
Chapter 37

Intel Microprocessors: 8008 to 8086^

Stephen P. Morse / Bruce W. Ravenel /

Stanley Mazor / William B. Poblman

I. Introduction

"In the beginning Intel created the 4004 and the 8008."

A. The Prophecy

Intel introduced the microprocessor in November 1971 with the

advertisement, "Announcing a New Era in Integrated Electron-
ics.

"
The fulfillment of this prophecy has already occurred with

the delivery of the 8008 in 1972, the 8080 in 1974, the 8085 in

1976, and the 8086 in 1978. During this time, throughput has

improved 100-fold, the price of a CPU chip has declined from
$300 to $3, and microcomputers have revolutionized design
concepts in countless applications. They are now entering our
homes and cars.

Each successive product implementation depended on semi-
conductor process innovation, improved architecture, better
circuit design, and more sophisticated software, yet upward
compatibility not envisioned by the first designers was main-
tained. This paper provides an insight into the evolutionary
process that transformed the 8008 into the 8086, and gives

descriptions of the various processors, with emphasis on the 8086.

B. Historical Setting

In the late 1960s it became clear that the practical use of

large-scale integrated circuits (LSI) depended on defining chips
having

• High gate-to-pin ratio

•
Regular cell structure

•
Large standard-part markets

In 1968, Intel Corporation was founded to exploit the semicon-
ductor memory market, which uniquely fulfilled these criteria.

Early semiconductor RAMs, ROMs, and shift registers were
welcomed wherever small memories were needed, especially in

calculators and CRT terminals. In 1969, Intel engineers began to

study ways of integrating and partitioning the control logic
functions of these systems into LSI chips.

At this time other companies (notably Texas Instruments) were

'Intel Corporation, copyright 1978.

exploring ways to reduce the design time to develop custom

integrated circuits usable in a customer's application. Computer-
aided design of custom ICs was a hot issue then. Custom ICs are

making a comeback today, this time in high-volume applications
which typify the low end of the microprocessor market.
An alternate approach was to think of a customer's application as

a computer system requiring a control program, I/O monitoring,
and arithmetic routines, rather than as a collection of special-

purpose logic chips. Focusing on its strength in memory, Intel

partitioned systems into RAM, ROM, and a single controller chip,
the central processor unit (CPU).

Intel embarked on the design of two customer-sponsored
microprocessors, the 4004 for a calculator and the 8008 for a CRT
terminal. The 4004, in particular, replaced what would otherwise
have been six customized chips, usable by only one customer.
Because the first microcomputer applications were known, tangi-
ble, and easy to understand, instruction sets and architectures
were defined in a matter ofweeks. Since they were programmable
computers, their uses could be extended indefinitely.

Both of these first microprocessors were complete CPUs-on-a-

chip and had similar characteristics. But because the 4004 was
designed for serial BCD arithmetic while the 8008 was made for

8-bit character handling, their instruction sets were quite differ-

ent.

The succeeding years saw the evolutionary process that eventu-

ally led to the 8086. Table 1 summarizes the progression of
features that took place during these years.

II. 8008 Objectives and Constraints

Late in 1969 Intel Corporation was contracted by Computer
Terminal Corporation (today called Datapoint) to do a pushdown
stack chip for a processor to be used in a CRT terminal. Datapoint
had intended to build a bit-serial processor in TTL logic using
shift-register memory. Intel counterproposed to implement the
entire processor on one chip, which was to become the 8008. This

processor, along with the 4004, was to be fabricated using the
then-current memory fabrication technology, p-MOS. Due to the

long lead time required by Intel, Computer Terminal proceeded
to market the serial processor and thus compatibility constraints
were imposed on the 8008.

Most of the instruction-set and register organization was
specified by Computer Terminal. Intel modified the instruction
set so the processor would fit on one chip and added instructions

to make it more general-purpose. For although Intel was develop-
ing the 8008 for one particular customer, it wanted to have the

option of selling it to others. Intel was using only 16- and 18-pin
packages in those days, and rather than require a new package for

what was believed to be a low-volume chip, they chose to use 18

pins for the 8008.

615

616 Part 3
I
Computer Classes Section 2

I Microcomputers

Table 1 Feature Comparison

Chapter 37
I
Intel Microprocessors: 8008 to 8086 617

B. Register Structure

The 8008 processor contains two register files and four 1-bit flags.

The register files are referred to as the scratchpad and the address

stack.

1. Scratchpad. The scratchpad file contains an 8-bit accumulator

called A and six additional 8-bit registers called B,C,D,E,H, and

L. All arithmetic operations use the accumulator as one of the

operands and store the result back in the accumulator. All seven

registers can be used interchangeably for on-chip temporary

storage.

There is one pseudo-register, M, which can be used inter-

changeably with the scratchpad registers. M is, in effect, that

particular byte in memory whose address is currently contained in

H and L (L contains the eight low-order bits of the address and H
contains the six high-order bits). Thus M is a byte in memory and

not a register; although instructions address M as if it were a

register, accesses to M actually involve memory references. The

M register is the only mechanism by which data in memory can be

accessed.

2. Address Stack. The address stack contains a 3-bit stack pointer

and eight 14-bit address registers providing storage for eight

addresses. These registers are not directly accessible by the

programmer; rather they are manipulated with control-transfer

instructions.

Any one of the eight address registers in the address stack can

serve as the program counter; the current program counter is

specified by the stack pointer. The other seven address registers

permit storage for nesting of subroutines up to seven levels deep.

The execution of a call instruction causes the next address register

in turn to become the current program counter, and the return

instruction causes the address register that last served as the

program counter to again become the program counter. The stack

will wrap around if subroutines are nested more than seven levels

deep.

3. Flags. The four flags in the 8008 are CARRY, ZERO, SIGN,
and PARITY. They are used to reflect the status of the latest

arithmetic or logical operation. Any of the flags can be used to

alter program flow through the use of the conditional jump, call,

or return instructions. There is no direct mechanism for saving or

restoring flags, which places a severe burden on interrupt

processing (see Appendix 1 for details).

The CARRY flag indicates if a carry-out or borrow-in was

generated, thereby providing the ability to perform multiple-

precision binary arithmetic.

The ZERO flag indicates whether or not the result is zero. This

provides the ability to compare the two values for equality.

The SIGN flag reflects the setting of the leftmost bit of the

result. The presence of this flag creates the illusion that the 8008 is

able to handle signed numbers. However, there is no facility for

detecting signed overflow on additions and subtractions. Further-

more, comparing signed numbers by subtracting them and then

testing the SIGN flag will not give the correct result if the

subtraction resulted in signed overflow. This oversight was not

corrected until the 8086.

The PARITY flag indicates if the result is even or odd parity.

This permits testing for transmission errors, an obviously usefiil

fimction for a CRT terminal.

C. Instruction Set

The 8008 instructions are designed for moving or modifying 8-bit

operands. Operands are either contained in the instruction itself

(immediate operand), contained in a scratchpad register (register

operand), or contained in the M register (memory operand). Since

the M register can be used interchangeably with the scratchpad

registers, there are only two distinct operand-addressing modes—
immediate and register. Typical instruction formats for these

modes are shown in Fig. 1. A summary of the 8008 instructions

appears in Fig. 2.

The instruction set consists of scratchpad-register instructions,

accumulator-specific instructions, transfer-of-control instructions,

input/output instructions, and processor-control instructions.

