
Chapter 33

Alto: A Personal Computer^

C. p. Thacker / E. M. McCreigbt /

B. W. Lampson / R. F. SprouU / D. R. Boggs

Summary The Alto is a small computer system designed in early 1973 as

an experiment in personal computing. Its principal characteristics, some of

the design choices that led to the implementation, and some of the

applications for which the Alto has been used are discussed.

1 . Introduction

During early 1973, the Xerox Palo Alto Research Center designed
the Alto computer system ("Alto") as an experiment in personal

computing, to study how a small, low-cost machine could be used

to replace facilities then provided only by much larger, shared

systems. During the succeeding six years, the original Alto

underwent several engineering enhancements to increase its

memory capacity and reduce its cost, but the basic capabilities of

the system have remained essentially unchanged. There are now

(early 1979) several hundred Altos in regular use by computer
science researchers, engineers, and secretaries.

The primary goal in the design of the Alto was to provide
sufiBcient computing power, local storage, and input-output

capability to satisfy the computational needs of a single user. The
standard system includes:

• An 875-line raster-scanned display

• A keyboard, a "mouse" pointing device with three buttons,

and a five-finger keyset

• A 2.5-Mbyte cartridge disk file

• An interface to the Ethernet system ("Ethernet"), a 3-

Mbit/sec communication facility

• A microprogrammed processor that controls input-output
devices and supports emulators for a number of instruction

sets

• 64K 16-bit words of semiconductor memory, expandable to

256K words

All of these components with the exception of the user terminal

are packaged in a small cabinet which is an unobtrusive addition to

a normal office. The terminal, keyboard, and pointing device are

packaged for desktop use (Fig. 1).

'© Copyright 1979 by Xerox Corporation.

Fig. 1 . The Alto personal computer, showing a user at work with the

display, mouse, and keyset.

The Alto has led to an entirely new computing environment.

Many applications devote the entire machine to interacting with a

user and satisfying his needs; examples are document production

and illustration, interactive programming, animation, simulation,

and playing music. These individual applications are supple-

mented by a large number of services available via communica-

tions; examples are printing service, mailbox services for deliver-

ing electronic mail, and bulk file storage services. The Ethernet

has also given rise to applications that use several Altos concur-

rently to furnish additional computing power or to allow several

people at their machines to interact with one another.

The principal characteristics of the Alto processor are described

in Sec. 2 of this chapter. Sections 3 to 6 describe input-output

controllers for the display, disk, Ethernet, and printer. Section 7

surveys the environment and applications that grew up for the

Alto. Section 8 offers a brief retrospective look at the design.

2. The Alto Processor

The major applications envisioned for the Alto were interaction

text editing for document and program preparation, support for

the program development process, experimenting with real-time

animation and music generation, and operation of a number of

experimental office information systems. The hardware design

was strongly affected by this view of the applications. The design

is biased toward interaction with the user, and away from

550 Part 2
I
Regions of Computer Space Section 8

{

Personal Computing Systems

significant numerical processing; there are extensive user input-

output facilities, but no hardware for arithmetic other than 16-bit

integer addition and subtraction.

The processor is microcoded, which permitted the machine to

start out with rather powerful facilities, and also allows easy

expansion as new capabilities are required. The amount of control

store provided has evolved over time as shown in Fig. 2. Initially,

the machine contained only IK words, implemented with PROM.

The most recent version provides 4K words, of which IK is

implemented with PROM and 3K is RAM.
The micromachine is shared by sixteen fixed-priority tasks. The

emulator, which interprets instructions of the user's program, is

the lowest-priority task; the remaining tasks are used for the

microcoded portions of input-output controllers and for house-

keeping functions. Control of the micromachine typically switches

from one task to another every few microseconds, in response to

tvakeup requests generated by the I/O controllers. The emulator

task requests a wakeup at all times, and runs if no higher-priority

task requires the processor. There is usually no overhead

associated with a task switch, since the microprogram counters

(MPCs) for all tasks are stored in a special high-speed RAM, the

MPC RAM. The main memory is synchronous with the processor,

which controls all memory requests.

