
Chapter 34

TMS1 000/1 200: Chip
Architecture and Operation^

Introduction

The TMS 1000/1200 functional block diagram (Fig. 1) shows all

major logic blocks and major data paths in the TMSlOOO/1200

architecture. The ROM, ROM addressing, and instruction decode

are on the left side of the diagram. On the right side of the

diagram are the adder/comparator, the RAM, the registers for

addressing the RAM, and the accumulator, which is the main

working register. The major logic blocks are interconnected to the

adder with four-bit parallel data paths. The various portions of the

architecture will be discussed in the following paragraphs.

Mp State

The ROM has 8,192 possible matrix points (1,024 eight-bit words)

where MOS transistors are placed to define the bit patterns of the

machine language code. The ROM is organized into 16 pages of64

words.

There are four RAM files, each containing 16 four-bit words in

the RAM's 256-bit matrix (shown in the upper right of Fig. 1).

There are two modes ofRAM access (read and write) during the

instruction cycle:

1 Data may be read out of the RAM for the purpose of

addition, subtraction, or transfer to the other registers.

2 Data is stored in the RAM via the write bus.

Two sources of information are written into the RAM; these

sources are selected by the write multiplexer (shown on the right

side of the function diagram. Fig. 1). In one mode the multiplexer

selects the accumulator information to be written into the RAM
(uses the STO microinsti-uction). The accumulator data is trans-

ferred to memory after data is read from the RAM but before the

ALU results are stored into the accumulator. In the second mode,

the constant and K-input logic is written into the RAM (by the

CKM microinstruction). The constants from the ROM instruction

bus are transferred to the RAM directly, and an optional data path

from Kl, K2, K4, and K8 exists although not selected in the

standard instruction set. Four RAM bits are carried on the read

bus to either the P-multiplexer or the N-multiplexer and then to

the adder/comparator.

'Abstracted from TMSIOOO Programmer's Reference Manual, Texas

Instruments, Inc., 1975.

Pc State

a PA<0:3>\Page. Address. Register. Contains the number of

the page within the ROM being addressed.

b PB<0:3>\Page. Buffer. Register. The PB is loaded with a

new page address which is then shifted into the PA for a

successful branch or call. The PB is changed by the load

page (LDP) instruction.

c PC<0:5>\Program. Counter. Contains the current location

of the word (within the page) being addressed.

d SR<0:5>\Subroutine. Return. Register. Contains the re-

turn word address in the call subroutine mode.

e X<0:1>. Designates which of four RAM files are being
accessed.

/ Y<0:3>. Designates which of 16 four-bit words are being
accessed in the specified RAM file.

g R<0;12>. Output register to control external devices.

h O<0:4>. Output register for display.

i K<0;3>. Input register.

j A<0:3>\Accumulator.

k Status. LogicO. One-bit flag containing the status of

previously executed instructions.

On powerup, the program counter is reset to location zero, and

the PA is set to 15. Then the program counter counts to the next

ROM address in a pseudorandom sequence. The sequence of

addresses in the program counter can be altered by a branch

instruction or a call instruction. A new branch address (W) can be

stored into the program counter upon the completion of a

successful branch or call instruction. If the branch instruction is

not successful, then the program counter goes to the next ROM
location within the current page.

In a successful call or branch execution the page address

register (PA) receives its next page address from the buffer register

(PB). The contents of the PB are changed by the load page
instruction (LDP), which can be executed prior to the branch or

call. Execution always continues on the same page unless PB is

explicitly changed.
When the branch is executed successfully and when the

processor is not in the call mode (CL =
0), the page buffer register

is loaded into the page address register. If the contents of the page
buffer register have been modified prior to the branch instruction,

then this instruction is called a long branch instruction, since it

may branch anywhere in the ROM (a long branch, BL, directive in

the source program generates two instructions—LDP, load page

buffer, and BR, branch). In the call mode (CL =
1), only "short"

branches are possible, those staying within a given page.

Note that the normal state of the status logic is ONE. Several

instructions can alter this state to a ZERO; however, the ZERO

587

588 Part 3 Computer Classes Section 1 Monolithic Microcomputers

[Ht>|

[£>

[Kr>E

1 INIT>-

R OUTPUT REG.