The scratchpad-register instructions modify the contents of the

M register or any scratchpad register. This can consist of moving
data between any two registers, moving immediate data into a

register, or incrementing or decrementing the contents of a

register. The incrementing and decrementing instructions were

not in Computer Terminal's specified instruction set; they were

added by Intel to provide for loop control, thereby making the

processor more general-purpose,

Most of the accumulator specific instructions perform opera-

tions between the accumulator and a specified operand. The

operand can be any one of the scratchpad registers, including M,
or it can be immediate data. The operations are add, add-with-

carry, subtract, subtract-with-borrow, logical AND, logical OR,

logical exclusive-OR, and compare. Furthermore, there are four

unit-rotate instructions that operate on the accumulator. These

instructions perform either an 8- or 9-bit rotate (the CARRY flag

acts as a ninth bit) in either the left or right direction.

Transfer-of-control instructions consist of jumps, calls, and

returns. Any of the transfers can be unconditional, or can be

conditional based on the setting of any one of the four flags.

Making calls and returns conditional was done to preserve the

symmetry with jumps and for no other reason. A short one-byte
form of call is also provided, which will be discussed later under

interrupts.

Each of the jump and call instructions (with the exception of the

one-byte call) specifies an absolute code address in the second and

618 Part 3
I
Computer Classes Section 2 Microcomputers

no operands

g S

m

s

!

i
.i
>.

1

620 Part 3
I Computer Classes Section 2

| Microcomputers

instructions but not necessarily with the same encodings. This

meant that user's software would be portable but the actual ROM
chips containing the programs would have to be replaced. The

main objective of the 8080 was to obtain a 10:1 improvement in

throughput, eliminate many of the 8008 shortcomings that had by

then become apparent, and provide new processing capabilities

not found in the 8008. These included a commitment to 16-bit

data types mainly for address computations, BCD arithmetic,

enhanced operand-addressing modes, and improved interrupt

capabilities. Now that memory costs had come down and process-

ing speed was approaching TTL, larger memory spaces were

appearing more practical. Hence another goal was to be able to

address directly more than 16K bytes. Symmetry was not a goal,

because the benefits to be gained from making the extensions

symmetric would not justify the resulting increase in chip size and

opcode space.

V. The 8080 Instruction-Set Processor

The 8080 architecture is an unsymmetrical extension of the 8008.

The byte-handling facilities have been augmented with a limited

number of 16-bit facilities. The memory space grew to 64K bytes

and the stack was made virtually unlimited.

Various alternatives for the 8080 were considered. The simplest

involved merely adding a memory stack and stack instructions to

the 8008. An intermediate position was to augment the above with

16-bit arithmetic facilities that can be used for explicit address

manipulations as well as 16-bit data manipulations. The most

difficult alternative was a symmetric extension which replaced the

one-byte M-register instructions with three-byte generalized

memory-access instructions. The last two bytes of these instruc-

tions contained two address-mode bits specifying indirect ad-

dressing and indexing (using HL as an index register) and a 14-bit

displacement. Although this would have been a more versatile

addressing mechanism, it would have resulted in significant code

expansion on existing 8008 programs. Furthermore, the logic

necessary to implement this solution would have precluded the

ability to implement 16-bit arithmetic; such arithmetic would not

be needed for address manipulations under this enhanced ad-

dressing facility but would still be desirable for data manipula-

tions. For these reasons, the intermediate position was finally

taken.

A. Memory and I/O Strvcture

The 8080 can address up to 64K bytes of memory, a fourfold

increase over the 8008 (the 14-bit address stack of the 8008 was

eliminated). The address bus of the 8080 is 16 bits wide, in

contrast to eight bits for the 8008, so an entire address can be sent

down the bus in one memory cycle. Although the data handling

facilities of the 8080 are primarily byte-oriented (the 8008 was

exclusively byte-oriented), certain operations permit two consecu-

tive bytes of memory to be treated as a single data item. The two

bytes are called a word. The data bus of the 8080 is only eight

bits wide, and hence word accesses require an extra memory
cycle.

The most significant eight bits of a word are located at the

higher memory address. This results in the same kind of inverted

storage already noted in transfer instructions of the 8008.

The 8080 extends the 32-port capacity of the 8008 to 256 input

ports and 256 output ports. In this instance, the 8080 is actually

more symmetrical than the 8008. Like the 8008, all of the ports

are directly addressable by the instruction set.

B. Register Strvcture

The 8080 processor contains a file of seven 8-bit general registers,

a 16-bit program counter (PC) and stack pointer (SP), and five

1-bit flags. A comparison between the 8008 and 8080 register sets

is shown in Fig. 3.

Chapter 37
|

Intel Microprocessors: 8008 to 8086 621

1. General Registers. The 8080 registers are the same seven

8-bit registers that were in the 8008 scratchpad
—namely A,B,C,

D,E,H, and L. In order to incorporate 16-bit data facilities in the

8080, certain instructions operate on the register pairs BC, DE,

and HL.

The seven registers can be used interchangeably for on-chip

temporary storage. The three register pairs are used for address

manipulations, but their roles are not interchangeable; there is an

8080 instruction that allows operations on DE and not BC, and

there are address modes that access memory indirectly through

BC or DE but not HL.

As in the 8008, the A register has a unique role in arithmetic

and logical operations: it serves as one of the operands and is the

receptacle for the result, The HL register again has its special role

of pointing to the pseudo-register M.

2. Stack Pointer and Program Counter. The 8080 has a single

program counter instead of the floating program counter of the

8008. The program counter is 16 bits (two bits more than the

80O8's program counter), thereby permitting an address space of

64K.

The stack is contained in memory instead of on the chip, which

removes the restriction of only seven levels of nested subroutines.

The entries on the stack are 16 bits wide. The 16-bit stack pointer

is used to locate the stack in memory. The execution of a call

instruction causes the contents of the program counter to be

pushed onto the stack, and the return instruction causes the last

stack entry to be popped into the program counter. The stack

pointer was chosen to run "downhill" (with the stack advancing

toward lower memory) to simplify indexing into the stack from the

user's program (positive indexing) and to simplify displaying the

contents of the stack from a front panel.

Unlike the 8008, the stack pointer is directly accessible to the

programmer. Furthermore, the stack itself is directly accessible,

and instructions are provided that permit the programmer to push

and pop his own 16-bit items onto the stack.

3. Flags. A fifth flag, AUXILIARY CARRY, augments the 8008

flag set to form the flag set of the 8080. The AUXILIARY CARRY

flag indicates if a carry was generated out of the four low-order

bits. This flag, in conjunction with a decimal-adjust instruction,

provides the ability to perform packed BCD addition (see

Appendix 2 for details). This facility can be traced back to the 4004

processor. The AUXILIARY CARRY flag has no purpose other

than for BCD arithmetic, and hence the conditional transfer

instructions were not expanded to include tests on the AUXILIA-

RY CARRY flag.

It was proposed too late in the design that the PARITY flag

should double as an OVERFLOW flag. Although this feature

didn't make it into the 8080, it did show up two years later in

Zilog's Z-80.

C. Instruction Set

The 8080 includes the entire 8008 instruction set as a subset. The

added instructions provide some new operand-addressing modes

and some facilities for manipulating 16-bit data. These extensions

have introduced a good deal of asymmetry. Typical instruction

formats are shown in Fig. 1. A summary of the 8080 instructions

appears in Fig. 4.

