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Introduction

The mini-computer^ has a wide variety of uses: communications

controller; instrument controller; large-system pre-processor;
real-time data acquisition systems . . . ; desk calculator. Histori-

cally, Digital Equipment Corporation's PDP-8 Family, with 6,000

installations has been the archetype of these mini-computers.
In some applications current mini-computers have limitations.

These limitations show up when the scope of their initial task is

increased (e.g., using a higher level language, or processing more

variables). Increasing the scope of the task generally requires the

use of more comprehensive executives and system control pro-

grams, hence larger memories and more processing. This larger

system tends to be at the limit of current mini-computer

capability, thus the user receives diminishing returns with respect
to memory, speed efficiency and program development time. This

limitation is not surprising since the basic architectural concepts
for current mini-computers were formed in the early 1960's. First,

the design was constrained by cost, resulting in rather simple

processor logic and register configurations. Second, application

experience was not available. For example, the early constraints

often created computing designs with what we now consider

weaknesses:

1 Limited addressing capability, particularly of larger core

sizes

2 Few registers, general registers, accumulators, index regis-

ters, base registers

3 No hardware stack facilities

4 Limited priority interrupt structures, and thus slow context

switching among multiple programs (tasks)

5 No byte string handling

6 No read only memory facilities

7 Very elementary I/O processing

8 No larger model computer, once a user outgrows a

particular model

9 High programming costs because users program in ma-
chine language.

In developing a new computer the architecture should at least

solve the above problems. Fortunately, in the late 1960's inte-

grated circuit semiconductor technology became available so that

newer computers could be designed which solve these problems
at low cost. Also, by 1970 application experience was available to

influence the design. The new architecture should thus lower

programming cost while maintaining the low hardware cost of

mini-computers.
The DEC PDP-11, Model 20 is the first computer of a computer

family designed to span a range of functions and performance. The
Model 20 is specifically discussed, although design guidelines are

presented for other members of the family. The Model 20 would

nominally be classified as a third generation (integrated circuits),

16-bit word, 1 central processor with eight 16-bit general

registers, using two's complement arithmetic and addressing up
to 2'* eight bit bytes of primary memory (core). Though classified

as a general register processor, the operand accessing mechanism
allows it to perform equally well as a O-(stack), l-(general register)

and 2-(memory-to-memory) address computer. The computer's

components (processor, memories, controls, terminals) are con-

nected via a single switch, called the Unibus.

'AFIPS Proc. syce, 1970, pp. 657-675.
'The PDP-11 design is predicated on being a member of one (or more) of the micro, midi, mini, . . .

, maxi (computer name) markets. We will define

these names as belonging to computers of the third generation (integrated circuit to medium scale integrated circuit technology), having a core memory
with cycle time of .5 ~ 2 microseconds, a clock rate of 5 - 10 M /iz . . . , a single processor with interrupts and usually applied to doing a particular task

(e.g., controlling a memory or communications lines, pre-processing for a larger system, process control). The specialized names are defined as follows:
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The machine is described using the PMS and ISP notation of

Bell and Newell [1971] at difiFerent levels. The following descrip-

tive sections correspond to the levels: external design constraints

level; the PMS level—the way components are interconnected

and allow information to flow; the program level or ISP (Instruc-

tion Set Processor)—the abstract machine which interprets

programs; and finally, the logical design level. (We omit a

discussion of the circuit level—the PDP-11 being constructed

from TTL integrated circuits.)

Design Constraints

The principal design objective is yet to be tested; namely, do

users like the machine? This will be tested both in the market

place and by the features that are emulated in newer machines; it

will indirectly be tested by the life span of the PDP-11 and any

ofiFspring.

Word Length

The most critical constraint, word length (defined by IBM) was

chosen to be a multiple of 8 bits. The memory word length for the

Model 20 is 16 bits, although there are 32- and 48-bit instructions

and 8- and 16-bit data. Other members of the family might have

up to 80 bit instructions with 8-, 16-, 32- and 48-bit data. The

internal, and preferred external character set was chosen to be

8-bit ASCII.

Range and Performance

Performance and ftinction range (extendability) were the main

design constraints; in fact, they were the main reasons to build a

new computer. DEC already has (4) computer families that span a

range' but are incompatible. In addition to the range, the initial

machine was constrained to fall within the small-computer

product line, which means to have about the same performance as

a PDP-8. The initial machine outperforms the PDP-5, LINC, and
PDP-4 based families. Performance, of course, is both a function

of the instruction set and the technology. Here, we're fundamen-

tally only concerned with the instruction set performance because

faster hardware will always increase performance for any family.

Unlike the earlier DEC families, the PDP-11 had to be designed
so that new models with significantly more performance can be

added to the family.

A rather obvious goal is maximum performance for a given
model. Designs were programmed using benchmarks, and the

results compared with both DEC and potentially competitive

'PDP-4, 7, 9, 15 family; PDP-5, 8, 8/S, 8/1, 8/L family; LINC, PDP-

8/LINC, PDP-12 fkmily; and PDP-6, 10 family. The initial PDP-1 did not

achieve family status.

machines. Although the selling price was constrained to lie in the

$5,000 to $10,000 range, it was realized that the decreasing cost of

logic would allow a more complex organization than earlier DEC
computers. A design which could take advantage of medium- and

eventually large-scale integration was an important consideration.

First, it could make the computer perform well; and second, it

would extend the computer family's life. For these reasons, a

general registers organization was chosen.

Interrupt Response. Since the PDP-11 will be used for real time

control applications, it is important that devices can communicate
with one another quickly (i.e., the response time of a request
should be short). A multiple priority level, nested interrupt

mechanism was selected; additional priority levels are provided

by the physical position of a device on the Unibus. Software

polling is unnecessary because each device interrupt corresponds
to a unique address.

Software

The total system including software is ofcourse the main objective
of the design. Two techniques were used to aid programmability:
first benchmarks gave a continuous indication as to how well the

machine interpreted programs; second, systems programmers
continually evaluated the design. Their evaluation considered:

what code the compiler would produce; how would the loader

work; ease of program relocability; the use of a debugging

program; how the compiler, assembler and editor would be

coded—in effect, other benchmarks; how real time monitors

would be written to use the various facilities and present a clean

interface to the users; finally the ease of coding a program.

Modularity

Structural flexibility (sometimes called modularity) for a particular

model was desired. A flexible and straightforward method for

interconnecting components had to be used because of varying
user needs (among user classes and over time). Users should have

the ability to configure an optimum system based on cost,

performance and reliability, both by interconnection and, when

necessary, constructing new components. Since users build

special hardware, a computer should be easily interfaced. As a

by-product of modularity, computer components can be produced
and stocked, rather than tailor-made on order. The physical

structure is almost identical to the PMS structure discussed in the

following section; thus, reasonably large building blocks are

available to the user.

Microprogramming

A note on microprogramming is in order because of current

interest in the "firmware" concept. We believe microprogram-

ming, as we understand it [Wilkes, 1951], can be a worthwhile



Chapter 38 A New Architecture for Mini-Computers: The DEC PDP-11 651

technique as it applies to processor design. For example, micro-

programming can probably be used in larger computers when

floating point data operators are needed. The IBM System/360 has

made use of the technique for defining processors that interpret

both the System/360 instruction set and earlier family instruction

sets (e.g., 1401, 1620, 7090). In the PDP-11 the basic instruction

set is quite straightforward and does not necessitate micropro-

grammed interpretation. The processor-memory connection is

asynchronous and therefore memory ofany speed can be connect-

ed. The instruction set encourages the user to write reentrant

programs; thus, read-only memory can be used as part of primary

memory to gain the permanency and performance normally

attributed to microprogramming. In fact, the Model 10 computer

which will not be further discussed has a 1024-word read only

memory, and a 128-word read-write memory.

Vnderstandability

Understandability was perhaps the most fundamental constraint

(or goal) although it is now somewhat less important to have a

machine that can be quickly understood by a novice computer
user than it was a few years ago. DEC's early success has been

predicated on selling to an intelligent but inexperienced user.

Understandability, though hard to measure, is an important goal

because all (potential) users must understand the computer. A

straightforward design should simplify the systems programming

task; in the case of a compiler, it should make translation

(particularly code generation) easier.

PDP-11 Structure at the PMS Level'

Introduction

PDP-11 has the same organizational structure as nearly all present

day computers (Fig. 1). The primitive PMS components are: the

primary memory (Mp) which holds the programs while the central

processor (Pc) interprets them; io controls (Kio) which manage
data transfers between terminals (T) or secondary memories (Ms)

to primary memory (Mp); the components outside the computer at

periphery (X) either humans (H) or some external process (e.g.,

another computer); the processor console (T. console) by which

humans communicate with the computer and observe its behavior

and affect changes in its state; and a switch (S) with its control (K)

which allows all the other components to communicate with one

another. In the case of PDP-11, the central logical switch

structure is implemented using a bus or chained switch (S) called

the Unibus, as shown in Fig. 2. Each physical component has a

'A descriptive (block-diagram) level [Bell and Newell, 1971] to describe

the relationship of the computer components; processors memories,

switches, controls, links, terminals and data operators.
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Fig. 1. Conventional block diagram and PMS diagram of PDP-11.
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Fig. 2. PDP-1 1 physical structure PMS diagram.

switch for placing messages on the bus or taking messages off the

bus. The central control decides the next component to use the

bus for a message (call). The S (Unibus) differs from most switches

because any component can communicate with any other compo-
nent.

The types of messages in the PDP-11 are along the lines of the

hierarchical structure common to present day computers. The

single bus makes conventional and other structures possible.

The message processes in the structure which utilize S (Unibus)

are:

1 The central processor (Pc) requests that data be read or

written from or to primary memory (Mp) for instructions

and data. The processor calls a particular memory module

by concurrently specifying the module's address, and the

address within the modules. Depending on whether the

processor requests reading or writing, data is transmitted

either from the memory to the processor or vice versa.

2 The central processor (Pc) controls the initialization of

secondary memory (Ms) and terminal (T) activity. The

processor sets status bits in the control associated with a

particular Ms or T, and the device proceeds with the

specified action (e.g., reading a card, or punching a

character into paper tape). Since some devices transfer data

vectors directly to primary memory, the vector control

information (i.e., the memory location and length) is given
as initialization information.

3 Controls request the processor's attention in the form of

interrupts. An interrupt request to the processor has the

effect of changing the state of the processor; thus the

processor begins executing a program associated with the

interrupting process. Note, the interrupt process is only a

signaling method, and when the processor interruption

occurs, the interruptee specifies a unique address value to

the processor. The address is a starting address for a

program.

4 The central processor can control the transmission of data

between a control (for T or Ms) and either the processor or

a primary' memory for program controlled data transfers.

The device signals for attention using the interrupt dia-

logue and the central processor responds by managing the

data transmission in a fashion similar to transmitting
initialization information.

5 Some device controls (for T or Ms) transfer data directly
to/from primary memory without central processor inter-

vention. In this mode the device behaves similar to a

processor; a memory address is specified, and the data is

transmitted between the device and primary memory.

6 The transfer of data between two controls, e.g., a secon-

dary memory (disk) and say a terminal/T. display is not

precluded, provided the two use compatible message
formats.

As we show more detail in the structure there are, of course,

more messages (and more simultaneous activity). The above does

not describe the shared control and its associated switching which

is typical of a magnetic tape and magnetic disk secondary memory
systems. A control for a DECtape memory (Fig. 3) has an

S(
'

DECtape bus) for transmitting data between a single tape unit

and the DECtape transport. The existence of this kind of structure

is based on the relatively high cost of the control relative to the

cost of the tape and the value of being able to run concurrently
with other tapes. There is also a dialogue at the periphery
between X-T and X-Ms which does not use the Unibus. (For

example, the removal of a magnetic tape reel from a tape unit or a

human user (H) striking a typewriter key are typical dialogues.)

All of these dialogues lead to the hierarchy of present comput-
ers (Fig. 4). In this hierarchy we can see the paths by which the

above messages are passed (Pc-Mp; Pc-K; K-Pc; Kio-T and

Kio-Ms; and Kio-Mp; and, at the periphery, T-X and T-Ms; and

T.console-H).

Model 20 Implementation

Figure 5 shows the detailed structure ofa uni-processor. Model 20

PDP-11 with its various components (options). In Fig. 5 the

Unibus characteristics are suppressed. (The detailed properties of

the switch are described in the logical design section.)

Ms(#0:7; 'DECtape) ...

SpDECtape bus;

I
Iconcurrency i]

Kio( 'DECtape)
S Unlbus

J ^
Fig. 3. DECtape control switching PMS diagram.
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Fig. 4. Conventional hierarchy computer structure.

Extensions to Increase Performance

The reader should note (Fig. 5) that the important limitations of

the bus are: a concurrency of one, namely, only one dialogue can

occur at a given time, and a maximum transfer rate of one 16-bit

word per .75 |jLsec., giving a transfer rate of 21. 3 megabits/second.