I 40 PIN DIP

1
TMS 1200 ONLY

FIXED
INSTRUCTION

DECODE

Chapter 34 TMS1000/1200: Chip Architecture and Operation 589

state lasts for only one subsequent instruction cycle (which could

be during a branch or call); then the status logic will normally

revert back to its ONE state (unless the following instruction

resets it to ZERO).
Like branch instructions, call instructions are conditional. One

level of subroutine is permitted, and a call within a call does not

execute properly. In the case of a successful call when status logic

equals ONE:

1 The call latch (CL) is set to ONE.

2 The contents of the page buffer register (PB) and the page
address (PA) register are exchanged simultaneously.

3 The return address is stored in SR and PB. The SR address

is one address ahead of the program counter when the call

instruction is executed. The return address is saved for a

future return instruction.

4 The branch address field of the instruction word writes into

the program counter.

When a return instruction occurs:

1 The subroutine return register (containing the call instruc-

tion address plus one) is always transferred to the program
counter.

2 The contents of the page buffer register (containing the

page at call) is always transferred to the page address

register.

3 The call mode is reset (CL =
0).

If a call instruction is executed within a previous call (no return

has occurred and the call latch is still a ONE and status is a ONE),
there is no transfer of the page buffer register to the page address

register; instead contents of the page address register transfer to

the page buffer register, although the branch address (W) loads

into the program counter.

Thus a call within a call to another page will cause the return

page to change, losing the correct return page address.

An X and Y address selects one four-bit RAM character,

M(X,Y), this address being the storage location in the RAM
matrix. The X-register can be set to a constant equal to through 3

(LDX instruction), or X can be complemented (COMX instruc-

tion) to flip the address of X to the X file (e.g., 00 to 11, or 01 to

10).

The Y-register has three purposes.

1 The Y-register addresses the RAM in conjunction with the

X-register for RAM character select.

2 The Y-register is a working register. The Y-register may be
set to any constant between and 15 (by the TCY

instruction), loaded from memory (TMY instruction), load-

ed from the accumulator (TAY instruction), decremented

(DYN), and incremented (lYC). Note that in the functional

block diagram (Fig. I), the Y-register has no inverted adder

input. Thus, the Y-register cannot be subtracted from the

accumulator or memory.

3 The Y-register addresses the R-output register for setting

and resetting individual latches. Whenever a particular

R-output needs to be set, the constant bus inputs the R's

address (0 through 12) to Y (TCY instruction), and then a set

R-output (SETR) instruction is executed.

The TMSIOOO has two outputs:

• R-outputs used for control

• O-outputs used to transmit data

The purpose of the R-outputs is to control the following:

• External devices

• Display scans

• Input encoding

• Dedicated status logic outputs (such as overflow)

Each R-output has a latch that stores a ONE or ZERO, and each

latch may be set (ONE) or reset (ZERO) individually by the set R

(SETR) or reset R (RSTR) instruction. The Y-register points to

which R-output is set by these instructions.

The R-output can be strobed by the ROM program to scan a key
matrix (K-input). Figure 2 represents the maximum key matrix

possible without external logic. A simple short from an R line to a

K-input can be detected by the ROM program and interpreted as

any function or data entry. Expanding the matrix is possible by
external logic such as using a 4-line to 16-line decoder.

The status latch and the accumulator data are loaded into the

O-output register (bottom right of Fig. 1) by a fixed instruction

from the ROM (TDO) when the programmer decides to change

output data. A separate instruction clears the O-output register.

This instruction (CLO) causes all five output register bits to be

reset to ZERO. The five bits from the O register are converted to

a parallel eight-bit code by the O PLA.

The accumulator is a four-bit register that interacts with the

adder, the RAM, and the output registers. The accumulator is the

main working register for addition and subtraction. It is the only

register which is inverted before its contents are sent to the adder

for subtraction. Subtraction is accomplished by two's complement
arithmetic. It is a storage register for inputs from the constant and

K-input logic as well as the Y-register.

Variable data from the K-inputs is also stored via the accumula-

590 Part 3
! Computer Classes Section 1 Monolithic Microcomputers

K8 K4 K2 K1

-«— Rl

-«— R2

-«— R3

-«— R4

-«_R5

«— R6

< R7

-« R8

<<— R9

« RIO

-«— R11

< R12

Fig. 2. Keyboard matrix connections.