The only means that the 8008 had for accessing operands in

memory was via the M register. The 8080 has certain instructions

that access memory by specifying the memory address (direct

addressing) and also certain instructions that access memory by

specifying a pair of general registers in which the memory address

is contained (indirect addressing). In addition, the 8080 includes

the register and immediate operand-addressing modes of the

8008. A 16-bit immediate mode is also included.

The added instructions can be classified as load/store instruc-

tions, register-pair instructions, HL-specific instructions,

accumulator-adjust instructions, carry instructions, expanded I/O

instructions, and interrupt instructions.

The load/store instructions load and store the accumulator

register and the HL register pair using the direct and indirect

addressing mode. Both modes can be used for the accumulator,

but due to chip size constraints, only the direct mode was

implemented for HL.

The register-pair instructions provide for the manipulation of

16-bit data items. Specifically, register pairs can be loaded with

16-bit immediate data, incremented, decremented, added to HL,

pushed on the stack, or popped off the stack. Furthermore, the

flag settings themselves can be pushed and popped, thereby

simplifying saving the environment when interrupts occur (this

was not possible in the 8008).

The HL-specific instructions include facilities for transferring

HL to the program counter or to the stack pointer, and exchang-

ing HL with DE or with the top entry on the stack. The last of

these instructions was included to provide a mechanism for (1)

removing a subroutine return address from the stack so that

passed parameters can be discarded or (2) burying a result-to-be-

returned under the return address. This became the longest

instruction in the 8080 (5 memory cycles); its implementation

precluded the inclusion of several other instructions that were

already proposed for the processor.

Two accumulator-adjust instructions are provided. One comple-

ments each bit in the accumulator and the other modifies the

accumulator so that it contains the correct decimal result after a

packed BCD addition is performed.

The carry instructions provide for setting or complementing the

CARRY flag. No instruction is provided for clearing the CARRY

flag. Because of the way the CARRY flag semantics are defined,

the CARRY flag can be cleared simply by ORing or ANDing the

accumulator with itself

622 Part 3
I
Computer Classes Section 2

I
Microcomputers

Chapter 37
{

Intel Microprocessors: 8008 to 8086 623

required a separate oscillator chip and system controller chip to

make it usable). The new processor, called the 8085, was

constrained to be compatible with the 8080 at the machine-code

level. This meant that the only extension to the instruction set

could be in the twelve unused opcodes of the 8080.

The 8085 turned out to be architecturally not much more than a

repackaging of the 8080. The major diflFerences were in such areas

as an on-chip oscillator, power-on reset, vectored interrupts,

decoded control lines, a serial I/O port, and a single power supply.

Two new instructions were added to handle the serial port and

interrupt mask. These instructions (RIM and SIM) appear in Fig.

4. Several other instructions that had been contemplated were not

made available because of the software ramifications and the

compatibility constraints they would place on the forthcoming
8086.

VII. Objectives and Constraints of 8086

The new Intel 8086 microprocessor was designed to provide an

order of magnitude increase in processing throughput over the

older 8080. The processor was to be assembly-language-level-

compatible with the 8080 so that existing 8080 software could be

reassembled and correctly executed on the 8086. To allow for this,

the 8080 register set and instruction set appear as logical subsets

of the 8086 registers and instructions. By utilizing a general-

register structure architecture, Intel could capitalize on its

experience with the 8080 to obtain a processor with a higher

degree of sophistication. Strict 8080 compatibility, however, was

not attempted, especially in areas where it would compromise the

final design.

The goals of the 8086 architectural design were to provide

symmetric extensions of existing 8080 features, and to add

processing capabilities not foimd in the 8080. These features

included 16-bit arithmetic, signed 8- and 16-bit arithmetic

(including multiply and divide), efficient interruptible byte-string

operations, improved bit-manipulation facilities, and mechanisms

to provide for re-entrant code, position-independent code, and

dynamically relocatable programs.

By now memory had become very inexpensive and micro-

processors were being used in applications that required large

amounts of code and/or data. Thus another design goal was to be

able to address directly more than 64K bytes and support

multiprocessor configurations.

VIII. The 8086 Instruction-Set Processor

The 8086 processor architecture is described in terms of its

memory structure, register structure, instruction set, and external

interface. The 8086 memory structure includes up to one

megabyte of memory space and up to 64K input/output ports. The

register structure includes three files of registers. Four 16-bit

general registers can participate interchangeably in arithmetic and

logic operations, two 16-bit pointer and two 16-bit index registers

are used for address calculations, and four 16-bit segment

registers allow extended addressing capabilities. Nine flags record

the processor state and control its operation.

The instruction set supports a wide range of addressing modes

and provides operations for data transfer, signed and unsigned 8-

and 16-bit arithmetic, logicals, string manipulations, control

transfer, and processor control. The external interface includes a

reset sequence, interrupts, and a multiprocessor-synchronization

and resource-sharing facility.

A. Memory and I/O Structure

The 8086 memory structure consists of two components—the

memory space and the input/output space. All instruction code

and operands reside in the memory space. Peripheral and I/O

devices ordinarily reside in the I/O space, except in the case of

memory-mapped devices.

1. Memory Space. The 8086 memory is a sequence of up to 1

million 8-bit bytes, a considerable increase over the 64K bytes in

the 8080. Any two consecutive bytes may be paired together to

form a 16-bit word. Such words may be located at odd or even

byte addresses. The data bus of the 8086 is 16 bits wide, so, unlike

the 8080, a word can be accessed in one memory cycle (however,

words located at odd byte addresses still require two memory
cycles). As in the 8080, the most significant 8 bits of a word are

located in the byte with the higher memory address.

Since the 8086 processor performs 16-bit arithmetic, the

address objects it manipulates are 16 bits in length. Since a 16-bit

quantity can address only 64K bytes, additional mechanisms are

required to build addresses in a megabyte memory space. The

8086 memory may be conceived of as an arbitrary number of

segments, each at most 64K bytes in size. Each segment begins at

an address which is evenly divisible by 16 (i.e., the low-order 4

bits of a segment's address are zero). At any given monient the

contents of four of these segments are immediately addressable.

These four segments, called the current code segment, the

current data segment, the current stack segment, and the current

extra segment, need not be unique and may overlap. The

high-order 16 bits of the address of each current segment are held

in a dedicated 16-bit segment register. In the degenerate case

where all four segments start at the same address, namely address

0, we have an 8080 memory structure.

Bytes or words within a segment are addressed by using 16-bit

offset addresses within the 64K byte segment. A 20-bit physical

address is constructed by adding the 16-bit ofiset address to the

contents of a 16-bit segment register with 4 low-order zero bits

appended, as illustrated in Fig. 5.

624 Part 3
I
Computer Classes Section 2

I
Microcomputers

Effective address
Offset

address

V_
~\ r J

Segment register
Segment
address

J V

Memory address iatch
Physical

address

Fig. 5. To address 1 million bytes requires a 20-bit memory
address. Tliis 20-blt address is constructed by offsetting the

effective address 4 bits to the right of the segment address, filling

in the 4 low-order bits of the segment address with zeros, and

adding the two.

