
Chapter 39

Parallel operation in the Control Data

6600 1

James E. Thornton

History

In the summer of 1960, Control Data began a project which
culminated October, 1964 in the delivery of the first 6600 Com-

puter. In 1960 it was apparent that brute force circuit perform-
ance and parallel operation were the two main approaches to

any advanced computer.
This paper presents some of the considerations having to do

with the parallel operations in the 6600. A most important and
fortunate event coincided with the beginning of the 6600 project.
This was the appearance of the high-speed silicon transistor, which
survived early difficulties to become the basis for a nice jump in

circuit performance.

System organization

The computing system envisioned in that project, and now called

the 6600, paid special attention to two kinds of use, the very large
scientific problem and the time sharing of smaller problems. For
the large problem, a high-speed floating point central processor
with access to a large central memory was obvious. Not so obvious,
but important to the 6600 system idea, was the isolation of this

central arithmetic from any peripheral activity.

It was from this general line of reasoning that the idea of a

multiplicity of peripheral processors was formed (Fig. 1). Ten such

peripheral processors have access to the central memory on one
side and the peripheral channels on the other. The executive

control of the system is always in one of these peripheral proces-
sors, with the others operating on assigned peripheral or control

tasks. All ten processors have access to twelve input-output chan-
nels and may "change hands," monitor channel activity, and

perform other related jobs. These processors have access to central

memory, and may pursue independent transfers to and from this

memory.
Each of the ten peripheral processors contains its own memory

for program and buffer areas, thereby isolating and protecting the

MF/PS Proc. FJCC, pt. 2 vol. 26, pp. 33-10, 1964.

more critical system control operations in the separate processors.
The central processor operates from the central memory with

relocating register and file protection for each program in central

memory.

Peripheral and control processors

The peripheral and control processors are housed in one chassis

of the main frame. Each processor contains 4096 memory words
of 12 bits length. There are 12- and 24-bit instruction formats to

provide for direct, indirect, and relative addressing. Instructions

provide logical, addition, subtraction, shift, and conditional

branching. Instructions also provide single word or block transfers

to and from any of twelve peripheral channels, and single word
or block transfers to and from central memory. Central memory
words of 60 bits length are assembled from five consecutive pe-

ripheral words. Each processor has instructions to interrupt the

central processor and to monitor the central program address.

To get this much processing power with reasonable economy
and space, a time-sharing design was adopted (Fig. 2). This design
contains a register "barrel" around which is moving the dynamic
information for all ten processors. Such things as program address,

accumulator contents, and other pieces of information totalling
52 bits are shifted around the barrel. Each complete trip around

requires one major cycle or one thousand nanoseconds. A "slot"

in the barrel contains adders, assembly networks, distribution

network, and interconnections to perform one step of any periph-
eral instruction. The time to perform this step or, in other words,
the time through the slot, is one minor cycle or one hundred

nanoseconds. Each of the ten processors, therefore, is allowed one

minor cycle of every ten to perform one of its steps. A peripheral
instruction may require one or more of these steps, depending on
the kind of instruction.

In effect, the single arithmetic and the single distribution and

assembly network are made to appear as ten. Only the memories
are kept truly independent. Incidentally, the memory read-write

cycle time is equal to one complete trip around the barrel, or one

thousand nanoseconds.

489

490 Part 5 The PMS level Section 4 Network computers and computer networks

Chapter 39 Parallel operation in the Control Data 6600 491

Input-output channels are bi-directional, 12-bit paths. One

12-bit word may move in one direction every major cycle, or 1000

nanoseconds, on each channel. Therefore, a maximum burst rate

of 120 million bits per second is possible using all ten peripheral

processors. A sustained rate of about 50 million bits per second

can be maintained in a practical operating system. Each channel

may service several peripheral devices and may interface to other

systems, such as satellite computers.

Peripheral and control processors access central memory

through an assembly network and a dis-assembly network. Since

five peripheral memory references are required to make up one

central memory word, a natural assembly network of five levels

is used. This allows five references to be "nested" in each network

during any major cycle. The central memory is organized in

independent banks with the ability to transfer central words every

minor cycle. The peripheral processors, therefore, introduce at

most about 2% interference at the central memory address control.