Chapter 34 TMS1000/1200: Chip Architecture and Operation 591

tor into the RAM array. Therefore, any variable data input from

the K-inputs or from the adder output must pass through the

accumulator to the RAM array for storage. Likewise, any data to

the O-outputs must come through the accumulator. Four accumu-

lator register bits may be latched by the O-output register (where

the status latch information is also latched) for decode by the

O-output decoder.

There are 18 instructions that afiFect status logic, either setting it

(to ONE) or resetting it (to ZERO). In turn, the status logic will

permit the successful execution of a branch or call instruction (if

status logic
= ONE) or prevent successful execution of these

instructions (if reset to ZERO). Status logic will remain at a ZERO
level only for the following instruction cycle and then automatical-

ly be set to the normal ONE state (unless reset to ZERO by the

next instruction).

There are two microinstructions (NE and C8) that are used by

instructions affecting status. If the microinstruction C8 is used and

a carry occurs in the addition of two four-bit words, the carry goes

from the MSB sum to status, setting status logic to a ONE. If

no carry occurs, status logic is ZERO. In a logic compare instruc-

tion (using microinstruction NE), status logic is set to ONE
if the four-bit words at the N and P adder/comparator inputs

are not equal; conversely, status logic is ZERO if the inputs are

equal.

The status latch buffers the status-logic bit to the O-output

register for decode by the O-output PLA. Status-logic output is

selectively loaded into the status latch by special microinstruction

STSL (used in a logical-compare test instruction that causes the

status logic to output a ONE or ZERO). For example, if the test

instruction YNEA (in the standard instruction set) causes status

to be a ONE (if Y-register is not equal to A), then the ONE
writes into the status latch. If a ZERO is output by that instruc-

tion from status logic, then the ZERO writes into the status

latch.

The status latch transfers to the O-register with the accumulator

bits when TDO, transfer data out, is executed.

Instruction Set

Table 1 summarizes the standard instruction set, composed of the

12 "fixed" instructions and the 31 standard microprogrammed
instructions. These standard instructions are available as a default

to the user if he does not choose to redefine them by specifying a

different PLA pattern.

Instruction Formats

The machine instructions have been divided into four instruction

formats. A format subdivides the eight bits of each instruction into

fields. These fields contain the operation code and operands.

Instruction Format I:

Table 1 TMS1000/1200 Standard Instruction Set

Function

Status f effect

Mnemonic C8 NE Description

Instruction

format

Register to TAY

register TYA
CLA

Chapter 34 TMS1000/1200: Chip Architecture and Operation 593

This format defines an eight-bit operation code field only.

Instructions of this format have no constant operands. The

instruction always performs the same action, for example, trans-

ferring the accumulator to the Y-register.

Eighteen instructions conditionally afiect the machine status

logic. The mnemonics for these instructions contain a one- or

two-character descriptor to indicate how status logic is affected.

Each descriptor (shown in Table 2) indicates the condition where

status will remain set (logic ONE). The conditional instructions,

branch and call, are successful only if status is set. The mnemonic

descriptor therefore indicates the conditions under which an

immediately following branch or call will be performed. If the

instruction results do not meet the descriptor's condition, then

status is reset (logic ZERO) and any immediately following branch

or call will not be performed. [Status logic in the reset (ZERO)
state affects only branches or calls in the next instruction cycle

before returning to the normal (logic ONE) state.]

The way in which the instruction depends upon status or sets

status is defined as follows:

• Set: The instruction unconditionally forces status to ONE
and is not conditional upon status.

• Carr>' into Status: The value of the carry from the adder

is transferred to status. In the subtraction instructions,

carry
= borrow.

• Comparison Result into Status; The logical comparison
value from the ALU is transferred to status (equal: ZERO to

status; unequal: ONE to status).

• Conditional on Status: The instruction's execution results

are conditional upon the state of the status. After the

instruction is executed, status is unconditionally equal to

ONE.