Various alternatives for extending the 8080 address space were

considered. One such alternative consisted of appending 8 rather

than 4 low-order zero bits to the contents of a segment register,

thereby providing a 24-bit physical address capable of addressing

up to 16 megabytes of memory. This was rejected for the following

Segments would be forced to start on 256-byte boundaries,

resulting in excessive memory fragmentation.

The 4 additional pins that would be required on the chip

were not available.

It was felt that a 1-megabyte address space was sufficient.

2. Input/Output Space. In contrast to the 256 I/O ports in the

8080, the 8086 provides 64K addressable input or output ports.

Unlike the memory, the I/O space is addressed as if it were a

single segment, without the use of segment registers. Input/

output physical addresses are in fact 20 bits in length, but the

high-order 4 bits are always zero. The first 256 ports are directly

addressable (address in the instruction), whereas all 64K ports are

indirectly addressable (address in register). Such indirect address-

ing was provided to permit consecutive ports to be accessed in a

program loop. Ports may be 8 or 16 bits in size, and 16-bit ports

may be located at odd or even addresses.

B. Register Structure

The 8086 processor contains three files of four 16-bit registers and

a file of nine 1-bit flags. The three files of registers are the

general-register file, the pointer- and index-register file, and the

segment-register file. There is a 16-bit instruction pointer (called

the program counter in the earlier processors) which is not

directly accessible to the programmer; rather, it is manipulated

with control transfer instructions. The 8086 register set is a

superset of the 8080 registers, as shown in Figs. 6 and 7.

Corresponding registers in the 8080 and 8086 do not necessarily

have the same names, thereby permitting the 8086 to use a more

meaningful set of names.

general registers
7 7

HL:

BC:

1///////////////

Chapter 37 I Intel Microprocessors: 8008 to 8086 625

general registers
7

AX : ; AH

626 Part 3
I
Computer Classes Section 2

I Microcomputers

Such a scheme would have resulted in virtually no thrashing of

segment register contents; start addresses of all needed segments
would be loaded initially into one of the eight segment registers,

and the roles of the various segment registers would vary

dynamically during program execution. Concern over the size of

the resulting processor chip forced the number of segment

registers to be reduced to the minimum number necessary,

namely four. With this minimum number, each segment register

could be dedicated to a particular type of segment (code, data,

stack, extra), and the specifying field- in the program status word

was no longer needed.

4. Flag-Register File. The AF-CF-DF-IF-OF-PF-SF-TF-ZF

register set is called the flag-register file or F group. The flags in

this group are all one bit in size and are used to record proces-

sor status information and to control processor operation. The

flag registers' names have the following associated mnemonic

phrases:

AF Auxiliary carry
CF Carry
DF Direction

IF Interrupt enable

OF Overflow

PF Parity

SF Sign
TF Trap
ZF Zero

1. Operand Addressing. The 8086 instruction set provides many
more ways to address operands than were provided by the 8080.

Two-operand operations generally allow either a register or

memory to serve as one operand (called the firs{ operand), and

either a register or a constant within the instruction to serve as the

other (called the second operand). Typical formats for two-

operand operations are shown in Fig. 9 (second operand is a

register) and Fig. 10 (second operand is a constant). The result of a

two-operand operation may be directed to either of the source

operands, with the exception, of course, of in-line immediate

constants. Single-operand operations generally allow either a

register or a memory to serve as the operand. A typical one-

operand format is shown in Fig. 11. Virtually all 8086 operators

may specify 8- or 16-bit operands.

Memory operands. An instruction may address an operand

residing in memory in one of four ways as determined by the mod
and r/m fields in the instruction (see Table 2).

Direct 16-bit ofiPset address

Indirect through a base register (BP or BX), optionally with an
8- or 16-bit displacement

Indirect through an index register (SI or DI), optionally with an
8- or 16-bit displacement

Indirect through the sum of a base register and an index

register, optionally with an 8- or 16-bit displacement

The AF, CF, PF, SF, and ZF flags retain their familiar 8080

semantics, generally reflecting the status of the latest arithmetic

or logical operation. The OF flag joins this group, reflecting the

signed arithmetic overflow condition. The DF, IF, and TF flags

are used to control certain aspects of the processor. The DF flag

controls the direction of the string manipulations (auto-

incrementing or auto-decrementing). The IF flag enables or

disables external interrupts. The TF flag puts the processor into a

single-step mode for prograrti debugging. More detail is given on

each of these three flags later in the chapter.

C. Instruction Set

The 8086 instruction set—^while including most ofthe 8080 set as a

subset—has more ways to address operands and more power in

ever>' area. It is designed to implement block-structured languag-

es efficiently. Nearly all instructions operate on either 8- or 16-bit

operands. There are four classes of data transfer. All four

arithmetic operations are available. An additional logic instruc-

tion, test, is included. Also new are byte- and word-string

manipulations and intersegment transfers. A summary of the 8086

instructions appears in Fig. 8.

The general register, BX, and the pointer register, BP, may serve

as base registers. When the base register BX is used without an

index register, the operand by default resides in the current data

segment. When the base register BP is used without an index

register, the operand by default resides in the current stack

segment. When both base and index registers are used, the

operand by default resides in the segment determined by the base

register. When an index register alone is used, the operand by
default resides in the current data segment.

Auto-incrementing and auto-decrementing address modes were

not included in general, since it was felt that their use is mainly'

oriented towards string processing. These modes were included

on the string primitive instructions.

Register operands. The four 16-bit general registers and the four

16-bit pointer and index registers may serve interchangeably as

operands in 16-bit operations. Three exceptions to note are

multiply, divide, and the string operations, all of which use the

AX register implicitly. The eight 8-bit registers of the HL group

may serve interchangeably in 8-bit operations. Again, multiply,

divide, and the string operations use AL implicitly. Table 3 shows

lis

111

jii

111

ii

§5?
s = ;? :

iiii
;"s=i

slflUll I

Hi|iiii|lli|

=8if liii
Lf I

L < < U O Ul <

J J -ii I I I

I 5IB S 8 o o

1

1

1

o
o

628 Part 3
I
Computer Classes Section 2

I
Microcomputers

+.+.+.+,+,+.+.+.+ +-+-+-+-+-+-+-+- +-+-+-+-+-+-+-+-+
: :seg: : I opcode ! d I w i jmodl reg ! r/m t

+.+.+.+.+.+.+.+.+ +-+-+-+-+-+--+-+ +--+-+-+--+-+-
(optional)

+.+..+.+..+.+.+ +.+.+.+..+..+.+
: disp-lo : : dlsp-hl :

+.+.+.+ +.+.+.+. +.+,+.+.+.+.+.+.+
(optional) (optional)

first operand la register or meziory specified by seg, mod, r/m

disp-lo, disp-hi

mod : 00,01,10: first operand is memory (see Table 2)
11: first operand is register (see Table 3)

seg is overriding segment register

second operand is register specified by reg

w : 0: operands are 8 bits
1: operands are 16 bits

d = 0: destination is first operand
1: destination is second operand

Fig. 9. Typical format of 8086 two-operand operation when second

operand is register.

the register selection as determined by the r/m field (first

operand) or reg field (second operand) in the instruction.

