
602 Part 3
I
Computer Classes Section 1

' Monolithic IMicrocomputers

Chapter 35

PIC1650: Chip Architecture and

Operation

Frank M. Gruppuso

I. Introduction and Design Goais

The PIC1650 is an MOS/LSI circuit array containing RAM, I/O, a

central processing unit, and a customer-defined ROM on a single

chip. General Instrument (GI) architectured the PIC (Program-
mable Intelligent Controller) in 1976 to satisfy the need for a

low-level, easy-to-use microcontroller. The only other microcom-

puter available at the time was the calculator-based design

TMSIOOO, and it was felt that a much more powerful machine

could be built around a general-purpose-register, minicomputer-
like architecture. Thus was laid the groundwork for the PIC1650.

The PIC is fabricated in an N-channel MOS-process technology
that permits fabrication of both enhancement- and depletion-

mode transistors. Depletion-mode transistors allow low-voltage

(5-volt) operation and, when used as internal load resistors, offer

much better speed-power performance than enhancement-mode

transistors used in a similar fashion.

As a controller, the PIC chip was designed to emphasize bit,

byte, and register-transfer operations. Its main objectives would

be to perform logical processing, basic code converting, and

formatting, and to generate fundamental timing and control

signals for various subservient I/O devices [PIC 1979a, fo]. The

emphasis was placed on the ability to provide control and interface

functions rather than computing functions. The PIC was seen as a

key element to providing so-called intelligence to long-established

non-computer, small-system designs which, as it turned out, were

mostly electromechanical in nature. Some of the initial proposals

were for applications in vending machines, small dot-matrix

impact printers, and metered mailing systems.

The following are several key issues which motivated the

architecture and logic design.

• Wide instruction word. It was felt that a 12-bit-wide

instruction word that was wider than the 8-bit data word
afforded both simplicity (and thus compactness) of chip

design and ease of user-programmability. All instructions

were therefore designed to be one word long; this kept the

control logic simple since no multiple fetches had to be
made from program memory to execute even the most

complex instructions. Also, a 12-bit instruction word allows

every register to be directly addressed by the program. It

further permits literals in program ROM to be accessed at

the same time as the instruction op code. For example, in a

machine with an 8-bit-wide instruction word, a load

immediate instruction would normally take two 8-bit ROM
words fetched and executed in two instruction cycles. In

the PIC 1650, the equivalent instruction only occupies one
12-bit ROM word in memory and executes in one cycle.

General-register architecture. Another aspect of the design
that was considered important was the general-purpose
nature of the register array: the program counter (PC),

every I/O register, and most other specialized registers

occupy an address in the register array address space. This

permits every instruction that can operate on a general-

purpose register to operate, say on an I/O file register or the

PC. In the case of the program counter, for example, the

instruction MO\'W F2 (move the contents of the working

register to the PC) is actually a computed GOTO instruc-

tion.

Minimal parts count. It was envisioned that the PIC would
be applied in areas that would be cost-sensitive from a

systems viewpoint. Thus, efforts were taken to minimize

the amount of external outboard circuitry. A single-pin

oscillator whose frequency of operation was determinable

by a single resistor and capacitor was designed. A second

power supply, Vxx was added to drive the output buffers of

the processor. It was not expected that TTL gates would be

the only loads that the microcomputer I/O lines were ever

going to see. Discrete switching transistors, coils, and large

LED displays represent only a few of the different kinds of

external circuits it was felt the PIC chip had to be capable of

interfacing with. If Vxx is varied externally from 5 V to, say,

9 V, the output buffer transistors behave as voltage-

controlled resistors. This allows any interface between the

PIC chip and the outside world to be more effectively

matched. Section VI of this chapter describes an application

using this pin.

Direct Bit Set/Clear/Test instructions. In view of the PIC's

overall architectural goal of being a controller, it was highly

desirable for the processor to be able to directly set, clear,

and test individual bits in any register without forcing the

user to program the usual "mask with a literal" coding

sequences. Instead, the chip performs these functions

internally. Thus, to execute the Bit Set instruction on bit 2

of a particular register, for example, the processor internal-

ly sets up the mask B ' 00000100 ' and performs a logical OR
between this mask and the register.

Wide operating-voltage range. Soon after the release of the

PIC 1650 to the marketplace, it became apparent that a

number of applications were found which required battery

operation (e.g., electronic hand-held games and digital

scales) or, more generally, a wide operating-voltage range.