A single real time clock, continuously running, is available to

all peripheral processors.

Central processor

The 6600 central processor may be considered the high-speed
arithmetic unit of the system (Fig. 3). Its program, operands, and

results are held in the central memory. It has no connection to

the peripheral processors except through memory and except for

two single controls. These are the exchange jump, which starts

or interrupts the central processor from a peripheral processor,

and the central program address which can be monitored by a

peripheral processor.

A key description of the 6600 central processor, as you will

see in later discussion, is "parallel by function." This means that

a number of arithmetic functions may be performed concurrently.

To this end, there are ten functional units within the central

PERIPHERAL AND
CONTROL PROCESSORS

•-» 9

*-» 10

•»•

12 INPUT

OUTPUT CHANNELS

492 Part 5 The PMS level Section 4 Network computers and computer networks

processor. These are the two increment units, floating add unit,

fixed add unit, shift unit, two multiply units, divide unit, boolean

unit, and branch unit. In a general way, each of these units is a

three address unit. As an example, the floating add unit obtains

two 60-bit operands from the central registers and produces a

60-bit result which is returned to a register. Information to and

from these units is held in the central registers, of which there

are twenty-four. Eight of these are considered index registers, are

of 18 bits length, and one of which always contains zero. Eight

are considered address registers, are of 18 bits length, and serve

to address the five read central memory trunks and the two store

central memory trunks. Eight are considered floating point regis-

ters, are of 60 bits length, and are the only central registers to

access central memory during a central program.

In a sense, just as the whole central processor is hidden behind

central memory from the peripheral processors, so, too, the ten

functional units are hidden behind the central registers from

central memory. As a consequence, a considerable instruction

efficiency is obtained and an interesting form of concurrency is

feasible and practical. The fact that a small number of bits can

give meaningful definition to any function makes it possible to

develop forms of operand and unit reservations needed for a

general scheme of concurrent arithmetic.

Instructions are organized in two formats, a 15-bit format and

a 30-bit format, and may be mixed in an instruction word (Fig.

4). As an example, a 15-bit instruction may call for an ADD,

Chapter 39 Parallel operation in the Control Data 6600 493

absence of the two restraints. The instruction executions, in com-

parison, range from three minor cycles for fixed add, 10 minor

cycles for floating multiply, to 29 minor cycles for floating divide.

To provide a relatively continuous source of instructions, one

buffer register of 60 bits is located at the bottom of an instruction

stack capable of holding 32 instructions (Fig. 5). Instruction words

from memory enter the bottom register of the stack pushing up

the old instruction words. In straight line programs, only the

bottom two registers are in use, the bottom being refilled as quickly

as memory conflicts allow. In programs which branch back to an

instruction in the upper stack registers, no refills are allowed after

the branch, thereby holding the program loop completely in the

stack. As a result, memory access or memory conflicts are no longer

involved, and a considerable speed increase can be had.

Five memory trunks are provided from memory into the central

processor to five of the floating point registers (Fig. 6). One address

register is assigned to each trunk (and therefore to the floating

point register). Any instruction calling for address register result

implicitly initiates a memory reference on that trunk. These in-

structions are handled through the scoreboard and therefore tend

to overlap memory access with arithmetic. For example, a new

memory word to be loaded in a floating point register can be

brought in from memory but may not enter the register until all

previous uses of that register are completed. The central registers,

therefore, provide all of the data to the ten functional units, and

receive all of the unit results. No storage is maintained in any unit.

Central memory is organized in 32 banks of 4096 words. Con-

secutive addresses call for a different bank; therefore, adjacent

addresses in one bank are in reality separated by 32. Addresses

may be issued every 100 nanoseconds. A typical central memory
information transfer rate is about 250 million bits per second.

As mentioned before, the functional units are hidden behind

the registers. Although the units might appear to increase hard-

ware duplication, a pleasant fact emerges from this design. Each

unit may be trimmed to perform its function without regard to

others. Speed increases are had from this simplified design.