Implementation

The instruction timing is fixed and each instruction requires six

clock cycles to execute. Each of the 43 basic instructions is defined

to enable one or more microinstructions that activate control lines

during one instruction cycle. These microinstructions explain the

Table 2 Descriptor Action

Descriptor Cause/result that transfers ONE to status

Last

Table 3 Constant and K-lnput Logic Truth Table

Chapter 34 TMS1 000/1 200: Chip Architecture and Operation 595

CKI bus into the P side of the adder/comparator. The

compare feature of the adder/comparator is activated, and

then the state of the tested bit transfers directly to status

logic. The bit mask also selects RAM bits to be set or reset.

For the set bit (SBIT) and reset bit (REIT) instructions, the

ZERO in the bit mask field (Table 3) also acts as a pointer to

one of the four bits (identified by X- and Y-register

contents) in a RAM character.

There are two PLA's in the TMSIOOO series:

• The O-output PLA

• The instruction decoder PLA

In a PLA, a matrix of gates first decodes a number of binary

logic inputs into a set of output lines (also called "terms"). Each

term can select a combination of output lines from a second matrix

of gates (see Fig. 3). Both matrices are implemented by program-

mable-input NAND gates (Fig. 4). Since we are concerned only

with the input-to-output code conversion, positive-logic AND and

OR functions are used herein.

Figure 4 shows two AND matrix terms, Fo and Fi, which are

encoding two output OR matrix terms, Qo and Qi. The simplified

method of presenting the same circuit is shown in Fig. 5. Each

LOGICAL PRODUCT

596 Part 3
I
Computer Classes Section 1 I Monolithic Microcomputers

Chapter 34 ! TMS1000/1200: Chip Architecture and Operation 597

tor bits in the O register. In the case of term zero (Fo), a ONE
from the status latch and ZERO from the accumulator encode the

seven-segment character for zero.

Two logic blocks decode the eight-bit instructions into the

various microinstructions:

• Fixed instruction decoder

• Programmable instruction PLA

The fixed instruction decoder cannot be modified and enables 12

fixed controls aflfecting ROM addressing, RAM X-register, output

control, set bit and reset bit instructions. Every program must use

these instructions with their corresponding fixed microinstruc-

tions.

The remaining 31 basic instructions in the standard set (43 basic

instructions—we fixed basic instructions equal to 31 programma-
ble instructions) have their operations determined by combining
one or more microinstructions as determined by the instruction

PLA.

The programmable instructions are defined to the assembler

and simulator programs by default definition when the standard

instructions are used. When one or more instructions are

redefined, the user specifies the entire set of instruction mnemon-
ics to the assembler, and the new PLA implementation is defined

to the simulator.

Table 4 defines the operation of the programmable microin-

structions, and the logic block controlled by each. In one

instruction cycle the sequence of microinstruction execution is as

follows:

1 Read RAM, select the inputs to the adder/comparator.
Microinstructions: CIN, MTP, MTN, CKP, CKN,
YTP, ATN, I5TN, NATAN, C8, NE

2 Write accumulator contents or CKI bus information into

the RAM.
Microinstructions: CKM, STO

3 Add or compare, then store results into the Y-register,

accumulator, status logic, or status latch.

Microinstructions: AUTY, AUTA, STSL

Thus the MTP (RAM memory contents to P-adder input) microin-

struction is executed before STO (store accumulator data into

RAM). The adder can perform one operation per instruction

cycle. If two input buses are selected for the same side of the

adder, the inputs are logically ORed together.
The programmable microinstructions are an aid to learning how

instructions work. For example, the lA instruction (increment

accumulator) enables three microinstructions, ATN, CIN, and
AUTA:

1 ATN transfers the accumulator data to the N-adder input
(P =

0).

2 CIN causes 1 to be added to the P- and N-adder inputs.

3 AUTA causes the result of the addition to be stored in the

accumulator.

Knowing the hardware and how Texas Instruments combined the

microinstructions explains all 31 programmable instructions. For

example, the YNEC instruction activates three microinstructions.

1 CKN causes the constant from ROM (immediate operand)
to go into the N-input.

2 YTP enables Y to the P-input.

3 NE sends the comparison to status.

Therefore, if Y is logically compared to a constant operand and is

not equal to the CKI data, status equals ONE.

Figure 7 illustrates the PLA implementation designed by Texas

598 Part 3
I Computer Classes Section 1 I Monolithic Microcomputers

Instruments for the standard instruction set. The 31 instructions

are translated by 30 PLA terms into a combination of the 16

microinstructions possible (the A8AAC and the AlOAAC are

combined on a single PLA line).