While the bus is not a limit for a uni-processor structure, it is a

limit for multiprocessor structures. The bus also imposes an

artificial limit on the system performance when high speed

devices (e.g., TV cameras, disks) are transferring data to multiple

primary memories. On a larger system with multiple independent
memories the supply of memory cycles is 17 megabits/second

times the number of modules. Since there is such a large supply of

memory cycles/second and since the central processor can only

Pc'— T. console -

Mpl (#0)
|-

Mp(*7)-'

s=

Teletype; Model 33,35 ASR;

full duplex; 10 char/sec;

char set: ASCII; 8 bit/char

Tfpaper tape; reader;

IjOO char/sec; 8 bit/char

' Tfpaper tape;

[jOO char/»e

punch;

*ec; 8 bit/char

1 secondary/a; fixed head disk;

16 b/w; 32768 «; l.rate; 66 |is/«;

t. access: -^ 34 msec.

_K(60 cycle clock)— L(60 cycle line)—

*Mp(techoology: core; 4096 words; t. cycle; 1.2 ^s; t. access:

.6 ^s; 16 blts/vord)

"P(central/c; Model 30; Integrated circuit; general registers;

2 addresses/instruction; addresses are: register, stack .

Mp ; data types: bits, bytes, words, word Integers, byte

Integers, boolean vectors; 8 bits/byte; 16 bits/word

operations: (-f, -, / (optional), x (optional), /2, x2,

-1,
- (negate); v, =)> ;

H(processor state; 'general registers; 8 + 1 word; Integrat-

ed circuit))

^SCUnlbus; non-hierarchy; bus; concurrency: 1 ; 1 word/.75ns)

M
S
1
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resulting machine is not. A common classification of processors is

as zero-, one-, two-, three-, or three-plus-one-address machines.

This scheme has the form:

op n, 12, /3, lA

where l\ specifies the location (address) in which to store the

result of the binary operation {op) of the contents of operand
locations /2 and ?3, and lA specifies the location of the next

instruction.

The action of the instruction is of the form:

l\ <- 12 op 13; goto 14

concept (which, of course, is similar to a two-address scheme in

which one of the addresses is limited to small values), it is

important to recognize that any design is a compromise. There are

situations for which any of these schemes can be shown to be

"best." The IBM System/360 series uses a general register

structure, and their designers [Amdahl, Blaauw, and Brooks, 1964]

claim the following advantages for the scheme:

1 Registers can be assigned to various functions: base ad-

dressing, address calculation, fixed point arithmetic and

indexing.

2 Availability of technology makes the general registers

structure attractive.

The other addressing schemes assume specific values for one or

more of these locations. Thus, the one-address von Neumann

[Burks, Goldstine, and von Neumann, 1962] machines assumes ll

= 12 = the "accumulator" and lA is the location following that of

the current instruction. The two-address machine assumes Zl = 12;

l4 is the next address.

Historically, the trend in machine design has been to move
from a 1 or 2 word accumulator structure as in the von Neumann
machine towards a machine with accumulator and index regis-

ter(s).' As the number of registers is increased the assignment of

the registers to specific functions becomes more undesirable and

inflexible; thus, the general-register concept has developed. The
use ofan array ofgeneral registers in the processor was apparently
first used in the first-generation, vacuum-tube machine, PEGA-
SUS [Elliott et al.

, 1956] and appears to be an outgrowth of both 1-

and 2-address structures. (Two alternative structures—the early 2-

and 3-address per instruction computers may be disregarded,

since they tend to always access primary memory for results as

well as temporary storage and thus are wasteful of time and

memory cycles, and require a long instruction.) The stack concept

(zero-address) provides the most efficient access method for

specifying algorithms, since very little space, only the access

addresses and the operators, needs to be given. In this scheme the

operands of an operator are always assumed to be on the "top of

the stack." The stack has the additional advantage that arithmetic

expression evaluation and compiler statement parsing have been

developed to use a stack efiectively. The disadvantage of the stack

is due in part to the nature ofcurrent memory technology. That is,

stack memories have to be simulated with random access memo-

ries, multiple stacks are usually required, and even though small

stack memories exist, as the stack overflows, the primary memory
(core) has to be used.

Even though the trend has been toward the general register

'Due in part to needs, but mainly technology which dictates how large the

structure can be.

The System/360 designers also claim that a stack organized

machine such as the English Electric KDF 9 [Allmark and

Lucking, 1962] or the Burroughs B5000 [Lonergan and King,

1961] has the following disadvantages:

1 Performance is derived from fast registers, not the way they
are used.

2 Stack organization is too limiting and requires many copy
and swap operations.

3 The overall storage of general registers and stack machines
are the same, considering point 2.

4 The stack has a bottom, and when placed in slower memory
there is a performance loss.

5 Subroutine transparency is not easily realized with one
stack.

6 Variable length data is awkward with a stack.

We generally concur with points 1, 2, and 4. Point 5 is an

erroneous conclusion, and point 6 is irrelevant (that is, general

register machines have the same problem). The general-register

scheme also allows processor implementations with a high degree
of parallelism since instructions of a local block all can operate on

several registers concurrently. A set of truly general purpose

registers should also have additional uses. For example, in the

DEC PDP-10, general registers are used for address integers,

indexing, floating point, boolean vectors (bits), or program flags

and stack pointers. The general registers are also addressable as

primary memory, and thus, short program loops can reside within

them and be interpreted faster. It was observed in operation that

PDP-10 stack operations were very powerful and often used

(accounting for as many as 20% of the executed instructions, in

some programs, e.g., the compilers.)

The basic design decision which sets the PDP-11 apart was

based on the observation that by using truly general registers and

by suitable addressing mechanisms it was possible to consider the
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machine as a zero-address (stack), one-address (general register),

or two-address (memory-to-memory) computer. Thus, it is possi-

ble to use whichever addressing scheme, or mixture of schemes, is

most appropriate.

Another important design decision for the instruction set was to

have only a few data types in the basic machine, and to have a

rather complete set of operations for each data type. (Alternative

designs might have more data types with few operations, or few

data types with few operations.) In part, this was dictated by the

machine size. The conversion between data types must be easily

accomplished either automatically or with 1 or 2 instructions. The
data types should also be sufficiently primitive to allow other data

types to be defined by software (and by hardware in more

powerful versions of the machine). The basic data type of the

machine is the 16 bit integer which uses the two's complement
convention for sign. This data type is also identical to an address.

PDP-11 Model 20 Instruction Set (Basic Instruction Set)

A formal description of the basic instruction set is given in

Appendix 1 using the ISP notation [Bell and Newell, 1971]. The
remainder of this section will discuss the machine in a convention-

al manner.

Primary Memory. The primary memory (core) is addressed as

either 2'" bytes or 2'^ words using a 16 bit number. The linear

address space is also used to access the input-output devices. The
device state, data and control registers are read or written like

normal memory locations.

General Register. The general registers are named: R[0:7]

<15:0>'; that is, there are 8 registers each with 16 bits. The

naming is done starting at the left with bit 15 (the sign bit) to the

least significant bit 0. There are synonyms for R[6] and R[7]:

Stack Pointer/SP<15:0> ;= R[6]<15:0>. Used to access a

special stack which is used to store the state of interrupts, traps
and subroutine calls

Program Counter/PC<15:0> := R[7]<15:0>. Points to the

current instruction being interpreted. It will be seen that the

fact that PC is one of the general registers is crucial to the

design.

Any general register, R[0:7], can be used as a stack pointer. The

special Stack Pointer (SP) has additional properties that force it to

be used for changing processor state interrupts, traps, and

subroutine calls (It also can be used to control dynamic temporary

storage subroutines.)

'A definition of the ISP notation used here may be found in Chapter 4.

In addition to the above registers there are 8 bits used (from a

possible 16) for processor status, called PS<15:0> register. Four

bits are the Condition Codes (CC) associated with arithmetic

results; the T-bit controls tracing; and three bits control the

priority of running programs Priority <2:0>. Individual bits are

mapped in PS as shown in Appendix 1.

Data Types and Primitive Operations. There are two data

lengths in the basic machine: bytes and words, which are 8 and 16

bits, respectively. The non-trivia! data types are word length

integers (w.i.); byte length integers (by.i); word length boolean

vectors (w.bv), i.e., 16 independent bits (booleans) in a 1

dimensional array; and byte length boolean vectors (by.bv). The

operations on byte and word boolean vectors are identical. Since a

common use of a byte is to hold several flag bits (booleans), the

operations can be combined to form the complete set of 16

operations. The logical operations are: "clear," "complement,"
"inclusive or," and "implication" (x D y or ~ix V y).

There is a complete set of arithmetic operations for the word

integers in the basic instruction set. The arithmetic operations
are: add, subtract, multiply (optional), divide (optional), compare,
add one, subtract one, clear, negate, and multiply and divide by

powers of two (shift). Since the address integer size is 16 bits,

these data types are most important. Byte length integers are

operated on as words by moving them to the general registers

where they take on the value of word integers. Word length

integer operations are carried out and the results are returned to

memory (truncated).

The floating point instructions defined by software (not part of

the basic instruction set) require the definition of two additional

data types (of length two and three), i.e., double word (d.w.) and

triple (t.w.) words. Two additional data types, double integer (d.i.)

and triple floating point (t.f. or 1) are provided for arithmetic.

These data types imply certain additional operations and the

conversion to the more primitive data types.

Address (Operand) Calculation. The general methods provided
for accessing operands are the most interesting (perhaps unique)

part of the machine's structure. By defining several access

methods to a set of general registers, to memory, or to a stack

(controlled by a general register), the computer is able to be a 0, 1

and 2 address machine. The encoding ofthe instruction Source (S)

fields and Destination (D) fields are given in Fig. 10 together with

a list of the various access modes that are possible. (Appendix 1

gives a formal description of the effective address calculation

process.)

It should be noted from Fig. 10 that all the common access

modes are included (direct, indirect, immediate, relative, in-

dexed, and indexed indirect) plus several relatively uncommon
ones. Relative (to PC) access is used to simplify program loading.
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1 indlract-to a register, R[r] for addreaa of data

2 auto Increnent via register (pop) - use register aa address, then

, Increment register , / , j ,
3 auto Incrcocnt vis register (pop) - defer
4 auto decrement via register (push) - decrement register, then use

register as address

5 auto decrement Indirect - decrement register, then use regiater aa the

addreaa of the address of data

2 ImMdiate data - next full word la the data (r*PC)

3 direct data - next full word is the addreaa of data (r>PC)

6 direct Indexed • use next full word indexed with R[r] aa addreaa of data

7 direct indexed • indirect . uaa next full word indexed with R[r] aa the

addreaa of the addrcas of data

6 relative access - next full word plua K ia the addreaa (t"PC)

7 relative indirect acceaa - next full word plus PC Is the address of the

address of data (rsPC)

addreaa Increffient/al value la I or 2

Fig. 10. Address calculation formats.

while immediate mode speeds up execution. The relatively

uncommon access modes, auto-increment and auto-decrement,

are used for two purposes; access to stack under control of the

registers' and access to bytes or words organized as strings or

vectors. The indirect access mode allows a stack to hold addresses

of data (instead of data). This mode is desirable when manipulating

longer and variable-length data types (e.g., strings, double fixed

and triple floating point). The register auto increment mode may
be used to access a byte string; thus, for example, after each

access, the register can be made to point to the next data item.

This is used for moving data blocks, searching for particular

elements of a vector, and byte-string operations (e.g. , movement,

comparisons, editing).

This addressing structure provides flexibility while retaining

the same, or better, coding efficiency than classical machines. As

'Note, by convention a stack builds toward register 0, and when the stack

crosses 4008, a stack overflow occurs.

Attcablec foraat
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respectively. Instructions are specified by a 16-bit word. The most

common binary operator format (that for operations requiring two

addresses) is shown below.

15 ... 12: 11... 6; 5. . .

op D S

The other instruction formats are given in Fig. 12.

Instruction Interpretation Process. The instruction interpreta-

tion process is given in Fig. 13, and follows the common
fetch-execute cycle. There are three major states: (1)

interrupting
—the PC and PS are placed on the stack accessed by

the Stack Pointer/SP, and the new state is taken from an address

specified by the source requesting the trap or interrupt; (2) trace

(controlled by T-bit)
—

essentially one instruction at a time is

executed as a trace trap occurs after each instruction; and (3)

normal instruction interpretation. The five (lower) states in the

diagram are concerned with instruction fetching, operand fetch-

ing, executing the operation specified by the instruction and

storing the result. The non-trivial details for fetching and storing

the operands are not shown in the diagram but can be constructed

from the effective address calculation process (Appendix 1). The

state diagram, though simplified, is similar to 2- and 3-address

computers, but is distinctly different than a 1 address (1 accumula-

tor) computer.

Biliary rlthmetic and logical operations: i bop I
S

|
D

torn: D •- S b D

exanple: ADD ( : z.boD=sOOI 0) -. (CC ,D .- IHS) ;

u°p| o]Unary arichnetic and logical operation:

forn: D «- u D;

exanples: NEC (:.uop.OOOOIOnOO) -. (CC.D - - 0) . negate

ASL (:.uop.OOOOOnOOH) -. (CC,D D x 2); shift left

Braach (relative) operators: | brop |
offset

[

for«: if brop condition then (PC .- PC + offset);

exaaple: BEQ (: . brop •
03, j)

(Z -. (PC ^ PC + offset)):

Juap: lo OOP OOP 001 I
D

I

forn; PC .- D + Pc

Juap to subroutine:
|

POP IPO

save R[sr] on stack, enter subroutine st D + PC

Misc. operationa: | op code ]

forn: ST ^ f

exa^le: HALT (: . instruction - 0) -< (RUM •-0);

'note: these instructions are all 1 uord. D and/or S say each require 1

additional i^diate data or address word. Thus instructions can

be 1, 2, or 3 words long.