As an example of special functional unit design, the floating

multiply accomplishes the coefficient multiplication in nine minor

cycles plus one minor cycle to put away the result for a total of

10 minor cycles, or 1000 nanoseconds. The multiply uses layers

of carry save adders grouped in two halves. Each half concurrently

forms a partial product, and the two partial products finally merge
while the long carries propagate. Although this is a fairly large

complex of circuits, the resulting device was sufficiently smaller

than originally planned to allow two multiply units to be included

in the final design.

494 Part 5 The PMS level Section 4 Network computers and computer networks

Chapter 39 Parallel operation In the Control Data 6600 495

Fig. 7. 6600 printed circuit module.

lines. Interconnections between chassis are made with coaxial

cables.

Both maintenance and operation are accomplished at a pro-

grammed display console (Fig. 10). More than one of these consoles

may be included in a system if desired. Dead start facilities bring

Fig. 9. 6600 main frame section.

TJ"1 V\

Til II

496 Part 5 The PMS level Section 4 Network computers and computer networks

the ten peripheral processors to a condition which allows infor-

mation to enter from any chosen peripheral device. Such loads

normally bring in an operating system which provides a highly

sophisticated capability for multiple users, maintenance, and so

on.

The 6600 Computer has taken advantage of certain technology

advances, but more particularly, logic organization advances

which now appear to be quite successful. Control Data is exploring

advances in technology upward within the same compatible

structure, and identical technology downward, also within the

same compatible structure.

References

AllaR64; ClayB64

Chapter 39 Parallel operation in the Control Data 6600 497

APPENDIX 1 CDC 6400, 6500, 6600

CENTRAL PROCESSOR ISP DESCRIPTION

Appen

498 Part 5 The PMS level Section 4
|

Network computers and computer networks

Instruction Format

instructlon<29:0>

fm<$:0>

fmi<B:0>

i<2:0>

J<2:0>

k<2:0>

Jk<5:0>

K<17:0>

long^instruct ion

short^instruct ion

- instruction<29:2lt>

- fmai

- instruction<23:21>

" lnstruction<20:18>

= instruction<17: 15>

- JDk

= instruction<17:0>

((fm <
10g)

v

(50 <. fm < 53) V

(60 s fm < 63) V

(70 <. fm < 73))

n long instruction

although 30 bits, most instructions are 15 bits; see
Instruction Interpretation Process

operation code or function

extended op code

specifies a register or an extension to op code

specifies a register

specifies a register

a shift constant (6 bits)

an IB bit address size constant

30 bit instruction

15 bit instruction

Instruction Interpretation Process
A 15 bit (short) or 30 bit (long) instruction is fetched from Mp

r
[P]<p x 15 + IS

bit instruction cannot be stored across word boundaries (or in 2, Mp' locations)

'kP<1>jt

Run -» (instruction<29:15> <-Mp'[P]<(p x 15 + H):(p x 15)>; next

p <-p
-

1 ; next

(p " 0) A long^inst ruction -> Run *-0;

(p 4 0) A long^inst ruction -*
(

instruction<ll| : o> <-Mp'[P]<(p x 15 + l<i):(p X 15)>;

P *~P
"

1) I next

I nst ruct ion^jexecut ion ; next

(p
= 0) ^(p ,-3; P -P * D)

Instruction Set and Instruction Execution Process

l:p x 1S> where p - 3, 2, 1, or 0. A 30

a pointer to 15 bit quarter word which has instruction

fetch

Operand fetches or stores between Mp' and X{i~\ occur by loading or storing registers A[i], If (0 < i < 6) a fetch from
tip'lAlil] occurs. If !i 2 6) a store is made to Mp'iAlil']. The description does
which is treated like a null operation.