The instruction PLA can be reprogrammed in cases where

timing or other requirements dictate an instruction redefinition.

Microprogramming this PLA should be considered only when the

standard definition is insufficient to accomplish the program

objectives.

Addition Instruction

The following example illustrates the addition arithmetic instruc-

tions. This example shows adding a word to a BCD draft in

memory. BCD correction is performed to keep the digit in the

range to 9. Upon exit from this routine the accumulator contains

a ONE if a carry has resulted or a ZERO if no carry has resulted.

Label Op code Operand Comment

Label Op code Operand Comment

AMMAC

BR

JAM

A6AAC

BR
CLA

FIXUP

CORRECT

CONTU

FIXUP A6AAC

CORRECT TAMZA

lA

BR CONTU

ADD CURRENT DIGIT

TO A
BRANCH IF CARRY
(SUM > 15)

TRANSFER A TO
MEMORY
ADD 6, TEST FOR DIGIT

10 TO 15

BRANCH IF CARRY
CLEAR ACCUMULATOR
EXIT

ADD 6 TO CORRECT
TO BCD
TRANSFER A TO
MEMORY, CLEAR A
INCREMENT
ACCUMULATOR
EXIT

TOY
SETR
KNEZ
BR INPUT

*N0 DATA PRESENT ON INPUT LINES

SET ROW 5

ENABLE ROW 5

TEST K INPUTS FOR NON-ZERO
YES, GO TO INPUT

RSTR
BR

DISABLE ROW 5

EXITCONTU

NOW STORE THE DATA FROM THE K LINES

INPUT TKA
RSTR

INPUT K LINES TO A
DISABLE ROW 5

*NOW FIND WHICH KEY ON ROW 5.

ALEC

Chapter 34 TMS1000/1200: Chip Architecture and Operation 599

Label Op code Operand Comment Label Op code Operand Comment

LOOP
TOY
SETR
TMA
TOO
RSTR
CLO
DYN
BR LOOP

SET INDEX AND COUNTER
SET R(Y) OUTPUT STROBE
LOAD DIGIT INTO A
LOAD OUTPUT FROM A AND SL
RESET R(Y) OUTPUT STROBE
CLEAR O OUTPUT REGISTER
DECREMENT Y REGISTER
LOOP UNIT Y BORROWS

Program Control

The following example illustrates the usage of the program control

instructions BR, CALL, RETN and LDP.
This example illustrates using a control loop that calls a

subroutine to perform a specific function. The control loop

continues to call the subroutine until certain conditions are met;

then control is passed to another portion of the main program in a

diEFerent ROM page. This particular example calls a "shift left"

routine to shift a five-word string left one word address at a time.

The shift routine is called until a non-zero word is found in

position M(0,3). Because the subroutine is in another page, a long

call is performed by setting a new page address in the page buffer

(PB) before the call.

LDX SET RAM ADDRESS
LOOP TCY 3 to M(0,3)

MNEZ M(0,3) * 0;

BR DONE BRANCH IF NOT EQUAL,
DONE

*

•SET UP TO CALL SHIFT LEFT ROUTINE
*

LDP 5 SLRTN IS IN PAGE 5

CALL SLRTN CALL SLRTN
BR LOOP RETURN HERE, BRANCH

TO LOOP

DONE LDP 4 GO TO PAGE 4

BR MORE PERFORM LONG BRANCH
*

•COMMON SUBROUTINE, SLRTN, SHIFT LEFT.

SLRTN

600 Part 3 Computer Classes Section 1
I

Monolithic Microcomputers

APPENDIX 1 ISP of the TMS1000

IMS1200 :'

begin

Texas Instruments IMS 1000 Series MOS/LSI one chip microcomputer.

References: THS 1000 Software User's Guide
IMS 1000 Programmer's Reference Manual
The Engineering Staff of Texas Instruments Incorporated.
Semiconductor Group.
Texas Instruments Incorporated
P.O. Box 1443,
Houston. Texas 77001

Note that the "INII" line must be set to "1" before starting a

simulation of the ISP, This "feature" is a result of the

If "INIl" implementation.