The task-switching mechanism provides a way of multiplexing

all the system resources, both processor and memory cycles,

among the consumers of these resources. In most small systems

with single-ported memories, the memory is multiplexed among
the I/O controllers and the CPU, and when an I/O controller is

accessing the memory, the CPU is idle. In the Alto, the processor

is multiplexed, and multiplexing of the memory is a natural

consequence. By sharing the hardware in this way, it has been

possible to provide more capable logical interfaces to the I/O

devices than are usually found in small machines, since the I/O

Year

Chapter 33
]

Alto: A Personal Computer 551

The BCPL instruction set and the virtual machine it provides

are summarized in Fig. 3. Instructions are divided into four

groups:

M-Group instructions transfer 16-bit words between memory

MGroup

552 Part 2
I Regions of Computer Space Section 8 ' Personal Computing Systems

LOGICAL INTERFACE LEVEL

Parallel

I/O Port

Memory
Bus

Processor
Bus

BCPLof Asm

Chapter 33
\

Alto: A Personal Computer 553

the backplane, but is external to the machine and attaches via a

cable to a standard connector on the back of the machine, which in

turn is wired to the memory control board. A large number of

devices have been connected to the Alto through this simple

interface, including low-speed impact printers, a PROM program-

mer, a stitchwelding machine for the fabrication of circuit boards,

and several types of low-speed raster printers. Most devices that

use speed-insensitive handshake protocols can be interfaced via

the parallel I/O port; such devices require neither specialized

hardware nor microcode.

2.3 Details of the Micromacbine—Control

The microinstruction format ofthe Alto is shown in Fig. 5, and the

principal data paths and registers of the micromachine are shovm

in Fig. 6. Each microinstruction specifies:

• The source of processor bus data (BS)

• The operation to be performed by the ALU (ALUF)

• Two special functions controlled by the Fl and F2 fields

• Optional loading of the T and L registers (LT, LL)

• The address of the next microinstruction (NEXT)

All microinstructions require one clock cycle (170 ns) for their

execution. If a microinstruction specifies that one or more

registers are to be loaded, this happens at the end of the cycle.

The Alto does not have an incrementing microprogram counter.

Instead, each microinstruction specifies the least significant ten

bits of the address of its successor using the NEXT field in the

instruction. This successor address may be modified by the branch

logic or by the I/O controllers. There are special functions to

switch banks in the microstore, allowing access to the entire 4K
address space. The address of the next microinstruction to be

executed by each of the 16 tasks supported by the micromachine is

contained in the 16-word MFC RAM. This RAM is addressed by
the NTASK register, which contains the number of the task that

will have control of the processor in the next cycle. The MFC
RAM value for the current task is updated every microinstruction

cycle.

Execution of a microinstruction begins when the instruction is

loaded into the Microinstruction Register (MIR) from the control

store outputs. At this time, the information on the NEXT bus is

written into the MFC RAM at the location addressed by the

NTASK register. This value is the address of the next instruction;

within a short time, it appears at the output ofthe MFC RAM, the

next instruction is fetched from the control store, and the cycle

repeats.

Conditional branches are implemented by ORing one or more
bits with the NEXT address value supplied by the control store.

The source of the data to be ORed is usually specified by the F2

field; it may be a single bit—for example, the result of the BUS=0
test—or it may be several bits supplied on the NEXT bus by an

I/O controller or by specialized logic. When the value consists of

an n-bit field, a 2"-way branch, or dispatch, is done. Because the

next instruction is already being fetched while the instruction is

being executed, conditional branches and dispatches aEFect not the

address of an instruction's immediate successor, but the instruc-

tion following that one. It is possible to execute branches in

successive instructions, providing this pipelining is taken into

account by the microprogrammer. This branching scheme con-

strains the placement of instructions in the microstore, but the

constraints are satisfied semi-automatically by the microprogram
assembler.

Task switching in the Alto is done by changing the value in the

NTASK register. As long as the value in this register does not

change, a task will remain in control of the processor. A task gives

up control of the processor by executing a microinstruction

RSEL
t 1 r 1

554 Part 2
j
Regions of Computer Space Section 8 Personai Computing Systems

HNTASKh iCTASKh

If
H MPC hlft

PROM
Control Memory

1K2KWX32

H/W
Address

RAM
Control Memory

MIR

RSELIQ:41

BSfQ21
ALUFI0:31

Next Address Bus (10 bils)

Priority

Encoder

Wai<eup Requests

(up to 12 more)
' ^

3l

RSELIOII

L
-f^

BS[Og|
Constants
?56wx 16

s
e X 32w X 16

Shift

R
<-r-

RSELfO:21

«v-

. RSELfaal

'|R[1:21

IR|311

Branch/

Dispatcli

Logic

Disk

Control

Display

Control

Ethernet

Control

Processor Bus (16 bits)