Instruct ion^execution :• (

Set A[i]/SA

(fm - 50) -> (A[i] <-A[J] + K; next Fetch^Store) ;

(fm - 51) -> (A[i] <-B[J] + K; next Fetch^Store) ;

(fm - 52) ->(A[i] <-X[J]<17:0>+ K; next Fetch^Store) ;

(fm - 53) ->(A[1] ^X[j]<17:0>+ B[k]; next Fetch^Store) ;

(fm - 5M ->(A[i] <-A[j] + B[k]j next Fetch^Store) ;

(fm - 55) ->(A[I] ^A[j] -
B[k]; next Fetch^Store) ;

(fm - 56) -> (A['J <-B(j] + Btk]; next Fetch.Store) ;

(fm - 57) -> (A[l] <-B[j]
-

B[k]; next Fetch^Store) ;

not describe Address^outuiof^range case,

"SAi Aj + K"

"SAi Bj + K"

"SAi Xj + K"

"SAi Xj + Bk"

"SAi Aj + Bk"

"SAi Aj
- Bk"

"SAI Bj + Bk"

"SAi Bj
- Bk"

Fetch^Store :- (

(0 < i <6) -> (X[l]

(i Z 6) -> (Mp'[A[i]

Operations on B and X

Set B[i ysBi

"SBI Aj + K" (fm - 60)

Mp'[A[i]]);

- X[l]))

(B[lj ^-A[j] + K);

process to get operand in X or store operand from X when A

is written

Chapter 39 Parallel operation in the Control Data 6600 499

"SBi Bj +

500 Part 5 The PMS level Section 4 Network computers and computer networks

M

Chapter 39 Parallel operation In the Control Data 6600 501

"ZXi BJ Xk" U" fm = 25) -> (

502 Part 5 The PMS level
Section 4 Network computers and computer networks

APPENDIX 2 CDC 6400, 6500, 6600, AND 6416

PERIPHERAL AND CONTROL PROCESSORS,

PCP, ISP DESCRIPTION

Chapter 39 Parallel operation in the Control Data 6600 503

Implementation
The 10 X 52 bits in the barrel for the 10 PCP ISP include:

A[0:9]<17:0>

P[0:9]<11 :0>

Temporary Hardware registers (not in the 1ST)

5[0:9Kli:O>

K[0:9K5:0>

T[0:9K2:0>

F - X»Y P

accumulators

instruction address counters

low order 6 bits of an instruction or address data

six bits hold the operation code. The 3 bits specify the

trip count or state of an instruction's interpretation.

Instruction execution := (

20

30

to

so

60

70

Y
8 00

Chapter 43

Parallel Operation in the Control Data

6600'

James E. Thornton

History

In the summer of 1960, Control Data began a project which

culminated October, 1964 in the delivery of the first 6600

Computer. In 1960 it was apparent that brute force circuit

performance and parallel operation were the two main approaches

to any advanced computer.

This paper presents some of the considerations having to do

with the parallel operations in the 6600, A most important and

fortunate event coincided with the beginning of the 6600 project.

This was the appearance of the high-speed silicon transistor,

which survived early difficulties to become the basis for a nice

jump in circuit performance.

System Organization

The computing system envisioned in that project, and now called

the 6600, paid special attention to two kinds of use, the very large

scientific problem and the time sharing of smaller problems. For

the large problem, a high-speed floating point central processor

with access to a large central memory was obvious. Not so

obvious, but important to the 6600 system idea, was the isolation

of this central arithmetic from any peripheral activity.

It was from this general line of reasoning that the idea of a

multiplicity ofperipheral processors was formed (Fig. 1). Ten such

peripheral processors have access to the central memory on one

side and the peripheral channels on the other. The executive

control of the system is always in one of these peripheral

processors, with the others operating on assigned peripheral or

control tasks. All ten processors have access to twelve input-

output channels and may "change hands," monitor channel

activity, and perform other related jobs. These processors have

access to central memory, and may pursue independent transfers

to and from this memory.

Each of the ten peripheral processors contains its own memory

for program and buffer areas, thereby isolating and protecting the

more critical system control operations in the separate processors.

'AF/PS Proc. F]CC, pt. 2, vol. 26, 1964, pp. 33-40.

he central processor operates from the central memory with

^locating register and file protection for each program in central
Th.

re

memory

Peripheral and Control Processors

The peripheral and control processors are housed in one

chassis of the main frame. Each processor contains 4096 memory

words of 12 bits length. There are 12- and 24-bit instruction

formats to provide for direct, indirect, and relative addressing.

Instructions provide logical, addition, subtraction, and condi-

tional branching. Instructions also provide single word or

block transfers to and from any of twelve peripheral channels,

and single word or block transfers to and from central memory.

