijzddress) to establish an interrupt address, 200
Q

is the highest
priority and 200„ + 1477 „ the lowest priority.

I n te r rup tJ e ve 1^ ta te [0 : 63]<0 : 1 5>,

There are three states associated with each interrupt, Inactive, Waiting, and Active/

Inactive means no I^signal is present.
Waiting means the I^ignal has been received but is waiting to be processed.
Active means the interrupt has caused the main program to recognize its presence.

The instruction in M[2008 + 20
g x Kutddress + Ijzddress] is executed upon interrupt. There are two kinds of interrupts: single

instruction allows one instruction to be executed and the interrupt level state is changed from active to inactive; and normal
requires that a mark place and branch, BRM, instruction to be executed to save P. At the completion of the interrupt program,
a branch unconditional (BRU) indirectly via the BRt* instruction restores the interrupt level. (That is, the InterruptJlevel^jstate
is changed from Active to Inactive, and another I^ignal can be processed.)

lnterrupt winterpretatIon

A state denoting that an interrupt is to be processed or the interrupt level state to be changed from Waiting to Active for
normal interrupts and Waiting to Active to Inactive for single interrupts. The interrupt processed is the highest of those

waiting provided there are no interrupts of highest level in the Active state.

Interrupt Control Instructions

EIR -> (interrupt «- 1)j enable interrupt; turn on mode

1 R —» (Interrupt t- 0) ;
disable interrupt; turn off

IET - (Interrupt -» P <- P + l); interrupt test; skip if on

IDT -* (—i Interrupt -»P«- P + l)j interrupt disable test; skip if off

POT instruction to control the Interrupt System. E0y[20020] is first given to select the Interrupt Sustem.

(POT a IO LJReady[20020]) -» (interrupt control instructions

(c - I) -* I J)N[a]<0:15> «- IJ)N[a]<u: 15> V B<0: 15>t arm a channel level group

(c » 2) -» I jON[a]<0: 15> <- I J3N[a]<0:15> V -i B<Di15>: disarm a channel level group

(c - 3) -* I JDN[a]<0: 15> <-b<0:15>); set a channel level group

a<0:5> ;- M[e]<0:5> group select or Kuzddress

b<0:15>:- M[e]<8:23> data for I^address

c<0:l> :- M[e]<6:7> command control bits