Interrupt request V

Trap request

laacruction Baacuta
States

Fig. 12. PDP-11 instruction formats (simplified).

Fig. 13. PDP-11 instruction interpretation process state diagram.

The ISP description (Appendix 1) gives the operation of each of

the instructions, and the more conventional diagram (Fig. 12)

shows the decoding of instruction classes. The ISP description is

somewhat incomplete; for example, the add instruction is defined

as: ADD (:= bop =
0010) ^ (CC,D -^ D -H S); addition does not

exactly describe the changes to the Condition Codes/CC (which

means whenever a binary opcode [bop] of OOIO2 occurs the ADD
instruction is executed with the above effect). In general, the CC
are based on the result, that is, Z is set if the result is zero, N if

negative, C if a carry occurs, and V ifan overflow was detected as a

result of the operation. Conditional branch instructions may thus

follow the arithmetic instruction to test the results of the CC bits.

Examples of Addressing Schemes

Use as a Slack (Zero Address) Machine. Figure 14 lists typical

zero-address machine instructions together with the PDP-11

instructions which perform the same function. It should be noted

that translation (compilation) from normal infix expressions to

reverse Polish is a comparatively trivial task. Thus, one of the

primary reasons for using stacks is for the evaluation of expressions

in reverse Pohsh form.
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followed by a data exchange with the requested device. The

dialogues are: Interrupt; Data In and Date In Pause; and Data Out

and Data Out Byte.

Interrupt. Interrupt can be initiated by a master immediately

after receiving bus mastership. An address is transmitted from the

master to the slave on Interrupt. Normally, subordinate control

devices use this method to transmit an interrupt signal to the

processor.

Data In and Data In Pause. These two bus operations transmit

slave's data (whose address is specified by the master) to the

master. For the Data In Pause operation data is read into the

master and the master responds with data which is to be rewritten

in the slave.

Data Out and Data Out Byte. These two operations transfer

data from the master to the slave at the address specified by the

master. For Data Out a word at the address specified by the

address lines is transferred from master to slave. Data Out Byte

allows a single data byte to be transmitted.

Processor Logical Design

The Pc is designed using TTL logical design components and

occupies approximately eight 8" x 12" printed circuit boards. The

organization of the logic is shown in Fig. 16. The Pc is physically

connected to two other components, the console and the Unibus.

The control for the Unibus is housed in the Pc and occupies one of

the printed circuit boards. The most regular part of the Pc, the

arithmetic and state section, is shown at the top of the figure. The

16-word scratch-pad memory and combinatorial logic data opera-

tors, D(shift) and D(adder, logical ops), form the most regular part

of the processors structure. The 16-word memory holds most of

the 8-word processor state found in the ISP, and the 8 bits that

form the Status word are stored in an 8-bit register. The input to

the adder-shift network has two latches which are either memo-
ries or gates. The output of the adder-shift network can be read to

either the data or address parts of the Unibus, or back to the

scratch-pad array.

The instruction decoding and arithmetic control are less regular

than the above data and state and these are shown in the lower

part of the figure. There are two major sections: the instruction

fetching and decoding control and the instruction set interpreter

(which in effect defines the ISP). The later control section

operates on, hence controls, the arithmetic and state parts of the

Pc. A final control is concerned with the interface to the Unibus

(distinct from the Unibus control that is housed in the Pc).

Conclusions

In this paper we have endeavored to give a complete description

of the PDP-11 Model 20 computer at four descriptive levels.

These present an unambiguous specification at two levels (the

PMS structure and the ISP), and, in addition, specify the

constraints for the design at the top level, and give the reader

some idea of the implementation at the bottom level logical

design. We have also presented guidelines for forming additional

models that would belong to the same family.
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APPENDIX 1 PDP-11 ISP

begin

! This is a sunmary description of a POP-11/70 processor written
I in the ISPS language.

1 This summary explicitly deTines the instruction fetch and execute
! cycles of the POP-n/70.

! Most of the actual instruction execution descriptions have been

t eliminated. However, at least one instruction from eacli of

1 the major instruction classes is described in full.

t Ihe memory management description has been eliminated from this summary,

! The register mapping ROM initialization has been eliminated
! from the summary. If simulations ai'e performed, R(GROH[63:0]
I should be initialised by use of an external RLAO file.

••MP.State**

! Macro definitions to allow easy change of memory configuration.
! The 11/70 allows addressing up to 2M • 2 bytes. A smaller
! memory is declared for simulator space effic iency .

macro max. byte := [#167777 |. I (28k
* 2 bytes)

MR[max.byte:0]<7 :0>. ! Ihe addressing space
MW[max.byte:0]<15:0>(increioent:2] := HU[max . by te: 0]<7 :0>.

HaiO[#17777777:#17760000]<7:0>. ! Ihe i/0 page (4k)

HWIO[*I 7777777 :#17750000]< 15 :0>( increment: 2) :- MB IO[l'l 7777777 : #17760000 ]<7 :0> .

MARNHemory.addr. reg<21 :0>.

HBRVHemory.buff .reg<!5:0>.
bmbr\byte.mbr<7:0> := M«R<7:0>.

••VC.State*"

R\register[lS:0]<15:0> . ! Register file including two sets of general
! registers: R0-R5 (address 0000-0101, 1000-1101).
! One program counter {address 0111), and three
! Stack pointers (address 0110,1110.1111)

PC<15:0>

macro SP
macro link

R['0in]<15:0>. Only 1 program counter

IR[cmode<0>e' n8(cmode<l> and cmode<0>)] |.

|R[rs9-101] I
. ! Two RS'

Stack pointer (3)
(subroutine t ink)

PS<15:0> := HBIO[#17777777 :#1 7777776]< 7 : 0> ,

cm\current.mode<l:0> := PS<15:14>,

macro kernel
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MAR = R[sr] next



APPENDIX 1 (cont'd.)

|)s. ItMiip MUR tioxt

sLkrol
( ) : Mim = PS next

MAH = SP next

wrile[hyle. access) next

slkief{ ); HIJR = PC next
MAH = SP next
wr i te(by Le. access) next

pin
= cm next

I'C ^ pc.lemp: PS = ps.temp
end.

instr. trap\instruct ion. trap ( lrap.veclor<8:0>) :=

beg in

tntvec( trap. vector) next
If bus. error => a = 2 1 Hall the protessop-
end ,

01.1 I'C and I'S sav.

in now space

* Reserved and illegal
1 Opcode service

occurs here

Trap and interrupt service routines. Service is called after each

instruction is complete. Ttie trap pending of tiie higliest priority is

activated. If a trap was set by illegal, reserved or trap

instructions then the l>C and PS have already been pushed and the new

PC and PS are loaded. An additional trap is permitted.

g ran t\bus. grant, processing, rout ine{ type. requesK 15 :0>) :
=

begin
a : next

intvec( type. request) next

I EAVt service
end.

service :=

begin
IF bus. error =>

begin
bus. error = next ! Bus error

intvec(cpu. errors) next
If bus. error =>

beg in

a =^ 2 next
L[AVE service
end next

LfAVE service
end

end

•Instruct ion. Interpretation**

! Initialization sequence

start{main} :=

begin
zeros = 0;

[DHREG = 0;

a = next

run{)
end.

1 Main run cycle of the ISP

run\ instruct ion . interpretat ion :
 

beg in

If go =>

beg in

state = trap .instr = 0;

MAR = I'C next
DICOnt HAH<0> =>

beg in

:= begin
cmode - cm; regf 1

read(D) next
IR = MBR: PC = PC > 2 next

byte. access = byop : trace . f lag
= t;

sr = Rtf,ROM[ cmode 9 rs S srcreg];
dr = RtGHOM[cinode fl rs 8 desreg];
state = 1 next

execO
end,

1 :
= odderr( )

! Ini t ial i/0 zeros
1 Clear a! 1 cpu errors
t Clear activity

Must be even here

1 Even

Instruction fetch
ne

I Call error routine for
! Odd address error processing

end next
If HAI T => SIOP{ ) next
slate = 2 next
serv ice( ) next
RESTART run
end

•• !nslruct ion. Execut ion**

execVinst ruction. execution

begin
DECODE bop =>

beg in

reserop{).
MOV{ ) .

CMP := no.op( ) .

= BIT :
= no.opj ) ,

= Die :
= no.Op{ ),

= BIS :
= no.opi ),

= begin
DECOOE byte. access ->

beg in

0 -.'- ADD := no.opO.

Reserved op code
Hove i nstruct ion

Compare instruct ion

Bit Lest instruction
Bil clear instruct ion

11 it set instruct ion

I Add and subtract

end
end .

no.op( )

SUB :
^ no.op( )

! Extended instruction set

and,

reseropx reserve . op . code :
^

begin
DECODE resop =>

beg in

;
 branop( ) .

1 : classopj)
end

end,

branopXhranch .op .codes :
=

beg in

niCuni (jetop 9 brop)<3;0>
beg t

#00
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s inglopNs ingle. ope rand. instruct ions :

beg in

DtCODE uop =>

begin
CLR{).

#1 := COM :- no.op{ )

#2 := INC := no.Op{)
DEC := no.op{ )

NEG := no.op{ )

ADC := no.op( )

SBC :=^ 110. op{ )

:= TEST := no,op()
end

end,

shiflopNsli if t . instructions

beg in

DECODE uop =>

begin

! Clear/byte
I Complement/byte
I I Mcrenient/byte
I Decrement/byte
! Negate/byte
I Add carry/byte
! Subtract carry/byte
! Eest/byte

06
Ml
end

ROR( ) . ! Rotate right/byte
= ROl :' no.op{). ! Rotate left/byte
s ASR ;= no.opO. ! Arithmetic shift right/byte
= ASL := no.opO. ' Arithmetic shift left/byte
= HARK := no.op( ). I Mark
- HEP :

= no.op( ) , 1 Hove from previous instruct ion
= HTP := no.op(), ! Hove to previous instruction
= SXT := no.op() ! Sign extend

end.

' :» ! Move and Hove Byte
I HOV opcode #01. HOVB op code #11

begin
sourceO next

destO next
IF regfig and byte. access =>

beg in

source <= source<7:0>;
byte. access '

end next
Mi)R

' source next
setcc(MBR, 0. MBR);
write(byte. access)
end.

! . . . . I Indicates instruction descriptions
I .... ) not included in th is summary

1 Sub rout ine . Emulator Trap . and Trap instruct ion execut ion

JSR := 1 Jump to subroutine. JHP op code *004
beg in

DFCOnt (dm 8 dd) eql =>

begin
:= begin I False

dest() next

temp ^ HAR<15:0> next
stkrer( ) next
HAR = SP: HBR = «[sr] next

write( byte. access) next

R[sr] = PC next
PC = temp<15:0>
end ,

1 :- instr. trap( i1 I . instr) I True
end

end.

EHT := I Emulator trap op codes. EHT op code #104000 :jriD4377

begin
intvec(emt . trap) : trap. instr » 1

end.

TRAP :' 1 Irap op codes. TRAP op code #104400 :#I04777
begin
intvec( trap. trap) ; trap. instr - 1

end,

I Single operand instruction execution

CLR :> ! Clear and clear byte,
! CLR op code #0050. CLRB op code #1050

begin
cc = '0100 next

destO next
HIiR -- next
wi- ite(byte. access)
end.

I Jump, swab execution and register operation decode

JHP ;= I Jump. JUMI' op code #0001

beg in

Dl CODI (dm 9 dd) oql =>

beg in

= (destO next PC = MAR).
= instr. trap( ill. instr)

I False
1 True

SWAB :- ! Swap bytes. SWAB op code #0003

begin
d. read(byte. access) next
HBR - bmbr 9 H(iR<15:8> next
C = V = 0; N = MBR<7>: Z = HBR<7:0> eql 0;
IF d neq #07 => write(byte. access)
end.

I Shift instruction execution

ROR := ! Rotate right and rotate right byte.
! ROR op code #0060, RORB op code #1060

beg in

d. read (byte. access) next
DECODE byte. access =>

begin
:" (temp<16:0> =

(c 8 HBR) srr 1 next
c = temp<16>; HBR = temp<15:0>).

1 := (lemp<a:0> =
(c 9 bmbr) srr 1 next

c = temp<0> ; bmbr = tenip<7 : 0>)
end next

setcc(temp. 0. temp) next
V = H xor C next
write (byte. access)
end.

CPU control instruction execution

begin
DECODE kernel =>

begin
:= (illhlt

1 := a = 2

end
end

,

Halt. HALT op code #000000

intvec{cpu.errors)). I No
I Yes

RTS := 1 Return from subroutine. RTS op code #00020
beg in

PC = Rfdr] next MAR = SP next
read (byte. access) next
SP = SP + 2 next

R[dr] = HBR
end.