Central memory words of 60 bits length are assembled from

five consecutive peripheral words. Each processor has instruc-

tions to interrupt the central processor and to monitor the cen-

tral program address.

To get this much processing power with reasonable economy

and space, a time-sharing design was adopted (Fig. 2). This design

contains a register "barrel" around which is moving the dynamic

information for all ten processors. Such things as program

address, accumulator contents, and other pieces of information

totalling 52 bits are shifted around the barrel. Each complete trip

around requires one major cycle or one thousand nanoseconds. A

"slot" in the barrel contains adders, assembly networks, distribu- <

tion network, and interconnections to perform one step of any

peripheral instruction. The time to perform this step or, in other

words, the time through the slot, is one minor cycle or one

hundred nanoseconds. Each of the ten processors, therefore, is

allowed one minor cycle of every ten to perform one of its steps. A

peripheral instruction may require one or more of these steps,

depending on the kind of instruction.

In effect, the single arithmetic and the single distribution and

assembly network are made to appear as ten. Only the memories

are kept truly independent. Incidentally, the memory read-write

cycle time is equal to one complete trip around the barrel, or one

thousand nanoseconds.

Input-output channels are bi-directional, 12-bit paths. One

12-bit word may move in one direction every major cycle, or 1000

nanoseconds, on each channel. Therefore, a maximum burst rate

of 120 million bits per second is possible using all ten peripheral

processors. A sustained rate of about 50 million bits per second

can be maintained in a practical operating system. Each channel

may service several peripheral devices and may interfece to other

systems, such as satellite computers.

Peripheral and control processors access central memory

through an assembly network and a dis-assembly network. Since

<

Chapter 43 Parallel Operation In the Control Data 6600 731

732 Part 3
I
Computer Classes Section 4

I
Maxicomputers

five peripheral memory references are required to make up one

central memory word, a natural assembly network of five levels is

used. This allows five references to be "nested" in each network

during any major cycle. The central memory is organized in

independent banks with the ability to transfer central words every

minor cycle. The peripheral processors, therefore, introduce at

most about 2% interference at the central memory address

control.

A single real time clock, continuously running is available to all

peripheral processors.

Central Processor

The 6600 central processor may be considered the high-speed

arithmetic unit of the system (Fig. 3). Its program, operands, and

results are held in the central memory. It has no connection to the

peripheral processors except through memory and except for two

single controls. These are the exchange jump, which starts or

interrupts the central processor from a peripheral processor, and

the central program address which can be monitored by a

peripheral processor.

A key description of the 6600 central processor, as you will see

in later discussion, is "parallel by function." This means that a

number of arithmetic functions may be performed concurrently.

To this end, there are ten functional units within the central

processor. These are the two increment units, floating add unit,

fixed add unit, shift unit, two multiply units, divide unit, boolean

unit, and branch unit. In a general way, each of these units is a

three address unit. As an example, the floating add unit obtains

two 60-bit operands from the central registers and produces a 60

bit result which is returned to a register. Information to and from

these units is held in the central registers, of which there are

twenty-four. Eight of these are considered index registers, are of

18 bits length, and one of which always contains zero. Eight are

considered address registers, are of 18 bits length, and serve to

address the five read central memory trunks and the two store

central memory trunks. Eight are considered floating point

PERIPHERAL AND
CONTROL PROCESSORS

*-¥ 9

*-»

-*-» 8

10

12 INPUT

OUTPUT CHANNELS

2

UPPER

BOUNDARY

CENTRAL
MEMORY

LOWER
BOUNDARY

CENTRAL PROCESSOR

ADD

MULTIPLY

MULTIPLY

24

OPERATING

REGISTERS

"i

I
—

r

DIVIDE

LONG ADD

SHIFT

BOOLEAN

INCREMENT

INCREMENT

BRANCH

Fig. 3. Block diagram of 6600.