The Output PLA and the Instruction PIA may be redefined for

simulation. Ihe internal initializations should be overlayod
by files read into the simulator after completion of
" init.out ,pla" , 1,1, set AOREAK init,out,pla before starting
the simulation. At the break: READ yourdef ini t ion , SIM.

••HP.State'*

RON[0: I023]<0:7>.
RAM[0:63]<0:3>.

ram.bit[0:Z66]<>

"PCStata**

PA<0:3>.
PB<0:3>,
PC<0:5>.
SR<0:S>.
CLO.
R[0;10]<>.
X<0:1>.
Y<0:3>.
SO.
SLO.
A<0:3>.
0<0:4>,
CKI,BUS<0:3>

••External ,State^^

INITO,
R<0:3>

••Implementat ion,Oeclarations^*

N,MUX<0:3>.
P.MU«<0:3>.
AODER<0:4>.
temp<0:3>.
s. traceO.
rom. address<0 :9> .

OUI.PLA[0:31]<0:7>.

INSIR,PLAt0:255]<0:I5>.
b,rev<0: 1>,
c,rev<0:3>

•Instruction, Format**

I,BUS\ Inst rue t ion, Bus<0:7>.

RAMtO:63]<0:3>

op , I< : 1 >

«<0:5>

op,II<0:3>
c<0:3>

I,BUS<0:1>,
I,BUS<2:7>,

: I,BUS<0:3>.
: I,BUS<4:7>.

op.III<0:5> :> I.BUS<0:6>.
b<0:l> := I.BUS<6:7>.

op,lV<0:;>

op,V<0:4>
f<0:2>

I,BUS<0:4>,
I.BUS<5;7>

1 ROM for instruction storage
I RAM
! RAM bit map

I Page address register
I Page buffer register
1 Program counter
! Subroutine return address
! Call latch
I K output register
I

! Pointer/Storage register
! logic status
! Conditional branch status
! Accumulator
I Output buffer

I Init 1 ine

I External inputs

! Multiplexer to adder
! Multiplexer to adder
1 The adder/ALU
! Temporary register
! Status trace
! Instruction ROM address reg .

! Simulation of output pla

t Simulation of instruction PLA.
! Keverse bit b field.
t Iteverse bit c field.

Doubles as instruction register

Format I instructions
Opcode
New branch address

Format II instructions

Opcode
Constant (note bit reversal)

Format III instructions

Opcode field

t format IV instructions

I Opcode

I Format V (1000/1300 only)
1 Opcode
I Data for LOX

! Additionally. BCI! output can be selected under program control.

init. out. pla :=

begin
OUI.I'IAfO]
0UI.PIA[1]
OUT.PI A|2)
0Ul.l'IA|3i
OUl.PI a[4]
GUI .PI A[5J
GUI .PI A[e]
GUI I'lAI

GUI ,PI A!

GUI ,PI Ai

OUT, PI A

0U1,P1A

71

J

19]
•

'10] .

11]
=

0UI,PIA[12]
GUI, PLA 13]

=

GUI,PLA[14] =

0UI,PLA[15] =

end.

The Instruction

{micro)programma
from figure 2-17
Manual .

'00000000;
'00000001;
'00000010;
00000011;
'00000100;
'00000101 ;

'OOOOOllO:
'00000111 ;

'00001000;
'OOOOIOOl;
'OOOOIOIO;
•OOOOIOll;
•OOOOIIOO;
'OOOOIlOl;
'OOOOIIIO;
'OOOOIIII;

GUI ,PTA[16]
GUI ,P1A(I7]
OUI .IMA[1B]
GUI .P1A| 191
OUI PI A[?0]
OUIPIAIZI]
OUI ,l'l A|Z21
OUI ,PIA|231
GUI, PI AJ 24]
GUI ,PlAi25]
GUI .PLA[26J
OUI .PEAt27J
OUl.PI A|28]
OUI .I'IA|Z9J
OUl.PI A| 30)
0UI,PtA[31]

'OlliniO
'00110000
'01101101
'01111001
'00110011
'OIOIIOII
'OI011I11
'OIllOOOO
OUlllll
01111011
01110111
'00011111
'01001110
'00111101
'OI0OI111
'01000111