1

end end of description
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Chapter 39

Implementation and Performance

Evaluation of the PDP-11 Family

Edward A. Snow / Daniel P. Siewiorek

In order that methodologies useful in the design of complex systems may

be developed, existing designs must be studied. The DEC PDP-11 was

selected for a case study because there are a number of designs (eight are

considered here), because the designs span a wide range in basic

performance (7 to 1) and component technology (bipolar SSI to MOS LSI),

and because the designs represent relatively complex systems.

The goals of the chapter are twofold: (1) to provide actual data about

design tradeoffs and (2) to suggest design methodologies based on these

data. An archetypical PDP-11 implementation is described.

Two methodologies are presented. A top-down approach uses micro-

cycle and memory-read-pause times to account for 90 percent of the

variation in processor performance. This approach can be used in initial

system planning. A bottom-up approach uses relative frequency of

functions to determine the impact of design tradeoffs on performance.

This approach can be used in design-space exploration of a single design.

Finally, the general cost/performance design tradeoffs used in the PDP-11

are summarized.

1. Introduction

experiment where several designers perform the same task. By

contrasting the results, the range of design variation and tech-

nique can be established [Thomas and Siewiorek, 1977]. Howev-

er, this approach is limited to fairly small design situations

because of the redundant use of the human designers.

The second approach examines a series of existing designs that

meet the same fiinctional specification while spanning a wide

range of design constraints in terms of cost, performance, etc.

This paper considers the second approach and uses the DEC
PDP-11' minicomputer line as a basis of study. The PDP-11 was

selected on account ofthe large number of implementations (eight

are considered here) with designs spanning a wide range in

performance (roughly 7 to 1) and component technology (bipolar

SSI, MSI, MOS custom LSI). The designs are relatively complex
and seem to embody good design tradeoffs as ultimately reflected

by their price/performance and commercial success.

Attention here is focused mainly upon the CPU. Memory
performance enhancements such as caching are considered only \

insofar as they impinge upon CPU performance.

This paper is divided into three major parts. The first part (Sec.

2) provides an overview of the PDP-11 functional specification (its

architecture) and serves as background for subsequent discussion

ofdesign tradeoffs. The second part (Sec. 3) presents an archetypi-

cal implementation. The last part (Sees. 4 and 5) presents

methodologies for determining the impact of various design

parameters on system performance. The magnitude of the impact

is quantified for several parameters, and the use of the results in

design situations is discussed.

As semiconductor technology has evolved, the digital systems

designer has been presented with an ever-increasing set of

primitive components from which to construct systems: standard

SSI, MSI, and LSI, as well as custom LSI components. This

expanding choice makes it more difficult to arrive at a near-

optimal cost/performance ratio in a design. In the case of highly

complex systems, the situation is even worse, since different

primitives may be cost-effective in different subareas of such

systems.

Historically, digital system design has been more of an art than

a science. Good designs have evolved from a mixture of experi-

ence, intuition, and trial and error. Only rarely have design

methodologies been developed (among those that have are

two-level combinational logic minimization and wire-wrap routing

schemes, for example). Effective design methodologies are essen-

tial for the cost-effective design of more complex systems. In

addition, if the methodologies are sufficiently detailed, they can

be applied in high-level design automation systems [Siewiorek

and Barbacci, 1976].

Design methodologies may be developed by studying the

results of the human design process. There are at least two ways

to study this process. The first involves a controlled design

2. Architectural Overview

The PDP-11 family is a set of small- to medium-scale stored-

program central processors with compatible instruction sets [Bell

et al, 1970]. The family evolution in terms of increased perform-

ance, constant cost, and constant performance successors is traced

in Fig. 1.^ Since the 11/45, 11/55, and 11/70 use the same

processor, only the 11/45 is treated in this study.

A PDP-11 system consists of three parts: a PDP-11 processor, a

collection of memories and peripherals, and a link called the

Unibus over which they all communicate (Fig. 2).

A number of features, not otherwise considered here, are

available as options on certain processors. These include memory

management and floating-point arithmetic. The next three sub-

'DEC, PDP, LSI-U, Unibus, and Fastbus are registered trademarks of

Digital Equipment Corporation.

^The original equipment manufacturer (OEM) versions of the 11/10,

11/20, and 11/40 are the 11/05, 11/15, and 11/35 respectively. The OEM
machines are electrically identical (or nearly so) to their end-user

counterparts, the distinction being made for marketing purposes only.
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Fig. 1. PDP-11 family tree.

sections summarize the major architectural features of the

PDP-11, including memory organization, processor state, ad-

dressing modes, instruction set, and Unibus protocol. The
references list a number of processor handbooks and other

documents which provide a more precise definition ofthe PDP-11
architecture than is possible here.

2. 1 Memory and Processor State

The central processor contains the control logic and data paths for

instruction fetching and execution. Processor instructions act

upon operands located either in memory or in one of eight general

registers. These operands may be either 8-bit bytes or 16-bit

words.

Memory is byte- or word-addressable. Word addresses must be
even. If N is a word address, then N is the byte address of the

low-order byte of the word and N -)- 1 is the byte address of the

high-order byte of the word. The control and data registers of

peripheral devices are also accessed through the memory address

space, and the top 4 kilowords of the space are reserved for this

purpose.

The general registers are 16 bits in length and are referred to as

RO through R7. R6 is used as the system stack pointer (SP) to

maintain a push-down list in memory upon which subroutine and

<
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diverse data structures such as stacks and tables. When used with

the program counter these modes enable immediate operands and

absolute and PC-relative addressing. The deferred modes permit
indirect addressing.

The PDP-11 instruction set is made up of the following types of

instructions:

Single-operand instructions. A destination operand is fetched

by the CPU, modified in accordance with the instruction, and
then restored to the destination.

Double-operand instructions. A source operand is fetched,

followed by the destination operand. The appropriate opera-
tion is performed on the two operands and the result restored

to the destination. In a few double-operand instructions, such

as Exclusive OR (XOR), source mode (register addressing) is

implicit.

Branch instrtictions. The condition specified by the instruction

is checked, and if it is true, a branch is taken using a field

contained in the instruction as a displacement from the current

instruction address.

Jumps. Jump instructions allow sequential program flow to be

altered either permanently (in a jump) or temporarily (in a

jump to subroutine).

Control, trap, and miscellaneous instructions. Various instruc-

tions are available for subroutine and interrupt returns, halts,

etc.

Floating-point instructions. A floating-point processor is avail-

able as an option with several PDP-11 CPUs. Floating-point

implementation will not be considered in this paper.

For the purpose of looking at the instruction execution cycle of

the various PDP-11 processors, each cycle shall be broken into

five distinct phases:'

Fetch. This phase consists of fetching the current instruction

from memory and interpreting its opcode.

Source. This phase entails fetching the source operand for

double-operand instructions from memory or a general regis-

ter and loading it into the appropriate register in the data paths
in preparation for the execute phase.

Destination. This phase is used to get the destination operand
for single- and double-operand instructions into the data paths
for manipulation in the execute phase. For JMP and JSR
instructions the jump address is calculated.

Execute. During this phase the operation specified by the

'N.B.: The instruction phase names are identical to those used by DEC;
however, their application here to a state within a given machine may
differ from DEC's since the intent here is to make the discussion

consistent over all machines.

current instruction is performed and any result rewritten into

the destination. '

Service. This phase is only entered between execution of the

last instruction and fetch of the next to grant a pending bus

request, acknowledge an interrupt, or enter console mode
after the execution of a HALT instruction or activation of the

console halt key.

2.3 The Unibus

All communication among the components of a PDP-11 system

takes place on a set of bidirectional lines referred to collectively as

the Unibus. The LSI-11 is an exception and uses an adaptation of

the Unibus. The Unibus lines carry address, data, and control

signals to all memories and peripherals attached to the CPU.

Transactions on the Unibus are asynchronous with the processor.

At any given time there will be one device which it addresses, the

addressed device becoming the bus slave. This communication

may consist of data transfers or, in the case where the processor is

slave, an interrupt request. The data transfers which may be

initiated by the master are:

DATO Data out—A word is transferred from master to

slave.

DATOB Data out, byte
—A byte is transferred from master to

slave.

DATI Data in—A word is transferred from slave to master.

DATIP Data in, pause
—A word is transferred from slave to

master and the slave awaits a transfer from master

back to slave to replace the information that was

read. The Unibus control allows no other data

transfer to intervene between the read and the

write cycles. This makes possible the reading and

alteration of a memory location as an indivisible

operation. In addition it permits the use of a

read/modify/write cycle with core memories in

place of the longer sequence of a read cycle followed

by a write cycle.

3. PDP-11 Implementation

The midrange PDP-ll's have comparable implementations, yet

their performances vary by a factor of 7. This section discusses the

features common to these implementations and the variations

found between machines which provide the dimensions along

which they may be characterized.

3.1 Common Implementation Features

All PDP-11 implementations can be decomposed into a set of data

paths and a control unit. The data paths store and operate upon

byte and word data and interface to the Unibus, which permits
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The inputs to the ALU are the A leg and the B leg. The A leg is

normally fed from a multiplexer (Aleg MUX), which may select

from an operand supplied it from the scratch-pad memory (SPM)
and possibly from a small set of constants and/or the processor

status register (PS). The B leg also is typically fed from its own

MUX (Bleg MUX), its selections being among the B register and

certain constants. In addition, the Bleg MUX may be configured

so that byte selection, sign extension, and other functions may be

performed on the operand which it supplies to the ALU.

Following the ALU is a multiplexer (the AMUX) typically used

to select between the output of the ALU, the data lines of the

Unibus, and certain constants. The output of the AMUX provides
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the only feedback path in all midrange PDP-11 implementations

except the 11/60 and acts as an input to all major processor

registers.

The internal registers lie at the beginning ofthe data paths. The
instruction register (IR) contains the current instruction. The bus

address register (BA) holds the address placed on the Unibus by
the processor. The program status register (PS) contains the

processor priority, memory-management-unit modes, condition

code flags, and instruction trace-trap enable bit. The scratch-pad

memory (SPM) is an array of 16 individually addressable registers

which include the general registers (RO to R7) plus a number of

internal registers not accessible to the programmer. The B

register (Breg) is used to hold the B leg operand supplied to the

ALU.

The variations from this archetype are surprisingly minor. The
most frequently used elements (such as the ALU and SPM) are

relatively fixed in their position in the data paths from implemen-
tation to implementation. Elements which are less frequently

used, and hence have less of an impact on performance, can be

seen to occupy positions which vary more between implementa-
tions. Variations to be encountered include routings for the bus

address and processor status register; the point of generation for

certain constants; the position of the byte swapper, sign extender,

and rotate/shift logic; and the use of certain auxiliary registers

present in some designs and not others.

3.1.2 Control Unit. The control unit for all PDP-11 processors

(with the exception of the PDP-11/20) is microprogrammed
[Wilkes and Stringer, 1953]. The considerations leading to the use

of this style of control implementation in the PDP-11 are

discussed in O'Loughlin [1975]. The major advantage of micropro-

gramming is flexibility in the derivation of control signals to gate

register transfers, to synchronize with Unibus logic, to control

microcycle timing, and to evoke changes in control flow. The way
in which a microprogrammed control unit accomplishes all of

these actions impacts performance.

Figure 4 represents the archetypical PDP-11 microprogram-
med control unit. The contents of the microaddress register

determine the current control-unit state and are used to access the

next microinstruction word from the control store. Pulses from

the clock generator strobe the microword and microaddress

registers, loading them with the next microword and next

microaddress, respectively. Repeated clock pulses thus cause

the control unit to sequence through a series of states. The

period spent by the control unit in one state is called a micro-

cycle (or simply cycle when this does not lead to confusion with

memory or instruction cycles), and the duration of the state as

determined by the clock is known as the cycle time. The
microword register shortens cycle time by allowing the next micro-

word to be fetched from the control store while the current

microword is being used.
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Most of the fields of the microword supply signals for condition-

ing and clocking the data paths. Many of the fields act directly or

with a small amount of decoding, supplying their signals to

multiplexers and registers to select routings for data and to enable

registers to shift, increment, or load on the master clock. Other

fields are decoded according to the state of the data paths. An

instance of this is the use ofauxiliary ALU control logic to generate

function-select signals for the ALU as a function of the instruction

contained in the IR. Performance as determined by microcycle

count is in large measure established by the connectivity of

the data paths and the degree to which their functionality

can be evoked by the data-path control fields of the microprogram
word.

The complexity of the clock logic varies with each implementa-
tion. Typically the clock is fixed at a single period and duty cycle;

however, processors such as the 11/34 and 11/40 can select from

two or three different clock periods for a given cycle depending

upon a field in the microword register. This can significantly

improve performance in machines where the longer cycles are

necessary only infrequently.