Chapter 43
|

Parallel Operation In the Control Data 6600 733

registers, are of60 bits length, and are the only central registers to

access central memory during a central program.
In a sense, just as the whole central processor is hidden behind

central memory from the peripheral processors, so, too, the ten

functional units are hidden behind the central registers from

central memory. As a consequence, a considerable instruction

efficiency is obtained and an interesting form of concurrency is

feasible and practical. The fact that a small number of bits can give

meaningful definition to any function makes it possible to develop
forms of operand and unit reservations needed for a general

scheme of concurrent arithmetic.

Instructions are organized in two formats, a 15-bit format and a

30-bit format, and may be mixed in an instruction word (Fig. 4).

As an example, a 15-bit instruction may call for an ADD,
designated by the /and m octal digits, from registers designated

by the j and k octal digits, the result going to the register

designated by the i octal digit. In this example, the addresses of

the three-address, floating add unit are only three bits in length,

each address referring to one of the eight floating point registers.

The 30-bit format follows this same form but substitutes for the it

octal digit an 18-bit constant K which serves as one of the input

operands. These two formats provide a highly efficient control of

concurrent operations.

As a background, consider the essential difference between a

general purpose device and a special device in which high speeds
are required. The designer of the special device can generally

improve on the traditional general purpose device by introducing
some form of concurrency. For example, some activities of a

Chapter 43
|

Parallel Operation In the Control Data 6600 735

floating point register). Any instruction calling for address register

result implicitly initiates a memory reference on that trunk. These

instructions are handled through the scoreboard and therefore

tend to overlap memory access with arithmetic. For example, a

new memory word to be loaded in a floating point register can be

brought in from memory but may not enter the register until all

previous uses of that register are completed. The central registers,

therefore, provide all of the data to the ten functional units, and

receive all ofthe unit results. No storage is maintained in any unit.

Central memory is organized in 32 banks of 4096 words.

Consecutive addresses call for a different bank; therfore, adjacent

addresses in one bank are in reality separated by 32. Addresses

may be issued every 100 nanoseconds. A typical central memory
information transfer rate is about 250 million bits per second.

As mentioned before, the functional units are hidden behind

the registers. Although the units might appear to increase

hardware duplication, a pleasant fact emerges from this design.

Each unit may be trimmed to perform its fianction without regard

to others. Speed increases are had from this simplified design.

As an example of special functional unit design, the floating

multiply accomphshes the coefficient multiplication in nine minor

cycles plus one minor cycle to put away the result for a total of 10

minor cycles, or 1000 nanoseconds. The multiply uses layers of

carry save adders grouped in two halves. Each half concurrently

forms a partial product, and the two partial products finally merge
while the long carries propagate. Although this is a fairly large

complex of circuits, the resulting device was sufficiently smaller

than originally planned to allow two multiply units to be included

in the final design.

To sum up the characteristics of the central processor, remem-
ber that the broadbrush description is "concurrent operation." In

other words, any program operating within the central processor
utilizes some of the available concurrency. The program need not

be written in a particular way, although certainly some optimiza-

tion can be done. The specific method of accomplishing this

concurrency involves issuing as many instructions as possible

while handling most of the conflicts during execution. Some of the

essential requirements for such a scheme include:

1 Many functional units

2 Units with three address properties

3 Many transient registers with many trunks to and from the

units

4 A simple and efficient instruction set

Construction

Circuits in the 6600 computing system use all-transistor logic (Fig.

7). The silicon transistor operates in saturation when switched

Fig. 7. 6600 printed circuit module.

"on" and averages about five nanoseconds of stage delay. Logic

circuits are constructed in a cordwood plug-in module ofabout 2Vi

inches by 2^/2 inches by 0.8 inch. An average of about 50

transistors are contained in these modules.

Memory circuits are constructed in a plug-in module of about

six inches by six inches by 2*72 inches (Fig. 8). Each memory
module contains a coincident current memory of 4096 12-bit

Fig. 8. 6600 memory module.

736 Part 3
{
Computer Classes Section 4

| Maxicomputers

Fig. 9. 6600 main frame section.

words. All read-write drive circuits and bit drive circuits plus

address translation are contained in the module. One such module

is used for each peripheral processor, and five modules make up
one bank of central memory.

Logic modules and memory modules are held in upright hinged

chassis in an X shaped cabinet (Fig. 9). Interconnections between

modules on the chassis are made with twisted pair transmission

lines. Interconnections between chassis are made with coaxial

cables.