A wide operating-voltage-range chip could tolerate a less

critical and, hence, less costly external power supply. Thus,



Chapter 35 PIC16S0: Chip Architecture and Operation 603

GI initiated a design eEPort that generated the "A" series of

PIC chips—PIC 1650A, PIC1655A—that are identical to the

original except that the operating voltage range was in-

creased from 4.75-5.25 V to 4.5-7 V. As four C cell

batteries fully charged produce 6.8 V in series, 7 V was
chosen as the upper limit.

Several versions of the PIC1650 have been architectured

which, among other things, vary according to number of I/O lines,

RAM size, and ROM size. These are enumerated in Table 1.

Applications using the PIC series have centered around those

where a single-chip microcomputer could perform systems func-

tions at a lower cost than non-computer solutions presently

available or, alternativeh', provide extra features which heretofore

would have been prohibitively expensive without a microcomput-
er. Present applications that use the PIC chip include:

• Digital-readout weight scale. In this application, weight is

converted to a digital pulse train via a front-end transducer

circuit. The pulses are applied to the RTCC (Real Time
Clock Counter) input. The ROM program computes the

difference between the frequency with the weight applied
and the no-weight frequency (thereby providing for auto-

zero correction) and converts the difference to a 4-digit

BCD number which is subsequently displayed. To save

multiplexing costs, all thirty-two I/O lines drive the display

directly.

• Auto-dialer telephone system. This system is capable of

storing and retrieving sixteen 10-digit telephone numbers.

Here, the PIC chip processes command codes, which are

entered through the keyboard, and drives outboard CMOS
RAM, which stores the actual digits.

• Motor control. In this application, the PIC chip serves as a

feedback element in a constant-speed motor control sys-

tem. The microcomputer senses the present speed of the

motor and adjusts the firing pulse to an external SCR,
which, in turn, drives the motor. The high instruction rate

permits precise control over a wide range of speeds. Typical

applications of this system are found in industrial drill

presses and hand drills.

• Consumer electronics. In the consumer arena, the PIC has

been programmed into a variety of electronic games. The
PIC is quite efficient in the area of sound generation: the

high instruction rate permits higher-frequency sounds and
thus more complex sounds than would be possible with a

slower processor. Other areas of consumer electronics use

the aforementioned motor control technique in household

mixers, blenders, and food processors. The PIC has also

been designed into appliances requiring time controlling,
such as microwave oven timing.

Figure 1 shows a functional block diagram of the PIC1650. All

data elements—arithmetic logic unit, register file array, I/O

registers
—are connected via an internal 8-bit bidirectional bus.

Table 1 Family of PIC Architectures



604 Part 3
I
Computer Classes Saction 1

I

Monolithic Microcomputers

iRA

<0:7>

I
I/O reqA (F5)

8<

8-bit

bidirectional

bus

RTCC-

MCLR-

'1

RB <0:7>

I/O reg B (F6)

8--

Wreg

"•^ !±

Instruction

Decode & Control

Arithmetic

logic unit

jA.
Instruction

Register (IRI

fa
I / .

Status

reg (F3)

,'3

Register
file array

(F9toF31)

RTCC reg (F1)

-/- File

select

reg (F41

2 level

Pushdown stack

i

Program

ROM

512 X 12

X

8

/- I/O regC (F7)

RC<0:7>

I/O reg D (F8I

-^ Program counter (F2)
|

8-'

Fig. 1. PIC1650 block diagram.

Descriptions of these various elements appear in the following

sections.

II. Mp State

The Program ROM contains 6144 bits organized as 512 twelve-bit

words. RAM storage consists of 32 eight-bit registers, all of which

are addressable by instructions contained in the program ROM.
These registers are divided into two functional groups: operation-

al registers and general-purpose registers. The general registers

are addressed as F9 to F31 and contain data and control

information. These registers are all located in a contiguous block

labeled "Register File Array" in Fig. 1. The operational registers,

FO to F8, are scattered throughout the chip, and not only are they
addressable by the program, but they also perform special

functions described in Sec. Ill of this chapter.