The clock logic must provide some means for synchronizing

processor and Unibus operation, since the two operate asynchro-

nously with respect to one another. Two alternate approaches are

employed in midrange implementations. Interlocked operation,

the simpler approach, shuts off the processor clock when a Unibus

operation is initiated and turns it back on when the operation is

complete. This effectively keeps microprogram flow and Unibus

operation in lockstep with no overlap. Overlapped operation is a

somewhat more involved approach which continues processor

clocking after a DAT! or DATIP is initiated. The microinstruction

requiring the result of the operation has a function bit set which

turns off the processor clock until the result is available. This

approach makes it possible for the processor to continue running
for several microcycles while a data transfer is being performed,

improving performance.
The sequence of states through which the control unit passes

would be fixed if it were not for the branch-on-microtest (BUT)

logic. This logic generates a modifier based upon the current state

of the data paths and Unibus interface (contents of the instruction

register, current bus requests, etc.) and a BUT field in the

microword currently being accessed from the control store, which

selects the condition on which the branch is to be based. The

modifier (which will be zero in the case that no branch is selected

or that the condition is false) is ORed in with the next microin-

struction address so that the next control-unit state is not only a

function of the current state but also a fiinction of the state of the

data paths. Instruction decoding and addressing mode decoding
are two prime examples of the application of BUTs. Certain code

points in the BUT field do not select branch conditions, but rather

provide control signals to the data paths, Unibus interface,

or the control unit itself These are known as active or working
BUTs.

The JAM logic is a part of the microprogram flow-altering

mechanism. This logic forces the microaddress register to a known
state in the event of an exceptional condition such as a memory
access error (bus timeout, stack overflow, parity error, etc.) or

power-up by ORing all Is into the next microaddress through the

BUT logic. A microroutine beginning at the address of all Is

handles these trapped conditions. The old microaddress is not

saved (an exception to this occurs in the case of the PDP-11/60);

consequently, the interrupted microprogram sequence is lost and

the microtrap ends by restarting the instruction interpretation

cycle with the fetch phase.

The structure of the microprogram is determined largely by the

BUTs available to implement it and by the degree to which special

cases in the instruction set are exploited by these BUTs. This may
have a measurable influence on performance as in the case of

instruction decoding. The fetch phase of the instruction cycle is

concluded by a BUT that branches to the appropriate point in the

microcode based upon the contents of the instruction register.

This branch can be quite complex, since it is based upon source

mode for double-operand instructions, destination mode for

single-operand instructions, and op code for all other types of

instructions. Some processors can perform the execute phase of

certain instructions (such as set/clear condition code) during the

last cycle of the fetch phase; this means that the fetch or service

phase for the next instruction might also be entered from BUT
IRDECODE. Complicating the situation is the large number of

possibilities for each phase. For instance, there are not only eight

different destination addressing modes, but also subcases for each

that vary for byte and word and for memory-modifying, memory-

nonmodifying, MOV, and JMP/JSR instructions.

Some PDP-11 implementations such as the 11/10 make as much
use of common microcode as possible to reduce the number of

control states. This allows much of the IR decoding to be deferred

until some later time into a microroutine which might handle a

number of different cases; for instance, byte- and word-operand

addressing is done by the same microroutine in a number of

PDP-lls. Since the cost of control states has been dropping with

the cost of control-store ROM, there has been a trend toward

providing separate microroutines optimized for each special case,

as in the 11/60. Thus more special cases must be broken out at the

BUT IRDECODE, and so the logic to implement this BUT
becomes increasingly involved. There is a payoff, though, because

there are a smaller number of control states for IR decoding and

fewer BUTs. Performance is boosted as well, since frequently

occurring special cases such as MOV register to destination can be

optimized.
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4. Measuring the Effect of Design
Tradeoffs on Performance

There are two alternative approaches to the problem of determin-

ing just how the particular binding of different design decisions

affects the performance of each machine:

1 Top-down approach. Attempt to isolate the effect of a

particular design tradeofiF over the entire space of imple-

mentations by fitting the individual performance figures for

the whole family of machines to a mathematical model

which treats the design parameters as independent varia-

bles and performance as the dependent variable.

2 Bottom-up approach. Make a detailed sensitivity analysis of

a particular tradeofiF within a particular machine by compar-

ing the performance of the machine both with and without

the design feature while leaving all other design features

the same.

Each approach has its assets and liabilities for assessing design

tradeofiFs. The first method requires no information about the

implementation of a machine, but does require a sufficiently large

collection of different implementations, a sufiRciently small num-

ber of independent variables, and an adequate mathematical

model in order to explain the variance in the dependent variable

to some reasonable level of statistical confidence. The second

method, on the other hand, requires a great deal of knowledge

about the implementation of the given system and a correspond-

ingly great amount of analysis to isolate the effect of the single

design decision on the performance of the complete system. The

information that is yielded is quite exact, but applies only to the

single point chosen in the design space and may not be genera-

lized to other points in the space unless the assumptions

concerning the machine's implementation are similarly generahz-

able. In the following subsections the first method is used to

determine the dominant tradeoffs and the second method is used

to estimate the impact of individual implementation tradeoffs.

4. 1 Quantifying Performance

Measuring the change in performance of a particular PDP-11

processor model due to design changes presupposes the existence

of some performance metric. Average instruction execution time

was chosen because of its obvious relationship to instruction-

stream throughput. Neglected are such overhead factors as direct

memory access, interrupt servicing, and, on the LSI-11, dynamic

memory refresh. Average instruction execution times may be

obtained by benchmarking or by calculation from instruction

frequency and timing data. The latter method was chosen because

of its freedom from the extraneous factors noted above and from

the normal clock rate variations found from machine to machine

of a given model. This method also allows us to calculate the

change in average instruction execution time that would result

from some change in the implementation. Such frequency-driven

design has already been applied in practice to the PDP-11/60

[Mudge, 1977].

The instruction frequencies are tabulated in Appendix 1 and

include the frequencies of the various addressing modes. These

figures were calculated from measurements made by Strecker' on

7.6 million instruction executions traced in 10 different PDP-11

instruction streams encountered in various applications. While

there is a reasonable amount of variation of frequencies from one

stream to the next, the figures should be representative.

Instruction times were tabulated for each of the eight PDP-11

implementations and reported in Snow and Siewiorek [1978].

These times were calculated from the engineering documents for

each machine. The times differ from those published in the

PDP-11 processor handbooks for two reasons. First, in the

handbooks, times have been redistributed among phases to ease

the process of calculating instruction times. In Snow and Siewio-

rek the attempt has been made to accurately characterize each

phase. Second, there are inaccuracies in the handbooks arising

from conservative timing estimates and engineering revisions.

The figures included here may be considered more accurate.

A performance figure is arrived at for each machine by

weighting its instruction times by frequency. The results, given in

Table 1, form the basis of the analyses to follow.

4.2 Analysis of Variance of PDP-11

Performance: Top-Down Approach

The first method of analysis described above will be employed in

an attempt to explain most of the variance in PDP-11 performance

in terms of two parameters:

1 Microcycle time. The microcycle time is used as a measure

of processor performance which excludes the effect of the

memory subsystem.

2 Memory-read-pause time. The memory-read-pause time is

defined as the period of time during which the processor

clock is suspended during a memory read. For machines

with processor/Unibus overlap, the clock is assumed to be

turned off by the same microinstruction which initiates the

memory access. Memory-read-pause time is used as a

measure of the memory subsystem's impact on processor

performance. Note that this time is less than the memory
access time since all PDP-11 processor clocks will continue

to run at least partially concurrently with a memory access.

'Private communication.
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Table 1 Average PDP-11 Instruction Execution Times in Microseconds
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^2, average instruction time is more sensitive to microcycle time

than to memory-read-pause time by a factor of ki/k2 or approxi-

mately 10. The imphcation for the designer .is that much more

performance can be gained or lost by perturbing the microcycle
time than the memory-read-pause time.

Although this method lacks statistical rigor, it is reasonably safe

to say that memory and microcycle speed do have by far the

largest impact on performance and that the dependency is

quantifiable to some degree.

4.3 Measuring Second-Order Effects: Bottom-up Approach

It is a great deal harder to measure the efiect of other design
tradeoffs on performance. The approximate methods employed in

the previous section cannot be used, because the effects being
measured tend to be swamped out by first-order effects and often

either cancel or reinforce one another, making linear models
useless. For these reasons such tradeoffs must be evaluated on a

design-by-design basis as explained above. This subsection will

evaluate several design tradeoffs in this way.

4.3.1 Effect of Adding a Byte Swapper to the 11/10. The
PDP-11/10 uses a sequence of eight shifts to swap bytes and access

odd bytes. While saving the cost of a byte swapper, this has a

negative effect on performance. In this subsection the perform-
ance gained by the addition of a byte swapper either before the B
register or as part of the Bleg multiplexer is calculated. Adding a

byte swapper would change five different parts of the instruction

interpretation process: the source and destination phases where
an odd-byte operand is read from memory, the execute phase
where a swap byte instruction is executed in destination mode
and in destination modes 1 through 7, and the execute phase
where an odd-byte address is modified. In each of these cases

seven fast shift cycles would be eliminated and the remaining

normal-speed shift cycle could be replaced by a byte swap cycle

resulting in a saving of seven fast shift cycles or 1.050
\i.s. None of

this time would be overlapped with Unibus operations; hence, all

would be saved. This saving is only effected, however, when a

byte swap or odd-byte access is actually performed. The frequen-

cy with which this occurs is just the sum of the frequencies of the

individual cases noted above, or 0.0640. Multiplying by the time
saved per occurrence gives a saving of0.0672 \xs or 1.64 percent of

the average instruction execution time. The insignificance of this

saving can well be used to support the decision for leaving the

byte swapper out of the PDP-11/10.

4.3.2 Effect of adding Processor/Unibus Overlap to the 11/04.

Processor/Unibus overlap is not a feature of the 11/04 control unit.

Adding this feature involves altering the control unit/Unibus

synchronization logic so that the processor clock continues to run
until a microcycle requiring the Unibus data from a DATI or

DATIP is detected. A bus address register must also be added to

drive the Unibus lines after the microcycle initiating the DATIP is

completed. This alteration allows time to be saved in two ways.

First, processor cycles may be overlapped with memory read

cycles, as explained in Subsection 3.1.2. Second, since Unibus
data are not read into the data paths during the cycle in which the

DATIP occurs, the path from the ALU through the AMUX and
back to the registers is freed. This permits certain operations to be

performed in the same cycle as the DATIP; for example, the

microword BA-^PC; DATI; PC-^PC-^2 could be used to start

fetching the word pointed to by the PC while simultaneously

incrementing the PC to address the next word. The cycle

following could then load the Unibus data directly into a scratch-

pad register rather than loading the data into the Breg and
then into the scratch-pad on the following cycle, as is necessary
without overlap logic. A saving of two microcycle times would
result.

DATI and DATIP operations are scattered liberally throughout
the 11/04 microcode; however, only those cycles in which an

overlap would produce a time saving need be considered. An
average of 0.730 cycles can be saved or overlapped during each

instruction. If all of the overlapped time is actually saved, then

0.190 (IS, or 4.70 percent, will be pared from the average
instruction execution time. This amounts to a 4.93 percent
increase in performance.

4.3.3 Effect of Caching on the 11/60. The PDP-11/60 uses a

cache to decrease its effective memory-read-pause time. The

degree to which this time is reduced depends upon three factors:

the cache-read-hit pause time, the cache-read-miss pause time,
and the ratio of cache-read hits to total memory read accesses. A
write-through cache is assumed; therefore, the timing of memory
write accesses is not affected by caching and only read accesses

need be considered. The performance of the 11/60 as measured by
average instruction execution time is modeled exactly as a

function of the above three parameters by the equation

t =
ki + k^k^ + kilV-a])

where ( = the average instruction execution time
a = the cache hit ratio

^1
= the average execution time of a PDP-11/60

instruction excluding memory-read-pause
time but including memory-write-pause time

(1.339/xs)

ki = the number of memory reads per average in-

struction (1.713)

/c3
= the memory-read-pause time for a cache hit

(0.000/is)

ki = the memory-read-pause time for a cache miss

(1.075/xs)
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The above equation can be rearranged to yield:

t = {ki + k2ki)
-

kd.h-k3)a

The first term and the coefficient of the second term in the

equation above are equivalent to 3.181 \x.s and 1.842 \x.s respec-

tively with the given k parameter values. This reduces the average

instruction time to a function of the cache hit ratio, making it

possible to compare the effect of various caching schemes on 11/60

performance in terms of this one parameter.

The effect of various cache organizations on the hit ratio is

described for the PDP-11 family in general in Strecker [1976b] and

for the PDP-11/60 in particular in Mudge [1977]. If no cache is

provided, the hit ratio is effectively and the average instruction

execution time reduces to the first term in the model, or 3. 181 |jis.

A set-associative cache with a set size of 1 word and a cache size of

1,024 words has been found through simulation to give a .87 hit

ratio. An average instruction time of 1.578 |i,s results in a 101.52

percent improvement in performance over that without the cache.

The cache organization described above is that actually em-

ployed in the 11/60. It has the virtue of being relatively simple to

implement and therefore reasonably inexpensive, Set size or

cache size can be increased to attain a higher hit ratio at a

correspondingly higher cost. One alternative cache organization is

a set size of 2 words and a cache size of 2,048 words. This

organization boosts the hit ratio to .93, resulting in an instruction

time of 1.468 (jls, an increase in performance of 7.53 percent. This

increased performance must be paid for, however, since twice as

many memory chips are needed. Because the performance

increment derived from the second cache organization is much
smaller than that of the first while the cost increment is

approximately the same, the first is more cost-effective.