Both maintenance and operation are accomplished at a pro-

grammed display console (Fig. 10). More than one of these

Fig. 10. 6600 dispiay console.

consoles may be included in a system if desired. Dead start

facilities bring the ten peripheral processors to a condition which

allows information to enter from any chosen peripheral device.

Such loads normally bring in an operating system which provides
a highly sophisticated capability for multiple users, maintenance,

and so on.

The 6600 Computer has taken advantage of certain technology

advances, but more particularly, logic organization advances

which now appear to be quite successful. Control Data is

exploring advances in technology upward within the same com-

patible structure, and identical technology downward, also within

the same compatible structure.

References

Allard, Wolf, and Zemlin [1964]; Clayton, Dorff, and Fagen
[1964].

APPENDIX 1 ISP OF CDC 6600 PERIPHERAL AND CONTROL PROCESSOR

Chapter 43
|

Parallel Operation In the Control Data 6600 737

PC6600{process} :=

738 Part 3 Computer Classes Section 4
I
Maxicomputers

APPENDIX 1 (cont'd.)

APPENDIX 2 ISP OF THE CDC 6600

Chapter 43
|

Parallel Operation in the Control Data 6600 739

CDC66E)0{process} :
=

begin

ISP of the CDC 6600

macro not. described := |no.op()l.

••Reservation.Control.State**

Floating point instructions are not described.

The central processor and central memory are described in this
ISP. An auxiliary ISP (PC6600.ISP) describes the peripheral
processors and control barrel execution.

The ten functional units are described and allow parallel
simulation.

Instructions are processed from an instruction stack. Instruction
conflicts are resolved by keeping a "scorecard" containing utilization
information on all registers and all functional units.
Reservation control decodes an instruction to determine register
utilization. Source and destination registers are allocated
if they are not being used as destinations of another functional
unit. If the required functional unit is free and if both the
source and destination registers are available, the instruction
is released to the unit for execution. If the resources are
not available, reservation control holds the instruction until
the resources become available.
At the completion of execution by a functional unit, the resources
are released by marking the scorecard.

The following page by page index of the ISP is provided to aid
in locating CDC 6600 architectural features.

ral .Memory -Stat e'* def ines the Central Memory.
essor. State** defines central processor carriers.
ruction. Format** defines instruction fields.
ementation.Oeclarations** defines ISP related variables.
rvation .Control .State"" defines variables used by
ation control. These declarations constitute the
ce allocation "scorecard".
scribe the reservation control execution.
ruction.Fetch"" describes the instruction stack
1 and instruction fetch processes.
ral .Memory .Access*" describes the instruction read
e register associated memory access processes.
ange .Jump"" is the processor interrupt facil ity .

ruction. Cycle"" is the main instruction processing
Instruction execution is initiated by issuing

structions to the appropriate functional unit.

! The functional units ar«:

I Branch Unit.
! Boolean Unit.
! Shift Unit.
! Add Unit.
I Long Add Unit.
! Multiply Unit 0.

! Multiply Unit 1.

I Divide Unit.
1 Increment Unit 0.

I Increment Unit 1.

••Central. Memory. State*'

NP[0:4095]<S9:0>.

"Processor. State*"

xjp[0:15]<59:0>,
xja<16:0>.
xjfO.

! ""Cent

740 Part 3
|

Computer Classes Section 4
I
Maxicomputers

APPENDIX 2 (cont'd.)

fbusy[dunU] - 0:
IF fau[dunit] '> {fag[dunU] - abusy[fa[dunU]] = arw[fa[dunit]] = 0):
IF fbufdunit] => (fbu[dunit] = bbusyf f b[dun i t]]

=
brw[f a[duni t]] = 0):

IF rxutdunit] O {fxu[dunit] = xbusy[f x[duni t]]
= xrw[f a[dun i t]] = 0)

end.

rni(pci<17:0>)<59:0> :

begin
IF not range(pci)

end.

Read n«xt Instruction

MP[RACM + pci]

reserv :=

Chapter 43
|

Parallel Operation In the Control Data 6600 741

APPENDIX 2 (cont'd.)