WW _J 7t ^ ALU /

IR Drivers and Parity

Carry
Flag

1l

Decode
and

Control

Main Memory
64K 256KWX 16

error corrected

Address

Memory
Bus I/O

Devices

Fig. 6. Alto micromachine structure. Single lines represent control signals, double lines show data paths.

containing F1=TASK. This function loads the NTASK register

from the output of a priority encoder whose inputs are the 16

wakeup request hnes, one per task. An I/O controller indicates its

need for service from the processor by asserting the request line

associated with its task. If it is the highest-priority requester when
the running microprogram executes the TASK function, NTASK
will be loaded with its task number; after a one-instruction delay,

the new task will acquire the processor. In the microinstruction

following a TASK, a microprogram may not execute a conditional

branch, and it must not allow a task switch when it has state in the

L or T register, since none of the state of a task other than the

MPC value is saved across a task switch. With these exceptions,

there is no overhead associated with task switching.

The conditions that cause I/O controllers to request wakeups
are determined by the controller hardware, and are usually

simple
—^an empty buEFer requires data, or a sector pulse has been

received by the disk controller, for example. When the microcode

associated with the controller has processed the request and

commanded the controller to remove the wakeup request, the

microprogram then TASKs, relinquishing control ofthe processor.

By convention, eight of the possible values of the Fl and F2

fields of the microinstruction are task-specific; that is, they have

difiFerent meanings depending on which task is running. Each I/O

controller can determine when its associated task has control of

the processor by decoding the NTASK lines. When the task

associated with a controller is running, the controller decodes the

Chapter 33 1 Alto: A Personal Computer 555

Fl and F2 lines and uses them to control data transfers, to specify

branch conditions, or for other device-specific purposes. This

encoding reduces the size of the microinstruction.

The intimate coupling between the micromachine and the I/O

controllers has proven to be one of the most powerful features of

the Alto. When a new I/O device is added, the controller not only

has at its disposal the basic arithmetic and control facilities of the

micromachine, but it can also implement specialized functions

controlled by the task-specific function fields of the microinstruc-

tion. This has led to extremely simple hardware in the I/O

controllers. Most controllers consist of a small amount of buffering

to absorb wakeup latency, registers and interface logic to imple-
ment the electrical protocols of the device, and a small amount of

logic to decode the Fl and F2 lines, generate wakeups, and do

whatever high-speed housekeeping is required by the device.

Since the processor makes all the memory requests, controllers

never manipulate memory addresses, and the usual DMA hard-

ware found in most minicomputers is eliminated.

It might appear that sharing the processor in this way would

result in a significant degradation in performance, particularly for

low-priority tasks such as the emulator. This is in fact not the case;

the major bottleneck in the system is the memory. Since most

computation can be overlapped with memory operation, the

performance of the Alto compares favorably with other systems

employing single-ported, non-interleaved memory at comparable
I/O bandwidths.

2.4 Details of the Micromachine—Arithmetic

The arithmetic section of the Alto contains the following compo-
nents:

A 16-bit processor bus, used to transmit data between the

subsections of the processor, the memory, and the I/O

controllers. The source of bus data is controlled by the BS and
the Fl fields of the instruction.

A bank of 32 16-bit R registers, and eight banks of 32 16-bit S

registers. These registers have slightly difierent properties,
and together constitute the high-speed storage of the proces-
sor. As better integrated-circuit technology has become availa-

ble, the number of S registers has been increased as shown in

Fig. 2. R and S are addressed by the RSEL field of the

instruction; either R or S (but not both) can be used during a

single instruction. Reading and loading of R and S are

controlled by the BS field of the instruction.

A 16-bit T register. T is loaded when the LT bit is set in the

microinstruction. The source of T data is determined by the

ALU function being executed; it is usually the bus, but may be
the output of the ALU. T is one of the inputs of the ALU.

A 16-bit Arithmetic/Logic Unit (ALU). The ALU is implement-
ed with four SN74S181 ICs. These devices can provide 64

arithmetic and logical functions, most ofwhich are useless. The

fourteen most useful functions are selected by the four-bit

ALUF field of the microinstruction, which is mapped by a

PROM into the control signals required by the chips.

A 16-bit L register. L is loaded from the ALU output when the

LL bit is set in the microinstruction.

A shifter capable of shifting the data from L left or right by one
bit position and exchanging the two halves of a word. Simple
shifts are controlled by the Fl field of the instruction (Fl=4,
5,6). In the emulator task, these functions may be augmented
by the F2 field to do specialized shifts required by the BCPL
instruction set, and to do double-length shifts for microcoded

multiply and divide.