III. Pc state

The register file arrangement is delineated as follows:

a FO. FO is not a physically implemented register. Rather, it

is used as an indirect register-select mechanism; when FO
is specified in the register file field of an instruction, the

PIC will use the contents of F4 to select the register to be

used in that instruction.

b Fl<7:0>\Real.Time. Clock. Counter. Register. This regis-

ter counts external events by incrementing on the falling

edge of the RTCC pin. This register can also be loaded and
read under program control.

c F2<8:0>\Program. Counter (PC). The program counter

points to the next instruction to be executed in memory.
This register is 9 bits wide to address the 512-word ROM,
but only the low-order 8 bits can be written to or read from



Chapter 35
|

PIC1650: Chip Architecture and Operation 605

by the program. The ninth bit can be considered a page bit

and can only be altered by a GOTO instruction. The PC is

initialized to 111% upon a low-to-high transition of the

MCLR input pin. It increments normally thereafter except
as modified by the program via the use of the CALL,
RETURN or other, similar instructions.

d F3<2:0>\Status. Word. Register. This register contains

status bits which are modified as a result of arithmetic

operations.

C<>\ Carry, bit: = F3 <0>. Stores the carry out of the

most significant bit of the resultant of an arithmetic

operation. This bit is also used as a link for rotate

instructions.

DC<>\ Digit. Carry := F3<1>. Stores the carry out of

the fourth low-order bit (bit 3) of the resultant of an

arithmetic operation. The bit is useful in processing
decimal data.

ZONZero := F3 <2>. This bit is set if the resultant of

an arithmetic operation is zero and cleared if the

resultant is not zero.

Since these bits constitute a file register, they can also be
modified under program control. However, to avoid a

conflict between altering the status flags under program
control and altering the status flags as a result of arithmetic

operations, F3 can only be modified under program
control by either the BIT SET or BIT CLEAR instruction.

e F4<7:0>\ File. Select. Register (FSR). Only the low-order

5 bits are used in this register. The FSR is used in

generating efiiective file register addresses under program
control. When this register is directly addressed as a file,

all 5 bits can be written to and read from. The upper 3 bits

read as a logic "I."

/ F5<7:0>\ Input. Output. Register A.

g F6<7:0>\ Input. Output. Register. B.

h F7<7:0>\ Input.Output.Register.C.

t F8<7:0>\ Input. Output. Register. D.

i F9<7:0>-F31<7:0>. Twenty-three general-purpose reg-
isters.

k W<7:0>\ Working. Register. The accumulator.

/ Stack [I:0]<8:0>. Two registers that store return address-

es for use in CALL and RETURN instructions.

m IR<11:0>\ Instruction. Register. A 12-bit register that

stores the instruction currently being executed by the PIC.

Note that neither register ofthe pushdown stack can be directly

accessed by the program. When a CALL instruction is executed.

the contents of the program counter (which is'already pointing to

the next instruction after the CALL) are pushed into the top

register of the pushdown stack. The top register's former contents

are pushed onto the second register in the stack. Any prior data in

this second register is lost, thereby limiting the amount of

subroutine nesting to two. The RETURN instruction (mnemonic

RETLW) fiinctions in reverse fashion: the top register of the stack

replaces the current PC while the second register of the stack

replaces the stack top. The contents of the second register remain

unchanged.

IV. Instruction Set

Table 2 summarizes the PIC 1650 instruction set. Each instruction

is a 12-bit word divided into an op code field which specifies the

instruction type and one or more fields which select the operand
data source and destination. The instruction set is broken into

three different formats: general file register operations, bit-level

file register operations, and literal and control operations.

Instruction Format I: General File Register Operations

OP CODt



Table 2 PIC 1650 Instruction-Set Summary

In the following PIC Instruction descriptions "k" represents an eight-bit constant or literal value, "f" represents a file register designator
and "d" represents a destination designator. The file register designator specifies which one of the 32 PIC file registers is to be utilized by
the instruction. The destination designator specifies where the result of the operation performed by the instruction is to be placed. If "d"

is zero, the result is placed in the PIC W register. If "d" is one, the result is returned to the file register specified in the instruction. If the

"d" operand is omitted, thef register is assumed as the destination, "f" and "d" may be numbers, characters, or symbols as described in

the PIC Assembler and PIC Simulator instructions. A "b" field specifies the bit number within an 8-bit register, "C" represents the carry

bit, "Z" represents the zero bit, and "DC" represents the digit carry bit.

General file register operations

(6-11) (5) (0-4)

OP CODE



Chapter 35
|

PIC1650: Chip Architecture and Operation 607

DECFSZ is skipped; if the resit is not zero, then the next

instruction is executed. Increment file, skip if zero (INCFSZ)

operates in a similar fashion.