PLA defined below encodes the standard 11 1200

le instruction set. The encoding was derived
2 on page 2-27 of the Programmer's Reference

init , instr ,pla :=

beg in

INSIR,PLA[-OI] = 'OOOII01111011100

lNSIB,PtA["02] = '0010101111101001

INSIR,PLA[-03] = '1011111111001000

IN,SIR,PtA["04] • '1011111111001100

INSIR,PtA["05]
= 'OOOlIOllllOlUOO

INSIR,P1A["06] = '0001101111011100

INS1R,PI«["07] = '0001101111010100
I»SIR,PI A["08] = '0001111111001100

INSIH,PIA["09J = '00011111 IIIOIOOO

INS1R.PLA["0F J
= 'OOlllOllllDOOIOO

INSIR,PIA["20] = '1010111111000010

lNSm,PEAt"2I] = '0011011111001100
INS1R,PI A["22J ' 'OOllOlllllOOlOlO
1NSIR,PI A["23] = 'OOlOllllllOOllOO
INSTR, PLA["24] = '

00 1 1 10] 1101 1 1010

]NSIR.PLA["25] = '0011001111011100

INSIR.PLA["26] = '0011011111101000
INS1R,P1 A["27] = '0011010111010100

lNSlR,PlAf "28] = 'OOllOllUlOlOIOO
lNSI»,PEAf"29] = '0011010111010000

INS1B,PLA["2AJ = 0011011101011100

INSIH,PLA[-2B] '0010111111010010

iriSIR,PlAt-2C] = '0010111101011010

1KSIR.PLA[-2D] = '0011110111010100

iNSIR,PL«["2E] '1011011111001100

1NSIR,PLA[-2F] - '0011111111001100

INSlR,PtA["38] = '000101 11 10101000

1N51R,PLA["39] = '0001011110101000
INSIR,PI A[-3AJ - '0001011110101000

1NSIR,PLA["3B] = '0001011110101000
temp = next

in it, loop :
=

begin
1NSIR,PLA["40 + temp] =

1NSIR,PLA["50 + temp] =

]NSIR.P1A["60 + temp]
-

INSIR,PI a["70 + temp] =

temp = temp * 1 next
IF temp NIO => RESIARI
end
end

••Service,Routines**{us}

1 Access routine to translate the register through the Output PLA.

activate, out, pla(O<0:4>)<0:7> : (activate, out , pla = OUI.PLAfO]).

! Access routine to translate instructions through the instruction PLA.

activate, instr,pla(I , BUS<0: 7>)<0; I5> :»

(activate, instr, pla INSTR, PLA[I ,BUS])

000111 1 II 1001010
001011 1 IIOIOIOOO
011011111 1000010
000111011 1010000

init, loop

I A8AAC
! VNtA
1 TAM
! TAM7A
! AlOAAC
! A6AAC
I DAN
I TKA
I KNE2
I lA

I TAMIV
I TMA
I IMY
I TYA
1 TAY
! AMAAC
I MNEZ
I SAMAN
I I MAC
I ALEM
! OMAN
I IVC
! DYN
I CPIAZ
! XMA
1 CLA
! TBITl
I TBIIl
1 TBITl
! TBIIl

1 TCY
I YNEC
1 TCMIY
I ALEC

• Ins true t ion, Interpre tat ion*»(us)

I Main control loop

I Initialization sequence

•PLA, Initial ization'*(us)

The output Programmable Logic Array (PLA) translates the
contents of the register into a user defined code on the

O-output lines, Ihe PLA initialization defined below

provides encoding for driving seven segment lED displays
with the characters:

start{main) :«

begin
IF init ">

begin ,
ini t, instr ,pla() :

ini t ,out , pla{) :

PC = = R - CL = 0; PA = PB = '1111:
S - 1: INIT =

end next
s, trace = 0;

lom, address =

PAS(PC<2:5>§(PC<1> eqv PC<5>)e(PC<0> xor PC<1> eqv PC<5>)) ne«t

I, BUS = ROH[rom, address] next
b,rev = b<l>8b<0>:
crev = c<3>8c<Z>ec<l>9c<0>:
PC = PC<1:5> 9 ((PC<0> eqv PC<1>) xor (PC<1:6> eql lllll)) next

APPENDIX 1 (cont'd.)

Chapter 34
[

TMS1 000/1 200: Chip Architecture and Operation 601

UCCODE I