A 16-bit Memory Address Register (MAR), described later.

A 256-word by 16-bit constant memory, implemented with

PROMS. This memory is addressed by the concatenation of

the RSEL and BS fields of the instruction; when Fl or

F2=CONSTANT, the normal actions evoked by RSEL and BS
are suppressed, and the selected constant is placed on the bus.

Approximately 200 of the 256 available constants have been
used.

An Instruction Register (IR) that holds the current macroin-

struction being executed by the BCPL emulator.

The main memory is synchronous with the processor, which

initiates all memory references by loading MAR with the 16-bit

address of a location. During a memory reference, data may be

transferred between the memory and any register connected to

the bus, including registers in the I/O controllers. The memory
can transfer a doubleword quantity during two successive instruc-

tion cycles, as part of a single memory cycle. Using this access

method, which was provided to support high-performance pe-

ripherals such as the display, the peak memory bandwidth is 32

bits/(6 * 170 ns)
= 31.3 Mbits/sec.

The arithmetic section of the Alto contains a small amount of

hardware to support the emulator for the BCPL instruction set.

There are special paths to supply part of the R address from the

SrcAC and DestAC fields of IR, logic to dispatch on several fields

in IR, and hardware to control the shifter and maintain the

CARRY and SKIP flags. The total amount of specialized hardware

is less than ten ICs.

No special hardware has been added to support emulators for

other instruction sets. These usually specify the operation to be

performed with a single eight-bit byte, followed by one or two

bytes that supply additional parameters for some of the opera-

tions. The standard dispatching mechanism is used to do an initial

256-way dispatch to the microcode that emulates each macroin-

struction.

The dispatching mechanism has been used for other applica-

tions. Although the micromachine does not support subroutine

linkage in the hardware, it has been possible to achieve the same

effect with only a small performance penalty. The calling micro-

556 Part 2
I
Regions of Computer Space Section 8

j

Personal Computing Systems

code supplies a small constant as a return index (typically in T)

which is saved and used as a dispatch value to return to the caller

when the subroutine has completed its work. The Mesa emulator

implements an eight word operand stack by dispatching on the

value of the stack pointer into several tables of eight microinstruc-

tions, each of which reads or writes a particular R-register.

The parallelism available in the microinstruction format encour-

ages the use of complex control structures which are often

substituted for specialized data-handling capabilities; it is usually

possible to do an arithmetic operation, a branch or dispatch, and

at least one special function in each instruction.

3. User Input-Output

The main goals in the design of the Alto's user input-output were

generality of the facilities and simplicity of the hardware. We also

attached a high value to modeling the capabilities of existing

manual media; after all, these have evolved over many hundreds

of years. There are good reasons for most of their characteristics,

and much has been learned about how to use them eflFectively.

The manual media we chose as models were paper and ink (the

display), pointing devices (the mouse and cursor), and keyboard
devices ranging from typewriters to pianos and organs.

3.1 The Display

The most important characteristic of paper and ink is that the ink

can be arranged in arbitrarily chosen patterns on the paper; there

are almost no constraints on the size, shape, or position of the ink

marks. This flexibility is used in a number of ways:

Characters of many shapes and styles not only represent

words, but convey much important information by variations in

size and appearance (italics, boldface, a variety of styles).

Straight lines and curves make up line drawings ranging in

complexity from a simple business form to an engineering

drawing of an automatic transmission.

Textures and shades of gray, and color, are used to organize
and highhght information, and to add a third to the two

dimensions of spatial arrangement.

Halftones make it possible to represent natural images which

have continuous tones.

Fine-grained positioning in two dimensions produces effects

ranging from the simple (superscripts, marginal notes, multi-

ple columns) to the complex (mathematical formulas, legends
in figures).

The high resolution of ink, combined with the absence of

positioning constraints, means that a large amount of informa-

tion can be presented on a single page.

In addition to imaging flexibility, paper and ink have several

other important properties:

Large sizes of paper can present the spatial relationships of

many thousands of objects.

Many sheets of paper can be spread out, so that many pages
can be wholly or partially visible.

Many sheets of paper can be bound together, so that one item

from a very large collection of information can be examined
within a small number of seconds.