 .. + . + .. + . + . + .+ +- + - + - + - +-- + - +- +-.»->.-^-4.- + - + -4..+

: :seg: : { opcode |wi {modtopcod! r/m I

 . + .*, + . + . + . + . + ,+ «- + . + ..t..4.- + -4.- + -4, 4.-4.- + -4.- + .4._ + _4._ +

(optional)

+.+.+.+,+.+.+.+. +.+.+,+.*.+,+.+,+
: disp-lo : : disp-hi :

 . + . + . + . + . + . + . + + +.+ . + .. + ..+ . + .+

(optional) (optional)

operand is register or memory specified by seg, mod, r/m,
disp-lo , disp-hi

mod = 00,01,10: operand is memory (see Table 2)
11; operand is register (see Table 3)

seg is overriding segment register

w s 0: operand is B bits
1: operand is 16 bits

Fig. 11. Typical format of 8086 one-operand operation.

Addressing mode usage. The addressing modes permit registers

BX and BP to serve as base registers and registers SI and DI as

index registers. Possible use of this for language implementation is

discussed below.

Immediate operands. All two-operand operations except multi-

ply, divide, and the string operations allow one source operand to

appear within the instruction as immediate data represented in 2's

complement form. Sixteen-bit immediate operands having a

high-order byte which is the sign extension of the low-order byte

may be abbreviated to 8 bits.

:seg:

Chapter 37
|

Intel Microprocessors: 8008 to 8086 629

Table 2 Determining 8086 Offset Address of a IMemory Operand

(Use This Table When mod =!* 1 1
;
Otherwise Use Table 3.)

This table applies to the first operand only; the second operand
can never be a memory operand.

mod specifies how disp-lo and disp-hi are used to define a dis-

placement as follows:

00: DISP=0 (disp-lo and disp-hi are absent)

mod = 01: DISP=disp-lo sign extended (disp-hi Is absent)

10: DISP=disp-hi,disp-lo

r/m specifies which base and index register contents are to be

added to the displacement to form the operand offset address

as follows:

000: OFFSET=(BX) + (SI) + DISP

001: OFFSET=(BX) + (DI) + DISP

010: OFFSET=(BP) + (SI) + DISP
r/m = 011: OFFSET=(BP) + (DI) + DISP indirect

100: OFFSET= (SI) + DISP I address
101: OFFSET= (DI) + DISP mode
110: OFFSET=(BP) +DISP
111: OFFSET=(BX) +DISP

() means "contents of"

;CALL MYPROC (ALPHA, BETA)
PUSH ALPHA ;pass parameters by
PUSH BETA

630 Part 3
I
Computer Classes Section 2

j
Microcomputers

performs a table-lookup byte translation. We will see the useful-

ness of this operation below, when it is combined with string

operations.

The address-object transfers—load efiFective address and load

pointer
—are an 8086 facility not present in the 8080. A pointer is a

pair of 16-bit values specifying a segment start address and an

offset address; it is used to gain access to the full megabyte of

memory. The load pointer operations provide a means of loading a

segment start address into a segment register and an offset address

into a general or pointer register in a single operation. The load

effective address operation provides access to the offset address of

an operand, as opposed to the value of the operand itself

The flag transfers provide access to the collection of flags for

such operations as push, pop, load, and store. A similar facility for

pushing and popping flags was provided in the 8080; the load and

store flags facility is new in the 8086.

It should be noted that the load and store operations involve

only those flags that existed in the 8080. This is part of the

concessions made for 8080 compatibility (without these operations

it would take nine 8086 bytes to perform exactly an 8080 PUSH
PSW or POP PSW).

3. Arithmetics. Whereas the 8080 provided for only 8-bit

addition and subtraction of unsigned numbers, the 8086 provides

all four basic mathematical functions on 8- and 16-bit signed and

unsigned numbers. Standard 2's complement representation of

signed values is used. Sufficient conditional transfers are provided

to allow both signed and unsigned comparisons. The OF flag

allows detection of the signed overflow condition.

Consideration was given to providing separate operations for

signed addition and subtraction which would automatically trap on

signed overflow (signed overflow is an exception condition,

whereas unsigned overflow is not). However, lack of room in the

opcode space prohibited this. As a compromise, a one-byte

trap-on-overflow instruction was included to make testing for

signed overflow less painful.

The 8080 provided a correction operation to allow addition to be

performed directly on packed binary-coded representations of

decimal digits. In the 8086, correction operations are provided to

allow arithmetic to be performed directly on unpacked represen-

tations of decimal digits (e.g., ASCII) or on packed decimal

representations.

Multiply and divide. Both signed and unsigned multiply and

divide operations are provided. Multiply produces a double-

length product (16 bits for 8-bit multiply, 32 bits for 16-bit

multiply), while divide returns a single-length quotient and a

single-length remainder from a double-length dividend and

single-length divisor. Sign extension operations allow one to

construct the double-length dividend needed for signed division.

A quotient overflow (e.g., that caused by dividing by zero) will

automatically interrupt the processor.

Decimal instructions. Packed BCD operations are provided in

the form of accumulator-adjustment instructions. Two such

instructions are provided
—one for an adjustment following an

addition and one following a subtraction. The addition adjustment
is identical to the 8080 DAA instruction; the subtraction adjust-

ment is defined similarly. Packed multiply and divide adjustments

are not provided, because the cross terms generated make it

impossible to recover the decimal result without additional

processor facilities (see Appendix 2 for details).

Unpacked BCD operations are also provided in the form of

accumulator adjust instructions (ASCII is a special case of

unpacked BCD). Four such instructions are provided, one each

for adjustments involving addition, subtraction, multiplication,

and division. The addition and subtraction adjustments are similar

to the corresponding packed BCD adjustments except that the

AH register is updated if an adjustment on AL is required. Unlike

packed BCD, unpacked BCD byte multiplication does not

generate cross terms, so multiplication adjustment consists of

converting the binary value in the AL register into BCD digits in

AH and AL; the divide adjustment does the reverse. Note that

adjustments for addition, subtraction, and multiplication are

performed following the arithmetic operation; division adjustment

is performed prior to a division operation. See Appendix 2 for

more details on unpacked BCD adjustments.

4. Logicals. The standard logical operations AND, OR, XOR,
and NOT are carry-overs from the 8080. Additionally, the 8086

provides a logical TEST for specific bits. This consists of a logical

AND instruction which sets the flags but does not store the result,

thereby not destroying either operand.

The four unit-rotate instructions in the 8080 are augmented
with four unit-shift instructions in the 8086. Furthermore, the

8086 provides multi-bit shifts and rotates including an arithmetic

right shift.

5. String Manipulation. The 8086 provides a group of 1-byte

instructions which perform various primitive operations for the

manipulation of byte or word strings (sequences of bytes or

words). These primitive operations can be performed repeatedly

in hardware by preceding the instruction with a special prefix.

The single-operation forms may be combined to form complex

string operations in tight software loops with repetition provided

by special iteration operations. The 8080 did not provide any

string-manipulation facilities.

Hardware operation control. All primitive string operations use

the SI register to address the source operands, which are assumed

Chapter 37
{

Intel Microprocessors: 8008 to 8086 631

to be in the current data segment. The DI register is used to

address the destination operands, which reside in the current

extra segment. The operand pointers are incremented or decre-

mented (depending on the setting of the DF flag) after each

operation, once for byte operations and twice for word operations.

Any of the primitive string operation instructions may be

preceded with a 1-byte prefix indicating that the operation is to be

repeated until the operation count in CX is satisfied. The test for

completion is made prior to each repetition of the operation.

Thus, an initial operation count of zero will cause zero executions

of the primitive operation.