4.3.4 Design TradeoJFs Affecting the Fetch Phase. The fetch

phase holds much potential for performance improvement, since

it consists of a single short sequence of microoperations that, as

Table 1 clearly shows, involves a sizable fraction of the average

instruction time because of the inevitable memory access and

possible service operations. In this subsection two approaches to

cutting this time are evaluated for four different processors.

The Unibus interface logic of the PDP-11/04 and that of the

11/34 are very similar. Both insert a delay into the initial

microcycle of the fetch phase to allow time for bus-grant

arbitration circuitry to settle so that a microbranch can be taken if

a serviceable condition exists. If the arbitration logic were

redesigned to eliminate this delay, the average instruction

execution time would drop by 0.220 jjls for the 11/04 and 0. 150 |xs

for the 11/34.' The resulting increases in performance would be

5.75 percent and 5.21 percent respectively.

'These figures are typical. Since the delay is set by an RC circuit and

Schmitt trigger, the delay may var>' considerably from machine to

machine of a given model.

Another example of a design feature affecting the fetch phase is

the operand-instruction fetch overlap mechanism of the 11/40,

11/45, and 11/60. From the normal fetch times in the appendix and

the actual average fetch times given in Table 1, the saving in fetch

phase time alone can be calculated to be 0.162 |jls for the 11/40,

0.087 jjLs for the 11/45, and 0. 118 \x,s for the 11/60, or an increase of

7.77 percent, 10.07 percent, and 8.11 percent over what their

respective performances would be if fetch phase time were not

overlapped.

These examples demonstrate the practicality of optimizing

sequences of control states that have a high frequency of

occurrence rather than just those which have long durations. The

11/10 byte-swap logic is quite slow, but it is utilized infrequently,

so that its impact upon performance is small; while the bus

arbitration logic of the 11/34 exacts only a small time penalty but

does so each time an instruction is executed and results in a larger

performance impact. The usefulness offrequency data should thus

be apparent, since the bottlenecks in a design are often not where

intuition says they should be.

5. Summary and Use of the Methodologies

The PDP-11 offers an interesting opportunity to examine an

architecture with numerous implementations spanning a wide

range of price and performance. The implementations appear to

fall into three distinct categories: the midrange machines (PDP-
11/04/10/20/34/40/60); an inexpensive, relatively low-performance
machine (LSI- 11); and a comparatively expensive but high-

performance machine (PDP-11/45). The midrange machines are

all minor variations on a common theme with each implementa-
tion introducing much less variability than might be expected.

Their differences reside in the presence or absence of certain

embellishments rather than in any major structural differences.

This common design scheme is still quite recognizable in the

LSI-11 and even in the PDP-11/45. The deviations of the LSI-11

arise from limitations imposed by semiconductor technology

rather than directly from cost or performance considerations,

although the technology decision derives from cost. In the

PDP-11/45, on the other hand, the quantum jump in complexity is

purely motivated by the desire to squeeze the maximum perform-

ance out of the architecture.

From the overall performance model presented in Sec. 4.2 of

this chapter, it is evident that instruction-stream processing can

be speeded up by improving either the performance of the

memory subsystem or the performance of the processor. Memory
subsystem performance depends upon the number of memory
accesses in a canonical instruction and the effective memory-read-

pause time. There is not much that can be done about the first

number, since it is a function of the architecture and thus largely

fixed. The second number may be improved, however, by the use
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of faster memory components or techniques such as caching.

The performance of the PDP-11 processor itself can be

enhanced in two ways: by cutting the number of processor cycles

to perform a given function or by cutting the time used per

microcycle. Several approaches to decreasing the efifective micro-

cycle count have been demonstrated:

1 Structure the data paths for maximum parallelism. The
PDP-11/45 can perform much more in a given microcycle
than any of the midrange PDP-ll's and thus needs fewer

microcycles to complete an instruction. To obtain this

increased functionality, however, a much more elaborate

set of data paths is required in addition to a highly

developed control unit to exercise them to maximum
potential. Such a change is not an incremental one and
involves rethinking the entire implementation.

2 Structure the microcode to take best advantage of instruc-

tion features. All processors except the 11/10 handle

JMP/JSR addressing modes as a special case in the micro-

code. Most do the same for the destination modes of the

MOV instruction because of its high frequency. Varying

degrees of sophistication in instruction dispatching from
the BUT IRDECODE at the end ofevery fetch is evident in

dififerent machines and results in various performance
improvements.

3 Cut effective microcycle count by overlapping processor
and Unibus operation. The PDP-11/10 demonstrates that a

large microcycle count can be effectively reduced by
placing cycles in parallel with memory access operations
whenever possible.

Increasing microcycle speed is perhaps more generally useful,

since it can often be applied without making substantial changes to

an entire implementation. Several of the midrange PDP-ll's

achieve most of their performance improvement by increasing

microcycle speed in the following ways:

1 Make the data paths faster The PDP-11/34 demonstrates
the improvement in microcycle time that can result from
the judicious use of Schottky TTL in such heavily traveled

points as the ALU. Replacing the ALU and carry/look-ahead

logic alone with Schottky equivalents saves approximately
35 ns in propagation delay. With cycle times running 300 ns

and less, this amounts to better than a 10 percent increase

in speed.

2 Make each microcycle take only as long as necessary. The
11/34 and 11/40 both use selectable microcycle times to

speed up cycles that do not entail long data-path propaga-
tion delays.

Circuit technology is perhaps the single most important factor

in performance. It is only stating the obvious to say that doubling
circuit speed will double total performance. Aside from raw

speed, circuit technology dictates what it is economically feasible

to build, as witnessed by the SSI PDP-lI/20, the MSI PDP-II/40,
and the LSI-U. Just the limitations of a particular circuit

technology at a given point in time may dictate much about the

design tradeoffs that can be made, as in the case of the LSI-Il.

Turning to the methodologies, the two presented in Sec.4 of

this chapter can be used at various times during the design cycle.

The top-down approach can be used to estimate the performance
of a proposed implementation, or to plan a family of implementa-
tions, given only the characteristics ofthe selected technology and
a general estimate of data-path and memory-cycle utilization.

The bottom-up approach can be used to perturb an existing or

planned design to determine the performance payoff of a particu-

lar design tradeoff. The relative frequencies ofeach function (e.g.,

addressing modes and instructions), while required for an accu-

rate prediction, may not be available. There are, however,
alternative ways to estimate relative frequencies. Consider the

three following situations:

1 At least one implementation exists. An analysis of the

implementation in typical usage (i.e., benchmark programs
for a stored-program computer) can provide the relative

frequencies.

2 No implementation exists, but similar systems exist. The

frequency data may be extrapolated from measurements
made on a machine with a similar architecture.

3 No implementation exists and there are no prior similar

systems. From knowledge of the specifications, a set of

most-used functions can be estimated (e.g., instruction

fetch, register and relative addressing, move and add
instructions for a stored-program computer). The design is

then optimized for these functions.

Of course, the relative-frequency data should always be updated
to take into account new data.

Our purpose in writing this chapter has been twofold: to provide
data about design tradeoffs and to suggest design methodologies
based on these data. It is hoped that the design data will stimulate

the study of other methodologies while the results of the design

methodologies presented here have demonstrated their useful-

ness to designers.
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APPENDIX 1 INSTRUCTION TIME COMPONENT FREQUENCIES

This appendix tabulates the frequencies of PDP-11 instructions

and addressing modes. These data were derived as explained in

Subsection 4.1. Frequencies are given for the occurrence of each

phase (e.g., source, which occurs only during double-operand

instructions), each subcase of each phase (e.g., jump destination,

which occurs only during jump or jump to subroutine instruc-

tions), and each instance of each phase, such as a particular

addressing mode or instruction. The frequency with which the

phase is skipped is listed for source and destination phases. Source

and destination odd-byte-addressing frequencies are listed as well

because of their efiect on instruction timing.

Freijiuiuii

FrvqMcnitj

Fetch 1 .0000

Source

Mode
0.4069

R

@R or (R)

(R) +

@(R) +

-(R)

@-(R)
X(R)

@X(R)

No Source

NOTE: Frequency of odd-byte addressing (SM1-7)

0.1377

0.0338

0.1587

0.0122

0.0352

0.0000

0.0271

0.0022

0.5931

0.0252.

Destination Mode 0.6872

Data Manipulation
Mode

R

@R or R

(R) +

@(R) +

-(R)

@-(R)
X{R)

@X(R)
NOTE: Frequency of odd-byte addressing (DM1-7)

0.6355

0.3146

0.0599

0.0854

0.0307

0.0823

0.0000

0.0547

0.0080

0.0213.

Jump (JMP/JSR)

Operand Mode
R

@R or (R)

(R) +

@(R) +

-(R)

@-(R)
X(R)

@X{R)

Execute

Instruction

Double operand

ADD
SUB
BIG

BICB
BIS

BISB

CMP
CMPB
BIT

BITB

MOV
MOVB
XOR

0.0517

0.0000 (ILLEGAL)
0.0000

0.0000

0.0079

0.0000

0.0000

0.0438

0.0000

Single operand

CLR
CLRB
COM
COMB
INC

INCB
DEC
DECB
NEG
NEGB
ADC
ADCB
SBC
SBCB
ROR
RORB
ROL
ROLB
ASR
ASRB
ASL
ASLB
TST
TSTB
SWAB
SXT

Branch

All branches (true)

All branches (false)

SOB (true)

SOB (false)

1 .0000

0.4069

0.0524

0.0274

0.0309

0.0000

0.0012

0.0013

0.0626

0.0212

0.0041

0.0014

0.1517

0.0524

0.0000

0.2286

0.0186

0.0018

0.0000

0.0000

0.0224

0.0000

0.0809

0.0000

0.0038

0.0000

0.0070

0.0000

0.0000

0.0000

0.0036

0.0000

0.0059

0.0000

0.0069

0.0000

0.0298

0.0000

0.0329

0.0079

0.0038

0.0000

0.2853

0.1744

0.1109

0.0000

0.0000

No Destination 0.3128
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Chapter 47

The Evolution of the PDP-11 ^

C. G. Bell / J. C. Mudge

In the original 1970 PDP-11 paper (Chap. 38), a set of design goals

and constraints were given, beginning with a discussion of the

weaknesses frequently found in minicomputers. The designers of

the PDP-11 faced each of these known minicomputer weaknesses,
and their goals included a solution to each one. This section

reviews the original goals, commenting on the success or failure of

the PDP-11 in meeting each of them.

The weaknesses of prior designs that were noted were limited

addressability, a small number of registers, absence of hardware

stack facilities, elementary I/O processing, absence of growth-

path family members, and high programming costs.

The first weakness of minicomputers was their limited address-

ing capabilit)'. The biggest (and most common) mistake that can be

made in a computer design is that ofnot providing enough address

bits for memory addressing and management. The PDP-11
followed this hallowed tradition of skimping on address bits, but it

was saved by the principle that a good design can evolve through
at least one major change.

For the PDP-11, the limited address problem was solved for the

short run, but not with enough finesse to support a large family of

minicomputers. That was indeed a costly oversight, resulting in

both redundant development and lost sales. It is extremely

embarassing that the PDP-11 had to be redesigned with memory
management^ only two years after writing the paper that outlined

the goal of providing increased address space. All earlier DEC
designs suffered from the same problem, and only the PDP-10
evolved over a long period (15 years) before a change occurred to

increase its address space. In retrospect, it is clear that another

address bit is required every two or three years, since memory
prices decline about 30 percent yearly, and users tend to buy
constant price successor systems.

A second weakness of minicomputers was their tendency to

skimp on registers. This was corrected for the PDP-11 by

providing eight 16-bit registers. Later, six 64-bit registers were
added as the accumulators for floating-point arithmetic. This

number seems to be adequate: there are enough registers to

'Excerpted from C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer
Engineering: A DEC View of Hardware Systetns Design, Digital Press,

Maynard, Mass., 1978, pp. 37&-408.
*The memor>- management served two other functions besides expanding
the 16-bit processor-generated addresses into 18-bit Unibus addresses:

program relocation and protection.

allocate two or three registers (beyond those already dedicated to

program counter and stack pointer) for program global purposes
and still have registers for local statement computation.^ More

registers would increase the context switch time and worsen the

register allocation problem for the user.

A third weakness of minicomputers was their lack of hardware
stack capability. In the PDP-11, this was solved with the

autoincrement/autodecrement addressing mechanism. This solu-

tion is unique to the PDP-11, has proved to be exceptionally

useful, and has been copied by other designers. The stack limit

check, however, has not been widely used by DEC operating

systems.

A fourth weakness, limited interrupt capability and slow

context switching, was essentially solved by the Unibus interrupt
vector design. The basic mechanism is very fast, requiring only
four memory cycles from the time an interrupt request is issued

until the first instruction of the interrupt routine begins execution.