Only one technique is known for approximating all these

properties of paper in a computer-generated medium: a raster

display in which the value ofeach picture element is independent-

ly stored as an element in a two-dimensional array called a bitmap
or frame buffer. If the size of a picture element is small enough,
such a display can approximate the first five properties extremely

well; about 500-1000 binary (black or white) elements per inch are

needed for high quality, or 25-100 million bits for a standard 8.5

by 11-inch page. Another approach (which we did not pursue) is to

exploit the fact that unlike paper and ink, the display can provide
true gray. If each picture element can assume one of 256 intensity

values (or a triple of such values for color), almost all images which

are made on paper can be reproduced with many fewer picture

elements than are needed if the elements are binary; about

100-150 elements per inch are now sufficient, or 8-18 million bits

for a page.

Even eight million bits ofbitmap was more than we could afford

in 1973. Furthermore, the computer display cannot hope to match

paper in size, or in the number of pages which can be visible

simultaneously. To make up for this deficiency, and to model page

turning, it is necessary to alter the image on the screen very

rapidly, so that changes in the single-screen image can substitute

for changes in where the eye is looking and for the physical motion

of paper. As the number of bits representing the image grows,

more processing bandwidth is required to compose it at accepta-

ble speeds.

Fortunately, surprisingly good images can be made with many
fewer bits, ifwe settle for images which preserve the recognizable

characteristics of paper and ink, rather than insisting on all the

details of image quality. Characters 10 points or larger (these are

printer's points, 72 per inch, and the characters in this sentence

are 9-point) in several distinguishable styles and in boldface or

italic, almost arbitrary line drawings, and dozens of textures are

quite comfortable to read when represented by about 70 binary

elements per inch; this resolution is also sufficient for crude but

recognizable characters down to 7 points, and for halftones of

similar quality. One page at this resolution is about half a million

bits, or half of the Alto's one-megabit memory.
The display is an interlaced 875-line monitor running at 30

Chapter 33
I AKo: A Personal Computer 557

frames/second. There are 808 visible scan lines, and 608 picture

elements per line. It is oriented with the long dimension vertical,

and the screen area is almost exactly the same size as a standard

sheet of paper (Fig. 7). Refreshing the display demands an

average of 15 Mbits/sec of memory bandwidth. Since the average
includes considerable time for horizontal and vertical retrace, the

peak bandwidth is 20 Mbits/sec. The 30-Hz refresh rate results in

flicker which most people do not find objectionable, provided the

image does not contain large amounts of detail which appears in

only one of the two interlaced fields. Fhcker is reduced by the use

of P40 phosphor in the CRT, rather than the faster P4 often used;

the greater persistence of images which are being moved has not

proved to be a problem.

3.2 Bitmap Representation

A bitmap which can be painted on the display is represented in

storage by a contiguous block of words. A bitmap on the Alto

represents a rectangular image, tv picture elements wide and h

elements high. For simplicity, w must be a multiple of 16, and one

row of w picture elements corresponds to w/l6 contiguous words

in the bitmap. As a consequence, two vertically adjacent elements

correspond to the same bit in two words which are w/l6 words

apart in storage (Fig. 8).

The display microcode interprets a chain of display control

blocks stored in memory, with its head at a fixed location. Each
block specifies its successor, the number of scan lines it controls.

OVERLAPPING

Orerlappin; -<; tool, must
first have aJI thin^i. m tfa« picture roughly
sketched as if they were traBspareot-as if

you could see through them. The objects
are first drawn as if they were made out of

glass. By beginniDg with transparent
objects it is easy to see if Ihey have been
correctly drawn. In the finished drawing all

objects will be correctly drawn.

Q

&«0 » ^i*Oaj< Cci^Wt*'

fllto : fl Perso

558 Part 2
I
Regions of Computer Space Section 8

I
Personal Computing Systems

can be divided into horizontal strips. The white space in the

margins, in indentations, and to the right of the last line in each

paragraph need not appear in the bitmap. The leading between

the lines and the margins at top and bottom, can be represented

by control blocks specifying a width of zero. For a typical text page

these tricks reduce the size of the bitmap to about 70% of its full

size; pages of program listing are reduced by much more.

Furthermore, lines can be inserted or deleted simply by splicing

pointers in the control block chain, and parts of the image can be

scrolled up or down by adjusting the number of scan lines covered

by one of the zero-width control blocks, without moving anything

in storage.