DECODE unit ">

begin
BRANCH. UNir(I).
BOOLEAN. UNIT(I).
SHIFT, UNIT(I).
ADD.ltNIT{I).
lONG.ADD.UNn(I).
MULTIPLY. UNIT. 0(1).
MULTIPLY. UNIT. 1(1).

:= DIVIDE UNIT(I).
:= INCREMENT. UNIT. 0(1).

INCREMENT. UNIT. 1(1)
end

end.

The remainder of the ISP describes the
units. These units will function in pa
in the real CDC 6600.

The instruct io

to the appropi
issued
xecutio

en arithmetic processing
allel much as they do

Note that floating point instru
does not describe their actual

•Branch. Unit'*

tions are decoded but this ISP
necution.

BRANCH. UNI T(i<29:0>) {process: critical}
begin

•Branch. Declarations'*

fn <&:0>
i. <2:0>

j. <2:0>
k. <2:0>

i<29;24>.
i<23:21>,
i<20:18>.
i<17:15>.

••Branch. Execut ion**{oc}

branch{fnain} : =

begin
DECODE fm 9 i. »>

begin
#00?? := PS := Stop. bit
#010 := RJ

1.

#02??
#030
#031
#032
#033
#034

#035

#037

JP

- NG
= IR

ID

#04??
#05??
#06??
#07??
end next

IF (PC lss{us)
deal 1oc(0)
end

= NE
= GE
= LT

(HP[kl»RACH] = #0400e(PC*l)<17:0>9#0000000000 next
PC = kl + 1; markO).

= (PC = kl + BREG[i.]; mark{)).
IF XREG[j .] eql => PC = k 1 .

IF XR£G[j.] neq => PC - kl.
If not XR£G[j.]<59> => PC = kl.
IF XREG[j.]<69> => PC = kl.
IF not ((XREG[j.]<59:48> eql{us) #3777) or

(XREG[j .]<59:48> eql{us} #4000)) => PC = kl.
IF (XREG[j.]<59:48> eql{us} #3777) or

(XR[6[j .]<59:48> eql{u5} #4000) => PC = kl.
IF not ((XREG[j.]<59:48> eql{us) #1777) or

(XREG[j.]<59i48^ eql{us} #6000)) o PC = kl,
IF (XRtG[j.]<59:48> eql(us} #1777) or

(XREG[j .]<59:48> eql(us) #6000) => PC - kl.
IF BREG[i.] eql{us) BREG[j.] => PC ' kl.
IF BREG[i.] neq{us) BR£G[j.] => PC = kl.
IF BHEG[i.] geq{us) BRFG[j.] => PC = kl,
IF BREG[i] lss{us) BREG[j.] => PC = kl

islo) or (PC gtr{us} ishi) O mark() next

•"Boolean. Unit"'

BOOLEAN. UNIT(i<29:0>){process; critical) :«

begin

••Boolean .Declarations"*

fm <5:0>
i. <2:0>

j. <2:0>
k. <2:0>

= i<29:24>.
' i<23:21>.
> i<20:18>,
« i<17:15>.

••Boolean. Execution*^(us)

boolean{main)
begin
DECODE fm

beg
#10
#11
#12

All nstructions are "BXi"

#13
#14
#15
#16

 XREG[i.]
= XREG[j.],

' XREG[i.] = XREG[j.] and XREGfk.),
= XREG[i] = XREG[j.j or XREG[k.].
= XREGfi.J = XREG[j.] xor XREG[k.],
= XREG[i.] = not XREG[k.].
= XREG[i.] = XREG[j.] and (not XREG[k.]).

XREG[i.] = XREG[j.] or (not XREG[k.]).
XREG[i.] = XREG[j.] xor (not XREG[k.])#17

end ne)

dealloc(l)
end

•nd.

•*Shifl.Unit**

SHIFT.UNIT(i<29:0>) {process; critical)
begin

••Shi ft. Declarations**

m <6:0>

742 Part 3
I
Computer Classes Section 4 : Maxicomputers

APPENDIX 2 (cont'd.)

fm <5;0> := i<29:24>.