The repeat prefix byte also designates a value to compare with

the ZF flag. If the primitive operation is one which afiects the ZF

flag and the ZF flag is unequal to the designated value after any

execution of the primitive operation, the repetition is terminated.

This permits the scan operation to serve as a scan-while or a

scan-until.

During the execution of a repeated primitive operation the

operand pointer registers (SI and DI) and the operation count

register (CX) are updated after each repetition, whereas the

instruction pointer will retain the offset address of the repeat

prefix byte (assuming it immediately precedes the string operation

instruction). Thus, an interrupted repeated operation will be

correctly resumed when control returns from the interrupting

task.

Primitive string operations. Five primitive string operations are

provided:

• MOVS moves a string element (byte or word) from the

source operand to the destination operand. As a repeated

operation, this provides for moving a string from one

location in memory to another.

• CM PS subtracts the string element at the destination

operand from the string element at the source operand and

affects the flags but does not return the result. As a repeated

operation this provides for comparing two strings. With the

appropriate repeat prefix it is possible to compare two

strings and determine after which string element the two

strings become unequal, thereby establishing an ordering
between the strings.

• SCAS subtracts the string element at the destination

operand from AL (or AX for word strings) and affects the

flags but does not return the result. As a repeated operation
this provides for scanning for the occurrence of or depar-
ture from, a given value in the string.

• LODS loads a string element from the source operand into

AL (or AX for word strings). This operation ordinarily would

not be repeated.

• STOS stores a string element from AL (or AX for word

strings) into the destination operand. As a repeated opera-
tion this provides for filling a string with a given value.

Software operation control. The repeat prefix provides for rapid

iteration in a hardware-repeated string operation. Iteration-

control operations provide this same control for implementing
software loops to perform complex string operations. These

iteration operations provide the same operation count update,

operation completion test, and ZF flag tests that the repeat prefix

provides.

The iteration-control transfer operations perform leading- and

trailing-decision loop control. The destinations of iteration-control

transfers must be within a 256-byte range centered about the

instruction.

Four iteration-control transfer operations are provided:

• LOOP decrements the CX ("count") register by 1 and

transfers if CX is not 0.

• LOOPE decrements the CX register by 1 and transfers if

CX is not and the ZF flag is set (loop while equal).

• LOOPNE decrements the CX register by 1 and transfers if

CX is not and the ZF flag is cleared (loop while not equal).

• JCXZ transfers if the CX register is 0. This is used for

skipping over a loop when the initial count is 0.

By combining the primitive string operitions and iteration-

control operations with other operations, it is possible to build

sophisticated yet efficient string manipulation routines. One
instruction that is particularly useful in this context is the translate

operation; it permits a byte fetched from one string to be

translated before being stored in a second string, or before being

operated upon in some other fashion. The translation is performed

by using the value in the AL register to index into a table pointed

at by the BX register. The translated value obtained from the

table then replaces the value initially in the AL register.

As an example of use of the primitive string operations and

iteration-control operations to implement a complex string opera-

tion, consider the following application: An input driver must

translate a buffer of EBCDIC characters into ASCII and transfer

characters until one of several different EBCDIC control charac-

ters is encountered. The transferred ASCII string is to be

terminated with an EOT character. To accomplish this, SI is

initialized to point to the beginning of the EBCDIC buffer, DI is

initialized to point to the beginning of the buffer to receive the

ASCII characters, BX is made to point to an EBCDIC-to-ASCII

translation table, and CX is initialized to contain the length of the

EBCDIC buffer (possibly empty). The translation table contains

the ASCII equivalent for each EBCDIC character, perhaps with

ASCII nulls for illegal characters. The EOT code is placed into

632 Part 3
I
Computer Classes Section 2 I Microcomputers

those entries in the table corresponding to the desired EBCDIC

stop characters. The 8086 instruction sequence to implement this

example is the following:

JCXZ

Chapter 37
;

Intel Microprocessors: 8008 to 8086 633

The 8086 processor recognizes two varieties of external

interrupt
—the non-maskable interrupt and the maskable inter-

rupt. A pin is provided for each variety.

Program execution control may be transferred by means of

operations similar in effect to that of external interrupts. A

generalized 2-byte instruction is provided that generates an

interrupt of any type; the type is specified in the second byte. A

special 1-byte instruction to generate an interrupt of one particu-

lar type is also provided. Such an instruction would be required

by a software debugger so that breakpoints can be "planted"

on 1-byte instructions without overwriting, even temporarily,

the next instruction. And finally, an interrupt return instruction

is provided which pops and restores the saved flag settings

in addition to performing the normal subroutine return func-

tion.

Single step. When the TF flag register is set, the processor

generates an interrupt after the execution of each instruction.

During interrupt transfer sequences caused by any type of

interrupt, the TF flag is cleared after the push-flags step of the

interrupt sequence. No instructions are provided for setting or

clearing TF directly. Rather, the flag-register file image saved on

the stack by a previous interrupt operation must be modified so

that the subsequent interrupt return operation restores TF set.

This allows a diagnostic task to single-step through a task under

test while still executing normally itself.

External-processor synchronization. Instructions are included

that permit the 8086 to utilize an external processor to perform

any specialized operations (e.g., exponentiation) not implemented
on the 8086. Consideration was given to the ability to perform the

specialized operations either via the external processor or through
software routines, without having to recompile the code.

The external processor would have the ability to monitor the

8086 bus and constantly be aware of the current instruction being
executed. In particular, the external processor could detect the

special instruction ESCAPE and then perform the necessary

actions. In order for the external processor to know the 20-bit

address of the operand for the instruction, the 8086 will react to

the ESCAPE instruction by performing a read (but ignoring the

result) from the operand address specified, thereby placing the

address on the bus for the external processor to see. Before doing
such a dummy read, the 8086 will have to wait for the external

processor to be ready. The "test" pin on the 8086 processor is used

to provide this synchronization. The 8086 instruction WAIT

accomplishes the wait.

If the external processor is not available, the specialized

operations could be performed by software subroutines. To invoke

the subroutines, an interrupt-generating instruction would be

executed. The subroutine needs to be passed the specific

specialized-operation opcode and address of the operand. This

information would be contained in an in-line data byte (or bytes)

following the interrupt-generating instruction.

The same number of bytes are required to issue a specialized

operation instruction to the external processor or to invoke the

software subroutines, as illustrated in Fig. 12. Thus the compiler
could generate object code that could be used either way. The

actual determination ofwhich way the specialized operations were

carried out could be made at load time and the object code

modified by the loader accordingly.

Sharing resources with parallel processors. In multiple-

processor systems with shared resources it is necessary to provide
mechanisms to enforce controlled access to those resources. Such

mechanisms, while generally provided through software operat-

ing systems, require hardware assistance. A sufficient mechanism

for accomplishing this is a locked exchange (also known as

test-and-set-lock) .

The 8086 provides a special 1-byte prefix which may precede

any instruction. This prefix causes the processor to assert its

bus-lock signal for the duration of the operation caused by the

instruction. It is assumed that external hardware, upon receipt of

-- code monitored by external procesaor

WAIT opcode I WAIT Instruction

: seg :

(opt ional)

ESCAPE
instruction

IE5CAPE op! X i !mod! y i r/m

(optional) (optional)

x,y X opcode for external processor, unused by ESCAPE instruction
X = opcode group
y = opcode within group

-- software simulation when external processor is unavailable

INT Opcode

634 Part 3
I
Computer Classes Section 2 I Microcomputers

that signal, will prohibit bus access for other bus masters during

the period of its assertion.