Unfortunately, these techniques rule out anything except a

single column of text in the image, since various parts ofthe image

no longer have any supporting bitmap. Multiple columns (unless

the lines are perfectly aligned), marginal notes, long vertical Unes,

and windows which do not fill the screen horizontally are not

possible. We have used multiple control blocks heavily in the

Alto's standard text editor, which includes extensive facilities for

using multiple fonts, controlling margins and leading, justifica-

tion, etc. The editor continuously displays the text in its final

formatted form, so that no separate operations are required to

view the final document. In this context the control block tricks

have made it possible to fit the editor into the machine, which we

could not have done using a full-screen bitmap. All the other

interesting uses of the display, however, have adopted the

full-screen bitmap so that they could support more general

images, and we are convinced that the cost ofmemory is no longer

high enough to justify giving up this generality.

3.3 Composing the Image

Because many bits are needed to display an image, we have found

the machine's ordinary data manipulation instructions inadequate

for handling images. It is important to have fast ways of building

up the most common kinds of images and making certain common

changes (e.g., moving or scrolling a window). For this purpose the

Alto has one major microcoded operation called BitBlt (for bit

boundary block transfer), with a surprising number of uses. It

works on rectangles within bitmaps; such a rectangle is defined by

the width of the bitmap (which determines the spacing in storage

of vertically adjacent elements), the address of the bit which

corresponds to the upper left comer of the rectangle, and the

height and width of the rectangle (in bits). BitBlt takes two such

rectangles, called the source and the destination, and does

destination «— F (destination, source)

where F (d, s) can be s (move), d OR s (paint), d XOR s (invert) or d

AND s (erase), or any of these with s complemented. It is also

possible to supply a 16 x 4 rectangle for the source and have it

used repetitively; this is useful for producing uniform textures.

The properties of BitBlt, which was designed by Dan Ingalls, are

discussed in more detail in Newmann and Sproull [1979], where it

goes under the name RasterOp.
BitBlt has a large number of applications, among them

Painting characters from a font, which is simply another

bitmap, held somewhere in storage, that contains images of the

characters. It is interesting to note that "characters" can also be

used to represent various specialized kinds of graphics, such as

the symbols in hardware logic drawings.

Drawing horizontal and vertical lines (which are just narrow

rectangles).

Filling in rectangular areas with textured patterns.

Scrolling an image across a fixed rectangular window on the

screen, or moving such a window around on the screen.

Moving an image onto the screen from a copy elsewhere in

storage.

Saving part of the image in memory that is not part of the

display bitmap. Later, the saved image can be copied back to

cause it to reappear on the screen.

The Alto also has a specialized operation for painting characters; it

is considerably less flexible than BitBlt, but easier to invoke and

more efficient.

Sometimes one would also like fast operations for painting

arbitrary lines and curves, and for filling solid areas bounded by
such shapes, but so far we have not found the need for these to be

great. Instead, these requirements are adequately met by the

Alto's ordinary memory reference instructions, which can be used

to randomly access and update the display with complete

flexibility. We have found this to be quite important, and believe

that it is a significant advantage of the Alto architecture over

conventional frame-buflPer organizations. The ability to reuse part

or all of the bitmap memory for other purposes when a fiill-screen

display is not required has also been very important; with the

decreasing cost of memory this is no longer such a significant

consideration.

3.4 Display Hardware

This display is supported by three microcode tasks and some very

simple hardware (Fig. 9). Serial video data is clocked by a 50-ns

bit clock; everything else is clocked by the machine's 170-ns main

clock, which is chosen to be an integral submultiple (224) of the

display's line rate (875 * 30 = 26.25 kHz). A 16-word RAM and a

one-word register implement a FIFO buflFer and synchronizer

between the processor bus and the shift register which serializes

data for the display. There is a sync generator with a counter and

PROM for horizontal sync and one for vertical sync, and logic to

Chapter 33
|

Alto: A Personal Computer 559

560 Part 2
{
Regions of Computer Space Section 8 Personal Computing Systems

more likely to be looking at the cursor than anywhere else on the

screen. A remarkable variety of shapes can be represented on

those 256 bits, and a great deal of important information easily and

unintrusively conveyed.

Another important property of the mouse is the three buttons

on its top surface. These allow the user to specify a number of

commands using the same hand with which he is pointing,

especially when the meanings of the buttons are modified by shift

keys on the keyboard, or by taking account of the duration or

frequency of clicks. The current state of each button (up or down)

appears as three bits in a special memory location, so that the

program is free to attach meaning to any detail of the user's

interaction with the buttons.