Instruction Format II: Bit-Level Register Operations

OPCODE



Part 3 Computer Classes Section 1 MonolKhic Microcomputers

J
\

Program
counter ^3C V PC = literal j^Tc = literal + 1 "X ^

Load

PC with

literal

Instruction

execution

Execution of

CALL instruction

Internally

execute NO-OP

Execution of

instruction @
literal address

Fig. 3. Modified cycle timing for CALL, GOTO, etc.

rising edge of every 01 clock. At the same time, a master-slave

flip-flop located at the output of the ROM latches the instruction

fetched in the previpus cycle. This prevents the new instruction

fetch from potentially corrupting the previous fetch. This pipelin-

ing scheme keeps the instruction throughput high.

For those instructions that modify the contents of the program

counter, this scheme does not work. Opportunity must be given

for the ROM to access the instruction at the new address. Thus the

PIC must wait an additonal cycle before accessing the next

instruction after CALL or similar instructions (Fig. 3).

Input/Output Registers

Thirty-two pins of the PIC 1650 (housed in a 40-pin dual in-line

package) constitute the input/output pins. They are segregated

into four groups of eight pins each. Each group of eight represents

a register that occupies an address in the address space of the

register file array. Pins RA<0:7> are the I/O pins that constitute

F5 (Fig. 1). Similarly, RB<0:7>:= F6<7:0>,RC<0:7>: =

F7<7:0>, and RD<0:7>:= F8<7:0>. A circuit diagram of the

I/O register interfacing to a TTL gate is shown in Fig. 4.

Each I/O bit contains a latch which will be written into if its I/O

file is specified as the destination register in an instruction. If we

consider the I/O bit as part of an output file, then the logic value

attainecTby the pin will be the logic value in the latch. If a "1" is

stored in the latch, transistor Qi will still be on, hit transistor Qz
will attain an impedance ofapproximately 200 ft and drive the pin

to a low level.

An auxiliary power supply, Vxx, provides the voltage required

to turn on transistor Q2. The higher this supply, the lower the

impedance Q2 attains when it is on. Typically, increasing the Vxx

supply from 5 V to 10 V will roughly halve the impedance of Qz

from 200 ft to 100 ft. In driving large-segment LED displays, for

example, a typical system configuration would call for Vcc

(primary chip supply) to be 5 V and Vxx to be 10 V. This provides

the large current-sinking capabiUty necessary to drive the displays

without the need for any interfacing bipolar transistors.

Now consider the use of the I/O bit as part of an input file.

When an I/O file is used as a source register, an internal READ

signal gates the data on the I/O pin into the internal data bus. In

this configuration, Q2 should be kept ofi'by presetting the register

to 1 (allowing Qi to be conveniently used as a pull-up transistor). If

Q2 is on, an impedance conflict will occur if an external device is

attempting to drive the pin to a logic "1" level. For purposes of

logic definition, then, it can be said that the I/O bit and the

external device form a logical AND when the I/O register is used

as an input file.

On
(internal

-

data bus)
Write

(internal .

signall

X
H
J ^

V^P PIC 1650

T
Read

• (internal

signal)

I
TTL device input

.J

?
I TTL device output

(open-collector)

Fig. 4. 1/0 register circuit diagram.



Chapter 35
|
PIC1650: Chip Architecture and Operation 609

VI. Program Examples

Use of Indirect Addressing

This example illustrates the use of the File Select Register (F4)

and the indirect addressing mode using FO. This program clears

files F5 to F31.

Label Op code Operand Comment

Loop

IVIOVLW

MOVWF
CLRF

INCFSZ

GOTO

END

5 Move literal 5 to W REG.

4 Move W to F4. (F4
=

5).

Clear the contents of the file

pointed to by F4.

4, F Increment F4. The PC will

skip after F31 is cleared.

Loop Repeat the steps beginning at

Loop to clear the next file.

Files F5 and F31 are cleared.

BCD Number Display

This example converts a BCD number held in the four least

significant bits of F20 (the 4 MSB's are assumed zero) to a

7-segment code. The 7-segment code is output via I/O port F5,

Typical 7-segment bar position.

Assembler recognizes the format

B'bbbbbbbb' as an 8-bit binary

data word where b is a or 1.

The LED segment positions are

thus B'Oabcdefg'.

RA<0>

RA<1>

RA<2>

RA<3>

RA<4>

RA<5>

RA<6>

-wv-

^Wv-

-^AA/-

AAA^

-VW-

^^^

-VW-

-VW- 4<3-

<^

^
r>

-^

I

Specs: Rqn = 100 S!; diode drop = 1.8 V, therefore, Iled
= 16mA.

Rs
= loon

Lahel Op code