The instruction most useful in this context is an exchange

register with memory. A simple software lock may be implement-

ed with the following code sequences:

Check:

MOV AL.l

LOCK XCHG Sema,AL
TEST AL,AL
JNZ Check

MOV Sema.O

set AL to 1 (implies

locked)

test and set lock

set flags based on AL
retry if lock already set

;critical region

;clear the lock when done

IX. Summary and Conclusions

"The 8008 begat the 8080, and the 8080 begat the 8085, and the

8085 begat the 8086."

During the six years in which the 8008 evolved into the 8086, the

processor underwent changes in many areas, as depicted by the

conceptual diagram of Fig. 13. Figure 14 compares the functional

block diagrams of the various processors. Comparisons in per-

formance and technology are shown in Tables 5 and 6.

The era of the 8008 through the 8086 is architecturally notable

for its role in exploiting technology and capabilities, thereby

lowering computing costs by over three orders of magnitude. By

removing a dominant hurdle that has inhibited the computer

industry
—the necessity to conserve expensive processors

—the

<

9 S

Q
m

.<=>

<
a:

?-, <

a o
o

o o h-

< H Q

§ si
is
<

E2
=0 -I

CO <~
z

E2
00 <
z
X

(J=> ^

^1

3 Q

UJ CC
a <

*l

o c
UJ uj

X

C

i33n3SU31SI03H

3 z

ec K
o <

(r •"

^ S
z9
UJ Q
S <

r IN

o z
I- X
U UJ

D 1-

CC «

5
=5

=^
<?;

y d m a
H UJ z UJ Z
O O Q = -1 Q
c u < y > Qp UJ < (1 y
(A Q
z

<u:

Q
<

3
O

LLC

c o
Z Q C
5 2 >-

-<^
I- O

£5.

u. i

j u o I- 3 s
I- t^ 5 z -J

ES03<

mJ
=5?

•«—*

l3

o

5g

= 2C X

UJ Z
I- O
z o

ix

z
' o

a
 <
UJ

X
Q

.
^
O
I
<
.Q

-J

X
Q

'
35

Q
•O
(A

(A iii lA

tn to r^' &'
t- K K <
iA (A t/> X
X X X H

Hi

1g

h-Mi

tt
di

X >
ul -i

SI

TT
o

8

r" 1 n

E 2 uj 3

£ in CO a

rt

<
z
o

/^
c <
o

z

•-•
OS

8«

n

2Jz

^^c=

<^

to
cc O

t^

«
<

63$ Part 3
|
Computer Classes Section 2

I
Microcomputers

Table 5 Performance Comparison

8008 8080 (2 MHz) 8086 (8 MHz)

register-register 12.5 2

transfer

jump 25 5

register-immediate 20 3.5

operation
subroutine call 28 9

increment (16-bit) 50 2.5

addition (16-bit) 75 5

transfer (16-bit) 25 2

0.25

0.875

0.5

2.5

0.25

0.375

0.25

new era has permitted system designers to concentrate on solving

the fundamental problems of the applications themselves.

X. References

Bylinsky [1975]; Faggin et al. [1972]; HofiF [1972]; Intel 8080
Manual [1975]; Intel MCS-8 Manual [1975]; Intel MCS-40 Manual

[1976]; Intel MCS-85 Manual [1977]; Intel MCS-86 Manual

[1978]; Morse [1980]; Morse, Pohlman, and Ravenel [1978];

Shima, Faggin, and Mazor [1974]; Vadasz et al. [1969].

All times are given in microseconds.

Table 6 Technology Comparison

8008 8080 8085 8086

Silicon

Chapter 37
{

Intel Microprocessors: 8008 to 8086 639

bit4 =

bit 3 =

bit 2 = complement of original value

of ZERO
bit 1 = complement of original value

of ZERO
bit = complement of original value

of PARITY

With the information saved in the above format in a byte called

FLAGS, the following two instructions will restore all the saved

flag values:

LDA FLAGS ;load saved flags into accumulator
ADD A ;add the accumulator to itself

This instruction sequence loads the saved flags into the accumula-

tor and then doubles the value, thereby moving each bit one

position to the left. This causes each flag to be set to its original

value, for the following reasons:

• The original value of the CARRY flag, being in the leftmost

bit, will be moved out of the accumulator and wind up in

the CARRY flag.

• The original value of the SIGN flag, being in bit 6, will wind

up in bit 7 and will become the sign of the result. The new
value of the SIGN flag will reflect this sign.

• The complement of the original value of the PARITY flag

will wind up in bit 1, and it alone will determine the parity
of the result (all other bits in the result are paired up and
have no net effect on parity). The new setting of the PARITY
flag will be the complement of this bit (the flag denotes
even parity) and therefore will take on the original value of

the PARITY flag.

• Whenever the ZERO flag is 1, the SIGN flag must be

(zero is a positive two's-complement number) and the

PARITY flag must be 1 (zero has even parity). Thus an

original ZERO flag value of 1 will cause all bits of FLAGS,
with the possible exception of bit 7, to be 0. After the ADD
instruction is executed, all bits of the result will be and the

new value of the ZERO flag will therefore be L

• An original ZERO flag value of will cause two bits in

FLAGS to be 1 and will wind up in the result as well. The
new value of the ZERO flag will therefore be 0.

The above algorithm relies on the fact that flag values are always

consistent, i.e.
,
that the SIGN flag cannot be a 1 when the ZERO

flag is a 1. This is always true in the 8008, since the flags come up
in a consistent state whenever the processor is reset and flags can

only be modified by instructions which always leave the flags in a

consistent state. The 8080 and its derivatives allow the program-
mer to modify the flags in an arbitrary manner by popping a value

of his choice off' the stack and into the flags. Thus the above

algorithm will not work on those processors.

A code sequence for saving the flags in the required format is as

foUows:

MVI A,0

JNC LI
ORA 80H

LI: JZ L3

ORA 06H

JM L2
ORA 60H

L2: JPE L3

ORA OIH

L3: STA FLAGS

move zero in accumulator

jump if CARRY not set

OR accumulator with 80 hex

(set bit 7)

jump if ZERO set (and SIGN
not set and PARITY set)

OR accumulator with 03 bex

(set bits 1 and 2)

jump if negative (SIGN set)

OR accumulator with 60 bex

(set bits 5 and 6)

jump if parity even (PARITY
set)

OR accumulator witli 01 hex

(set bit 0)

store accumulator in FLAGS

APPENDIX 2 DECIMAL ARITHMETIC

A. Packed BCD

1. Addition. Numbers can be represented as a sequence of

decimal digits by using a 4-bit binary encoding of the digits and

packing these encodings two to a byte. Such a representation is

called packed BCD (unpacked fiCD would contain only one digit

per byte). In order to preserve this decimal interpretation in

performing binary addition on packed BCD numbers, the value 6
must be added to each digit of the sum whenever (1) the resulting

digit is greater than 9 or (2) a carry occurs out of this digit as a

result of the addition. This is because the 4-bit encoding contains

six more combinations than there are decimal digits. Consider the

following examples (numbers are written in hexadecimal instead

of binary for convenience).