3. 6 Keyboard

The Alto has a standard office typewriter keyboard, augmented
with a small number (8) of extra keys. The keyboard appears to the

program as four words of memory; each of the bits in these words

reflects the current state of one key (up or down). This allows any

key to be used as a shift key, and as with the mouse, it permits a

variety of non-standard interpretations of the keys to be pro-

grammed, ranging from repeating keys to a digital electronic

organ manual.

4. Local Storage

Processor Bus

ShiMReg —>A Mixei

Chapter 33 Alto: A Personal Computer 561

records as hints the disk addresses of the immediately preceding

and following pages of the file (Fig. 10). If hints of any sort are

found to be erroneous, they can be reconstructed from the

distributed structural information. In fact, one of the most

important programs on the Alto is the hint-reconstructing Scav-

enger.

The disk controller makes it easy to use hints properly and to

do other common file-system operations. A disk operation is

invoked with a command block, a group of words in main memory
that specify a disk address, a page buffer address in main memory,
and the transfer operation to be performed (Fig. 11). The disk

controller is activated by putting the address of a command block

into a particular main memory location. The controller performs

the requested operation, writes the final status in the command

block, and (if all went well) automatically proceeds to the next

command block in a chain of blocks, linked by pointers. Disk

command blocks are designed to be included in more complex

operating system data structures describing pending disk trans-

fers.

File system damage results as often from errant software as

from errant hardware. The file system/disk controller design

attempts to minimize damage in two ways. First, each disk

command block is required to contain the seal, a certain exact bit

pattern. The disk controller will stop immediately if it encounters

an improper seal. Thus if the disk controller is accidentally

I

»wlt«.
I

I

I
s..Ti.„

I

—»-f^ * °~

n^:^

.aConi.o»,.5Hlu.

'. ...„c.~........,K

562 Part 2
! Regions of Computer Space Section 8 ! Personai Computing Systems

completed transfer operation (if there was one) in that operation's

disk command block, records any requested interrupts in NIW,
and checks to see if another command block requires processing.

If there is no work to do, the sector task goes to sleep. This

permits lower-priority tasks to run until another sector notch is

encountered.

If there is new work, the sector task decides whether the disk

access machinery is positioned at the correct cylinder and sector.

If the cylinder is incorrect, a seek operation is initiated, using the

controller hardware. If both sector and cylinder positions are

correct, the data transfer is enabled by leaving the necessary state

information in R registers and commanding the controller to

generate disk data task wakeup requests. Finally, the sector task

sleeps.

4.2.2 Disk Data Task. The other task, called the disk data task,

is invoked at a ver\ high priority during reading (or writing)

whenever the one-word data buffer in the controller needs

emptying (or filling, respectively). This task is awakened about

every 10 p,s and transfers a single word in at most 1.7 jis (unlike

the display task, which transfers two words per wakeup in 1 |xs).

Thus during disk transfers up to 20% of the micromachine's time is

devoted to servicing the disk controller.

The disk data task is expected to read, check, or write each of

three records in a sector: the header, the label, and the data. Each

record consists of a preamble area written as all bits, a

synchronization pattern consisting of a single 1 bit, a number of

information words, and a checksum word. The preamble and

synchronization bits allow a tolerance for mechanical and electri-

cal misalignment between writing and reading.

In a t>pical operation the data task might check the header and

label records of a sector, and then write its data record. To read or

check a record, the Alto waits until the disk head is over the

preamble to that record, then reads until the sync pattern is

recognized, then gets words from the disk and writes them into

memory or compares them with words fetched from main

memory, and finalK' compares the computed checksum against

the one read from the disk. To write a record, it must write

a certain amount of preamble, then a sync pattern, then the

data fetched from main memory, and finally the computed check-

sum.

A small piece of actual microcode for the disk data task will

make the preceding description concrete. In the microassembly

language below, all the clauses between a pair of semicolons (; xxx

*— yyy, zzz, ...;) assemble into one microinstruction (see Fig. 5).

For example, in the first line.