Implementations could go further and save the general registers,
for example, in memory or in special registers. This was not

specified in the architecture and has not been done in any of the

implementations to date. VAX-U provides explicit load and save

process context instructions.

A fifth weakness of earlier minicomputers, inadequate character

handling capability, was met in the PDP-11 by providing direct

byte addressing capability. String instructions were not provided
in the hardware, but the common string operations (move,

compare, concatenate) could be programmed with very short

loops. Early benchmarks showed that this mechanism was

adequate. However, as COBOL compilers have improved and as

more understanding ofoperating systems string handling has been

obtained, a need for a string instruction set was felt, and in 1977

such a set was added.

A sixth weakness, the inability to use read-only memories as

primary memory, was avoided in the PDP-11. Most code written

for the PDP-11 tends to be reentrant without special effort by the

programmer, allowing a read-only memory (ROM) to be used

directly. Read-only memories are used extensively for bootstrap
loaders, program debuggers, and for simple functions. Because

large read-only memories were not available at the time of the

original design, there are no architectural components designed

specifically with large ROMs in mind.

A seventh weakness, one common to many minicomputers, was

primitive I/O capabilities. The PDP-11 answers this to a certain

extent with its improved interrupt structure, but the completely

general solution of I/O computers has not yet been implemented.
The I/O processor concept is used extensively in display proces-

sors, in communication processors, and in signal processing.

'Since dedicated registers are used for each Commercial Instruction Set

(CIS) instruction, this was no longer true when CIS was added.

776
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Having a single machine instruction that transmits a block of data

at the interrupt level would decrease the central processor

overhead per character by a factor of 3; it should have been added

to the PDP-11 instruction set for implementation on all machines.

Provision was made in the 11/60 for invocation of a micro-level

interrupt service routine in writable control store (WCS), but the

family architecture is yet to be extended in this direction.

Another common minicomputer weakness was the lack of

system range. If a user had a system running on a minicomputer
and wanted to expand it or produce a cheaper turnkey version, he

frequently had no recourse, since there were often no larger and

smaller models with the same architecture. The PDP-11 has been

very successful in meeting this goal.

A ninth weakness of minicomputers was the high cost of

programming caused by programming in lower level languages.

Many users programmed in assembly language, without the

comfortable environment of high-level languages, editors, file

s\ stems, and debuggers available on bigger systems. The PDP-11

does not seem to have overcome this weakness, although it

appears that more complex systems are being successfully built

with the PDP-11 than with its predecessors, the PDP-8 and the

PDP-15. Some systems programming is done using higher level

languages; however, the optimizing compiler for BLISS-11 at first

ran only on the PDP-10. The use of BLISS has been slowly gaining

acceptance. It was first used in implementing the FORTRAN-IV
PLUS (optimizing) compiler. Its use in PDP-10 and VAX-11

systems programming has been more widespread.
One design constraint that turned out to be expensive, but

worth it in the long run, was the necessity for the word length to

be a multiple of eight bits. Previous DEC designs were oriented

toward 6-bit characters, and DEC had a large investment In 12-,

18-, and 36-bit systems.

Microprogrammability was not an explicit design goal, partially

because fast, large, and inexpensive read-only memories were not

available at the time of the first implementation. All subsequent
machines have been microprogrammed, but with some difficulty

because some parts of the instruction set processor, such as

condition code setting and instruction register decoding, are not

ideally matched to microprogrammed control.

The design goal of understandability seems to have received

little attention. The PDP-11 was initially a hard machine to

understand and was marketable only to those with extensive

computer experience. The first programmers' handbook was not

very helpfijl. It is still unclear whether a user without program-

ming experience can learn the machine solely from the handbook.

Fortunately, several computer science textbooks [Gear, 1974;

Eckhouse, 1975; Stone and Siewiorek, 1975] and other training

books have been written based on the PDP-11.

Structural flexibility (modularity) for hardware configurations

was an important goal. This succeeded beyond expectations and isV

[

discussed extensively in the Unibus Cost and Performance

section.

Evolution of the Instruction Set Processor

Designing tJie instruction set processor level of a machine—that

collection of characteristics such as the set of data operators,

addressing modes, trap and interrupt sequences, register organi-

zation, and other features visible to a programmer of the bare

machine—is an extremely difficult problem. One has to consider

the performance (and price) ranges of the machine family as well

as the intended applications, and difficult tradeoffs must be made.

For example, a wide performance range argues for different

encodings over the range; for small systems a byte-oriented

approach with small addresses is optimal, whereas larger systems

require more operation codes, more registers, and larger address-

es. Thus, for larger machines, instruction coding efficiency can be

traded for performance.
The PDP-11 was originally conceived as a small machine, but

over time its range was gradually extended so that there is now a

factor of 500 in price ($500 to $250,000) and memory size (8

Kbytes to 4 Mbytes') between the smallest and largest models.

This range compares favorably with the range of the IBM System
360 family (4 Kbytes to 4 Mbytes). Needless to say, a number of

problems have arisen as the basic design was extended.

Chronology of the Extensions

A chronology of the extensions is given in Table 1. Two major

extensions, the memory management and the floating point,

occurred with the 11/45. The most recent extension is the

Commercial Instruction Set, which was defined to enhance

performance for the character string and decimal arithmetic

data-types of the commercial languages (e.g., COBOL). It intro-

duced the following to the PDP-11 architecture:

1 Data-types representing character sets, character strings,

packed decimal strings, and zoned decimal strings.

2 Strings of variable length up to 65 Kcharacters.

3 Instructions for processing character strings in each data-

type (move, add, subtract, multiply, divide).

4 Instructions for converting among binary integers, packed
decimal strings, and zoned decimal strings.

5 Instructions to move the descriptors for the variable length

strings.

The initial design did not have enough operation code space to

'Although 22 bits are used, only 2 megabytes can be utilized in the 11/70.
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Table 1 Chronology of PDP-11 Instruction Set Processor (ISP)

Evolution

ModeUs) Evolution

1 1 /20 Base ISP (1 6-bit virtual address) and RMS (1 6-bit

processor physical memory address) Unibus

with 18-bit addressing

11/20 Extended Arithmetic Element (hardware multiply/

divide)

11/45 Floating-point instruction set with 6 additional

(11/55,11/70, registers (46 instructions) in the Floating-Point

11/60,11/34) Processor

11/45 Memory management (KT11C). 3 modes of pro-

(11/55,11/70) tection (Kernel, Supervisor, User); 18-bit proc-

essor physical addressing; 16-bit virtual ad-

dressing in 8 segments for both instruction and

data spaces

11/45 Extensions for second set of general registers

(11/55,11/70) and program interrupt request

11/40 Extended Instruction Set for multiply/divide;

(11/03) floating-point instruction set (4 instructions)

11/40 Memory Management (KT11D), 2 modes of pro-

(11/34,11/60) tection (Kernel, User); 18-bit processor physical

addressing; 16-bit virtual addressing in 8 seg-

ments

11/70 22-bit processor physical addressing; Unibus

map for peripheral controller 22-bit addressing

11/70 Error register accessibility for on-line diagnosis

(11/60) and retry (e.g., cache parity error)

11/03 Program access to processor status register

(11/04,11/34) via explicit instruction (versus Unibus address)

11/03 One level program interrupt

11/60 Extended Function Code for invocation of user-

written microcode

V/0<-1 1/780 VAX architectural extensions for 32-bit virtual

addressing V/VX ISP

11/03 Commercial Instruction Set (CIS)

11/70mP Interprocessor Interrupt and System Timers for

multiprocessor

accomniodate instructions for new data-types. Ideally, the com-

plete set of operation codes should have been specified at initial

design time so that extensions would fit. With this approach, the

uninterpreted operation codes could have been used to call the

various operation functions, such as a floating-point addition. This

would have avoided the proliferation of run-time support systems

for the various hardware/software floating-point arithmetic meth-

ods (Extended Arithmetic Element, Extended Instruction Set,

Floating Instruction Set, Floating-Point Processor). The extracode

technique was used in the Atlas and Scientific Data Systems

(SDS) designs, but these techniques are overlooked by most

computer designers. Because the complete instruction set pro-

cessor (or at least an extension framework) was unspecified

in the initial design, completeness and orthogonality have been

sacrificed.

At the time the PDP-11/45 was designed, several operation

code extension schemes were examined: an escape mode to add

the floating-point operations, bringing the PDP-11 back to being a

more conventional general register machine by reducing the

number of addressing modes, and finally, typing the data by

adding a global mode that could be switched to select floating

point instead of byte operations for the same operation codes. The

floating-point instruction set, introduced with the 11/45, is a

version of the second alternative.

It also became necessary to do something about the small

address space of the processor. The Unibus limits the physical

memory to the 262,144 bytes addressable by 18-bits. In the

PDP-11/70, the physical address was extended to 4 Mbytes by

providing a Unibus map so that devices in a 256 Kbyte Unibus

space could transfer into the 4-Mbyte space via mapping registers.

While the physical address limits are acceptable for both the

Unibus and larger systems, the address for a single program is still

confined to an instantaneous space of 16 bits, the user virtual

address. The main method of dealing with relatively small .

addresses is via process-oriented operating systems that handle

many small tasks. This is a trend in operating systems, especially

for process control and transaction processing. It does, however,

enforce a structuring discipline in (user) program organization.

The RSX-11 series of operating systems for the PDP-11 are

organized this way, and the need for large addresses is lessened.

The initial memory management proposal to extend the virtual

memorv' was predicated on dynamic, rather than static, assign-

ment of memory segment registers. In the current memory

management scheme, the address registers are usually considered

to be static for a task (although some operating systems provide

functions to get additional segments dynamically).

With dynamic assignment, a user can address a number of

segment names, via a table, and directly load the appropriate

segment registers. The segment registers act to concatenate

additional address bits in a base address fashion. There have been

other schemes proposed that extend the addresses by extending

the length of the general registers
—of course, extended addresses

propagate throughout the design and include double length

address variables. In efiect, the extended part is loaded with a

base address.
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With larger machines and process-oriented operating systems,

the context switching time becomes an important performance

factor. By providing additional registers for more processes, the

time (overhead) to switch context from one process (task) to

another can be reduced. This option has not been used in the

operating system implementations of the PDP-lls to date,

although the 11/45 extensions included a second set of general

registers. Various alternatives have been suggested, and to

accomplish this effectively requires additional operators to handle

the many aspects of process scheduling. This extension appears to

be relatively unimportant since the range of computers coupled

with networks tends to alleviate the need by increasing the real

parallelism (as opposed to the apparent parallelism) by having

various independent processors work on the separate processes in

parallel. The extensions of the PDP-11 for better control of I/O

devices is clearly more important in terms of improved perform-

ance.

Architecture Management

In retrospect, many of the problems associated with PDP-11

evolution were due to the lack of an ongoing architecture

management function. The notion of planned evolution was very

strong at the beginning. However, a formal architecture control

function was not set up until early in 1974. In some sense this was

already too late—the four PDP-11 models designed by that date

(11/20, 11/05, 11/40, 11/45) had incompatibilities between them.

The architecture control function since then has ensured that no

further divergence (except in the LSI-11) took place in subsequent

models, and in fact resulted in some convergence. At the time the

Commercial Instruction Set was added, an architecture extension

framework was adopted. Insufficient encodings existed to provide

a large number of additional instructions using the same encoding

style (in the same space) as the basic PDP-11, i.e., the operation

code and operand specifier addressing mode specifiers within a

single 16-bit word. An instruction extension framework was

adopted which utilized a full word as the opcode, with operand

addressing mode specifiers in succeeding instruction stream

words along the lines of VAX-11. This architectural extension

permits 512 additional opcodes, and instructions may have an

unlimited number of operand addressing mode specifiers. The

architecture control function also had to deal with the Unibus

address space problem.
With VAX-11, architecture management has been in place since

the beginning. A definition of the architecutre was placed

under formal change control well before the VAX-1 1/780 was built,

and both hardware and software engineering groups worked

with the same document. Another significant difference is

that an extension framework was defined in the orig-

inal architecture.

An Evaluation

The criteria used to decide whether or not to include a particular

capability in an instruction set are highly variable and border on

the artistic. Critics ask that the machine appear elegant, where

elegance is a combined quality of instruction formats relating to

mnemonic significance, operator/data-type completeness and

orthogonality, and addressing consistency. Having completely

general facilities (e.g., registers) which are not context dependent

assists in minimizing the number of instruction types and in

increasing understandability (and usefulness). The authors feel

that the PDP-11 has provided this.

At the time the Unibus was designed, it was felt that allowing 4

Kbytes of the address space for I/O control registers was more

than enough. However, so many different devices have been

interfaced to the bus over the years that it is no longer possible to

assign unique addresses to every device. The architectural group

has thus been saddled with the chore of device address bookkeep-

ing. Many solutions have been proposed, but none was soon

enough; as a result, they are all so costly that it is cheaper just to

live with the problem and the attendant inconvenience.

Techniques for generating code by the human and compiler

vary widely and thus affect instruction set processor design. The

PDP-11 provides more addressing modes than nearly any other

computer. The eight modes for source and destination with dyadic

operators provide what amounts to 64 possible ADD instructions.