Example 1: 81+52
d2 dl do names of digit positions

packed BCD augend
packed BCD addend

adjustment because dl > 9

packed BCD sum

8

640 Part 3
I
Computer Classes Section 2

|
Microcomputers

2

Chapter 37
|

Intel Microprocessors: 8008 to 8086 641

The most significant digit of the most significant byte is 1,

indicating that there was one out-of-digit carry from the low-order

digit when the 9*2 term was formed. Adjustment is to add 6 to

that digit.

Example 5: 7 * 5

dl do names of digit position.s

1 2

6

18
adjustment

packed BCD product

Thus, in the absence of cross terms, the number of out-of-digit

carries that occur during a multiplication can be determined by

examining the binary product. The cross terms, when present,

overshadow the out-of-digit carry information in the product,

thereby making the use of some other mechanism to record the

carries essential. None of the Intel processors incorporates such a

mechanism. (Prior to the 8086, multiplication itself was not even

supported.) Once it was decided not to support packed BCD
multiplication in the processors, no attempt was made to even

analyze packed BCD division.

B. Unpacked BCD

Unpacked BCD representation of numbers consists of storing the

encoded digits in the low-order four bits of consecutive bytes. An
ASCII string of digits is a special case of unpacked BCD with the

high-order four bits of each byte containing 0110.

Arithmetic operations on numbers represented as unpacked
BCD digit strings can be formulated in terms of more primitive

BCD operations on single-digit (two digits for dividends and two

digits for products) unpacked BCD numbers.

1. Addition and Subtraction. Primitive unpacked additions and

subtractions follow the same adjustment procedures as packed
additions and subtractions.

2. Multiplication. Primitive unpacked multiplication involves

multiplying a one-digit (one-byte) unpacked multiplicand by a

one-digit (one-byte) unpacked multiplier to yield a two-digit

(two-byte) unpacked product. If the high-order four bits of the

multiplicand and multiplier are zeros (instead of don't-cares), each

will represent the same value interpreted as a binary number or as

a BCD number. A binary multiplication will yield a two-byte

product in which the high-order byte is zero. The low-order byte
of this product will have the correct value when interpreted as a

binary number and can be adjusted to a two-byte BCD number as

follows:

High-order byte =
(binary product)/10

Low-order byte = binary product modulo 10

This is illustrated in the following example (numbers are written

in hexadecimal instead of binary for convenience).

unpacked BCD multiplicand

unpacked BCD midtiplier

2 3 binary product

2 3 binary product
/ A adjustment for high-order byte (/ 10)

3 unpacked BCD product (high-order byte)

modulo
2 3 binary product
A adjustment for low-order byte

(modulo 10)

5 unpacked BCD product (low-order byte)

3. Division. Primitive unpacked division involves dividing a

two-digit (two-byte) unpacked dividend by a one-digit (one-byte)

unpacked divisor to yield a one-digit (one-byte) unpacked quo-
tient and a one-digit (one-byte) unpacked remainder. If the

high-order four bits in each byte of the dividend are zeros (instead

of don't-cares), the dividend can be adjusted to a one-byte binary

number as follows:

Binary dividend = 10 * high-order byte + low-order byte

If the high-order four bits of the divisor are zero, the divisor will

represent the same value interpreted as a binary number or as a

BCD number. A binary division of the adjusted (binary) dividend

and BCD divisor will yield a one-byte quotient and a one-byte

remainder, each representing the same value interpreted as a

binary number or as a BCD number. This is illustrated in the

following example (numbers are written in hexadecimal instead of

binary for convenience).

Example 6: 45/6
dido names of digit positions

unpacked BCD dividend (high-order byte)

unpacked BCD dividend (low-order byte)

adjusted dividend (4 * 10 + 5)

unpacked BCD divisor

unpacked BCD quotient

unpacked BCD remainder

4. Adjustment Instructions. The 8086 processor provides four

adjustment instructions for use in performing primitive unpacked
BCD arithmetic—one for addition, one for subtraction, one for

multiplication, and one for division.

The addition and subtraction adjustments are performed on a

642 Part 3
I
Computer Classes Section 2

I
Microcomputers

binary sum or difference assumed to be left in the one-byte AL

register. To facilitate multi-digit arithmetic, whenever AL is

altered by the addition or subtraction adjustments, the adjust-

ments will also do the following:

• set the CARRY flag (this facilitates multi-digit unpacked
additions and subtractions)

• consider the one-byte AH register to contain the next most

significant digit and increment or decrement it as appropri-

ate (this permits the addition adjustment to be used in a

multi-digit unpacked multiplication)

The multiplication adjustment assumes that AL contains a binary

product and places the two-digit unpacked BCD equivalent in AH
and AL. The division adjustment assumes that AH and AL contain

a two-digit unpacked BCD dividend and places the binary

equivalent in AH and AL.

The following algorithms show how the adjustment instructions

can be used to perform multi-digit unpacked arithmetic.

Addition

Let augend = a[N] a[N-

APPENDIX 3 INTEL 8080 ISP

I080:«

begin

ISP description of the Intel 8080 micpoprocessor architecture.

The following description of the contents are provided to aid
in reading the ISP.

••MP. State": The primary memory,

••PC. State": Processor registers, status word, and stack

pointer description.

••External .State*^: Interrupt variables and I/O addresses.

••Implementat ion.Variables**: Registers and temporaries
required by the implementation, but that are
not part of the architecture.

••Instruction, Format^^: A description of the instruction

register and its fields.

••Address. Calculation^^: Routines used to access memory
and registers.

••Service. Facil ities'*: Utility routines used to perform
arithmetic, set condition codes, and execute
conditional calls and returns.

•"Instruct ion . Interpretation**: The main processor execution

cycle.

••Instruction. Execution**: Main instruction decoding.

Instruction definitions for execution.

••MP.State»*

m[0:ll'177777]<7:0>

••PC.State*"

PC<15:0>,
dr[0:3]<15:0>.

r[0:7]<7:0>:=dr[0:3]<15:0>.

1 Primary memory

I Program counter
! Double registers
I Registers

Rename the sequential registers to match INTEL mnemon ics

B<7:0>
C<7:0>

APPENDIX 3 (cont'd^

1 Hutmo uM« tor c«ii<IUt«<>«l ctll. r«tani.

APPENDIX 3 (cont'd.)

t :

646 Part 3 Computer Classes
Section 2 Microcomputers

APPENDIX 3 (confd.)

RET := (cond.ret(l)).
PCHl. :-- (PC

= II 8 L).
SPHL := (SP = H 8 L).

JNZ
JZ
JNC
JC
JPO
JPE

JH

:= (cond. jump(not Z)) ,

:= (cond. jump(Z)),
;= (cond. juiiip{not CY)).
:» (cond.jump{CY)).
:» (cond. jump(not P)) .

:= (cond.jump(P)).
:= (cond. jump{not S)).
:= {cond. jump(S)) ,

JMP ;
=

begin
source. i2() next
PC > dbuf
end.

OUT

begin
source. il() next

output .device[buf]
= A

end.

beg in

source. il() next
A = input. device[buf]
end.

begin
tempd = m[SP] 8 L next
L = tempd<l5:8>:
m[SP]

= tefnpd<7:0> next

tempd = m[SP + 1] 8 II ne

H = tempd< 15:8>;

m[SP I]
' tempd<7:0>

end.