By associating the Program Counter and Stack Pointer registers

with the modes, even more data accessing methods are provided.

For example, 18 varieties of the MOVE instruction can be

distinguished as the machine is used in two-address, general

register, and stack machine program forms. (There is a price

for this generality
—namely, fewer bits could have been used

to encode the address modes that are actually used most of the

time.)

How the PDP-11 Is Used

In general, the PDP-11 has been used mostly as a general register

(i.e., memory to registers) machine. This can be seen by

observing the use frequency from Strecker's data (see Appendix 1

in Chap. 39). In one case, it was observed that a user who

previously used a one-accumulator computer (e.g., PDP-8),

continued to do so. A general register machine provides the

greatest performance, and the cost (in terms of bits) is the same as

when used as a stack machine. Some compilers, particularly the

early ones, are stack oriented since the code production is easier.

In principle, and with much care, a fast stack machine could be

constructed. However, since most stack machines use primary

memory for the stack, there is a loss of performance even if the top

of the stack is cached. While a stack is the natural (and necessary)

structure to interpret the nested block structure languages, it does
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not necessarily follow that the interpretation of all statements

should occur in the context of the stack. In particular, the

predominance of register transfer statements are of the simple 2-

and 3-address forms:

D

and

Dl(index 1) <- f(S2(index 2), S3(index 3))

These do not require the stack organization. In eEFect, appropri-

ate assignment allows a general register machine to be used as a

stack machine for most cases of expression evaluation. This has the

advantage of providing temporaiy, random access to common

subexpressions, a capability that is usually hard to exploit in stack

architectures.

The Evolution of the PMS (Modular) Structure

The end product of the PDP-11 design is the computer itself, and

in the evolution of the architecture one can see images of the

evolution of ideas. In this section, the architectural evolution is

outlined, with a special emphasis on the Unibus.

The Unibus is the architectural component that connects

together all of the other major components. It is the vehicle over

which data flow between pairs of components takes place.

In general, the Unibus has met all expectations. Several

hundred types of memories and peripherals have been interfaced

to it; it has become a standard architectural component of systems

in the $3K to $100K price range (1975). The Unibus does hmit the

performance of the fastest machines and penalizes the lower

performance machines with a higher cost. Recently it has become

clear that the Unibus is adequate for large, high performance

systems when a cache structure is used because the cache reduces

the traffic between primary memory and the central processor

since about one-tenth of the memory references are outside the

cache. For still larger systems, supplementary buses were added

for central processor to primary memory and primary memory to

secondar\' memory traffic. For very small systems like the LSI-11,

a narrower bus was designed.

The Unibus, as a standard, has provided an architectural

component for easily configuring systems. Any company, not just

DEC, can easily build components that interface to the bus. Good

buses make good engineering neighbors, since people can

concentrate on structured design. Indeed, the Unibus has created

a secondary industry providing alternative sources of supply for

memories and peripherals. With the exception of the IBM 360

Multiplexer-Selector Bus, the Unibus is the most widely used

computer interconnection standard.

The Unibus has also turned out to be invaluable as an "umbilical

cord" for factory diagnostic and checkout procedures. Although
such a capability was not part of the original design, the Unibus is

almost capable of controlling the system components (e.g.,

processor and memorv) during factory checkout. Ideally, the

scheme would let all registers be accessed during full operation.

This is possible for all devices except the processor. By having all

central processor registers available for reading and writing in the

same way that they are available from the console switches, a

second system can fully monitor the computer under test.

In most recent PDP-11 models, a serial communications line,

called the ASCII Console, is connected to the console, so that a

program may remotely examine or change any information that a

human operator could examine or change from the front panel,

even when the system is not running. In this way computers can

be diagnosed from a remote site.

Difficulties with tfie Design

The Unibus design is not without problems. Although two of the

bus bits were set aside in the original design as parity bits, they

have not been widely used as such. Memory parity was imple-

mented directly in the memory; this phenomenon is a good

example of the sorts of problems encountered in engineering

optimization. The trading of bus parity for memory parity

exchanged higher hardware cost and decreased performance for

decreased service cost and better data integrity. Because engi-

neers are usually judged on how well they achieve production cost

goals, parity transmission is an obvious choice to pare from a

design, since it increases the cost and decreases the performance.

As logic costs decrease and pressure to include warranty costs as

part of the product design cost increases, the decision to transmit

parity may be reconsidered.

Early attempts to build tightly coupled multiprocessor or

multicomputer structures (by mapping the address space of one

Unibus onto the memory of another), called Unibus windows,

were beset with a logic deadlock problem. The Unibus design

does not allow more than one master at a time. Successfiil

multiprocessors required much more sophisticated sharing mech-

anisms such as shared primary memory.

Unibus Cost and Performance

Although performance is always a design goal, so is low cost; the

two goals conflict directly. The Unibus has turned out to be nearly

optimum over a wide range of products. It served as an adequate

memory-processor interconnect for six of the ten models. Howev-

er, in the smallest system, DEC introduced the LSI-11 Bus,

which uses about half the number of conductors. For the largest

systems, a separate 32-bit data path is used between processor

and memory, although the Unibus is still used for communication

with the majority of the I/O controllers (the slower ones).
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The bandwidth of the Unibus is approximately 1.7 megabytes

per second or 850 K transfers/second. Only for the largest

configurations, using man> I/O devices with very high data rates,

is this capacity exceeded. For most configurations, the demand

put on an I/O bus is limited by the rotational delay and head

positioning of disks and the rate at which programs (user and

system) issue I/O requests.

An experiment to further the understanding of Unibus capacity

and the demand placed against it was carried out. The experiment

used a synthetic workload; like all synthetic workloads, it can be

challenged as not being representative. However, it was generally

agreed that it was a heavy I/O load. The load simulated transaction

processing, swapping, and background computing in the configu-

ration shown in Fig. 1. The load was nm on five systems, each

placing a different demand on the Unibus.

Each run produced two numbers: (1) the time to complete

2,000 transactions, and (2) the number of iterations of a program
called HANOI that were completed.
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I/O traffic, and processor speed. Gene Amdahl's rule of thumb for

IBM computers is that 1 byte of memory and 1 bit/sec of I/O are

required for each instruction/sec. For traditional DEC applica-

tions, with emphasis in the scientific and control applications,

there is more computation required per memory word. Further,

the PDP-11 instruction sets do not contain the extensive commer-
cial instructions (character strings) typical of IBM computers, so a

large number of instructions must be executed to accomplish the

same task. Hence, for DEC computers, it is better to assume 1

byte of memory for each 2 instructions/sec, and that 1 byte/sec of

I/O occurs for each instruction/sec.

In the PDP-11, an average instruction accesses 3-5 bytes of

memory, so assuming 1 byte of I/O for each instruction/sec, there

are 4-6 bytes of memory accessed on the average for each

instruction/sec. Therefore, a bus that can support 2 megabytes/sec
of traffic permits instruction execution rates of 0.33-0.5 mega-
instructions/sec. This implies memory sizes of 0.16-0.25 mega-

bytes, which matches well with the maximum allowable memory
of 0.064-0.256 megabytes. By using a cache memory on the

processor, the effective memory processor rate can be increased

to balance the system further. If fast floating-point instructions

were added to the instruction set, the balance might approach that

used by IBM and thereby require more memory (an effect seen in

the PDP-11/70).

The task of I/O is to provide for the transfer of data from

peripheral to primary memory where it can be operated on by a

program in a processor. The peripherals are generally slow,

inherently asynchronous, and more error-prone than the proces-
sors to which they are attached.

Historically, I/O transfer mechanisms have evolved through the

following four stages:

1 Direct sequential I/O under central processor control. An
instruction in the processor causes a data transfer to take

place with a device. The processor does not resume

operation until the transfer is complete. Typically, the

device control may share the logic of the processor. The
first input/output transfer (lOT) instruction in the PDP-1 is

an example: the lOT effects transfer between the Accumu-
lator and a selected device. Direct I/O simphfies program-
ming because every operation is sequential.

2 Fixed buffer, 1-instruction controllers. An instruction in

the central processor causes a data transfer (of a word or

vector), but in this case, it is to a buffer of the simple
controller and thus at a speed matching that of the

processor. After the high speed transfer has occurred, the

processor continues while an asynchronous, slower transfer

occurs between the buffer and the device. Communication
back to the processor is via the program interrupt mecha-
nism. A single instruction to a simple controller can also

cause a complete block (vector) of data to be transmitted

between memory and the peripheral. In this case, the

transfer takes place via the direct memor>' access (DMA)
link.

3 Separate I/O processors—the channel. An independent
I/O processor with a unique ISP controls the flow of data

between primary memory and the peripheral. The struc-

ture is that of the multiprocessor, and the I/O control

program for the device is held in primary memory. The
central processor informs the I/O processor about the I/O

program location.

4 I/O computer. This mechanism is also asynchronous with

the central processor, but the I/O computer has a private

memory which holds the I/O program. Recently, DEC
communications options have been built with embedded
control programs. The first example ofan I/O computer was
in the CDC 6600 (1964).

The authors believe that the single-instruction controller is

superior to the I/O processor as embodied in the IBM Channel

mainly because the latter concept has not gone far enough.
Channels are costly to implement, sufficiently complex to require
their own programming environment, and yet not quite powerful

enough to assume the processing, such as file management, that

one would like to offload from the processor. Although the I/O

traffic does require central processor resources, the addition of a

second, general purpose central processor is more cost-effective

than using a central processor-I/O processor or central processor-

multiple I/O processor structure. Future I/O systems will be

message-oriented, and the various I/O control functions (including

diagnostics and file management) will migrate to the subsystem.
When the I/O computer is an exact duplicate of the central

processor, not only is there an economy from the reduced number
of part types but also the same programming environment can be

used for I/O software development and main program develop-
ment. Notice that the I/O computer must implement precisely the

same set of functions as the processor doing direct I/O.

Technology: Components of the Design

Computers are strongly influenced by the basic electronic tech-

nology of their components. The PDP-11 Family provides an

extensive example of designing with improved technologies.

Because design resources have been available to do concurrent

implementations spanning a cost/performance range, PDP-lIs
offer a rich source of examples of the three different design styles:

constant cost with increasing functionality, constant functionality

with decreasing cost, and growth path.

Memory technology has had a much greater impact on PDP-11
evolution than logic technology. Except for the LSI-11, the one

logic family (7400 series TTL) has dominated PDP-11 implemen-
tations since the beginning. Except for a small increase after the
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Table 2 Characteristics of PDP-1 1 Models with Techniques Used to Span Cost and Performance Range
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PDP-11/20, gate density has not improved markedly. Speed

improvement has taken place in the Schottky TTL, and a

speed/power improvement has occurred in the low power

Schottky (LS) series. Departures from medium-scale integrated

transistor-transistor logic, in terms of gate density, have been few,

but effective. Examples are the bit-slice in the PDP-11/34

Floating-Point Processor, the use of programmable logic arrays in

the PDP-11/04 and PDP-11/34 control units, and the use of

emitter-coupled logic in some clock circuitry.

Memory densities and costs have improved rapidly since 1969

and have thus had the most impact. Read-write memory chips

have gone from 16 bits to 4,096 bits in density and read-only

memories from 16 bits to the 8 or 16 Kbits widely available in

1978.

The memory technology of 1969 imposed several constraints.

First, core memory was cost-effective for the primary (program)

memorv', but a clear trend toward semiconductor primary memo-

ry' was visible. Second, since the largest high speed read-write

memories available were just 16 words, the number of processor

registers had to be kept small. Third, there were no large high

speed read-only memories that would have permitted a micropro-

grammed approach to the processor design.

These constraints established four design attitudes toward the

PDP-ll's architecture. First, it should be asynchronous, and

thereby capable of accepting different configurations of memory
that operate at different speeds. Second, it should be expandable

to take eventual advantage of a larger number of registers, both

user registers for new data-types and internal registers for

improved context switching, memory mapping, and protected

multiprogramming. Third, it could be relatively complex, so that

a microcode approach could eventually be used to advantage: new

data-types could be added to the instruction set to increase

performance, even though they might add complexity. Fourth,

the Unibus width should be relatively large, to get as much

performance as possible, since the amount of computation possi-

ble per memory cycle was relatively small.

As semiconductor memory of varying price and performance

became available, it was used to trade cost for performance across

a reasonably wide range of PDP-11 models. Different techniques
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Fig. 2. PDP-11 models price versus time with lines of constant

performance.

were used on different models to provide the range. These

techniques include: microprogramming for all models except the

11/20 to lower cost and enhance performance with more data-

types (for example, faster floating point); use of faster program

memories for brute-force speed improvements (e.g., 11/45 with

MOS primary memory, 11/55 with bipolar primary memory, and

the 11/60 with a large writable control store); use of caches (11/70,

11/60, and 11/34C); and expanded use of fast registers inside the

processor (the 11/45 and above). The use of semiconductors versus

cores for primary memory is a purely economic consideration.

Table 2 shows characteristics of each of the PDP-11 models

along with the techniques used to span a range of cost and

performance. (Chapter 39 gives a detailed comparison of the

processors.) Figure 2 gives the cost/performance mapping for the

various PDP-11 implementations.
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