InPreambleWait:

L «— MinusPreambleRemaining+1, Block;

MinusPreambleRemaining is an R register (say, 16), so RSEL =

MinusPreambleRemaining (16), ALUF = BUS + 1 (5), BS =

<-R (0), Fl = BLOCK [task specific] (3), F2 = NULL (0), LL =

Yes (1), LT = No (0), and the NEXT field is assigned by the

microassembler to point to the next microinstruction in sequence.
The label InPreambleWait is defined to be the microinstruction

address chosen for this microinstruction by the microassembler.
,

One further general point is that conditional jumps and

dispatches are implemented by ORing a computed value (usually

just or 1, but not always) with the NEXT address being fetched

as part of the next microinstruction. Conditional clauses are

identified by a trailing ?. For example,

. . . ,L<0?, . . . ;

. . . ,GoTo[0:PreainbleDone, l:InPreambleWait], . . . ;

The L<0? clause in the first microinstruction will cause a 1 to be

ORed with the NEXT field of the next microinstruction, if and

only if the previous value of the L register is negative. The second

microinstruction includes a NEXT field pointing to Preamble-

Done, and in addition it tells the assembler to locate Preamble-

Done at an even address and InPreambleWait at the next

successive odd address, so that PreambleDone OR 1 = InPream-

bleWait.

The microcode fragment given below uses several functions to

communicate with the hardware interface. All of them are

task-specific.

Block (Fl) tells the controller hardware that the microcode task

has run, and the wakeup request should be removed.

DiskBufferWord*— (Fl) loads the one-word output buffer in

the disk controller hardware from the bus.

—Data BufferWord (BS) puts the contents of the one-word

input buffer in the disk controller onto the bus.

DiskCommandRegister<—(Fl) loads the command register in

the controller from the bus. The bits in that register then fan

out to control several independent conditions in the controller

hardware. One bit (UseReadClock) determines whether the

controller bit clock is being generated from a crystal oscillator

in the controller, or whether it is inferred from the data being
read from the disk. Another bit (WaitForSyncPattern) deter-

mines whether the controller should suspend wakeup requests
until the arrival of the sync pattern from the disk.

ReadWriteOrCheck? (F2) causes a 2-bit dispatch based on

whether the record is to be read, written, or checked

(compared with memory data). The two bits have earlier been

placed by the microcode into a special register in the disk

controller.

Chapter 33
|

Alto: A Personal Computer 563

The code begins with a description of the R registers used. The

code uses four R registers, although for clarity five names are

used:

MinusPreambleRemaining: a negative count of the number of

words of preamble remaining.

RecordWordCount: the number of words in the record being
read or written (e.g., the data record is 256 words long).

Bu£FerBottom: the address of the first word in main memory of

the buffer for this record.

OneBeyondNextBufferWord: a pointer into the main memory
buffer where the next word should be placed. The pointer is

always "one beyond" where the actual store will be done.

Checksum: a register to accumulate the exclusive OR of all data

words read or written in the record.

As we join the story, the data task has begun "spacing" into a

disk record in preparation for reading, writing, or checking it. If

reading or checking, this means marking time until good data is

knovvTi to be under the read head. If writing, this means writing

preamble.
In this loop the microcode counts through the preamble, one

count per data task wakeup. Although no data is being transferred,

the disk controller is waking up the data task each time the 16-bit

buffer is full, so that it can count preamble bits. Between

wakeups, the data task's micro-program counter rests pointing at

either InPreambleWait or PreambleDone.

Adjust by 1 to make transfer loop exit test more efficient:

L -^BufFerBottom-1;
BufferBottom «— L;

SetupRead:

DiskCommandRegister
<— UseReadClockAndWaitForSyncPattem,

GoTo[SetupChecksum];

SetupWrite:
DataBufferWord <— SyncPattemConstant;

SetupChecksum:
L <— StartingChecksumConstant, Task;

(Initialize Checksum register.)

ModifyChecksum:
Checksum <— L;

The data tasks micro-program counter rests here between

transferring words. Ifwe are reading, and if this is the first word of

the record, then the data task will wait here until a word has been

read following the deserializer's recognition of a sync pattern.

Note that the transfer loop transfers data from high to low

addresses; this simplifies the exit test.

TransferLoop:
MAR ^ L <- T ^ OneBeyondNextBufferWord- 1;

(Start main memory interface by suppling address to

MAR.)

InPreambleWait:

L <— MinusPreambleRemaining+l, Block;

MinusPreambleRemaining «— L, L<0?, Task;
DiskBufFerWord <— PreambleConstant,
GoTo[0: PreambleDone, I:InPreambleWait];

(Send more preamble if writing.)

Now the preamble waiting is over. If reading, this means
that the head is known to be over a good preamble area

before the sync pattern. If writing, this means we should

now write a sync pattern.

PreambleDone:
T <— RecordWordCount;
L *- BufferBottom +T, ReadWriteOrCheck?;
OneBeyondNextBufferWord <— L, Block,

(Set up pointer into buffer.)

GoTo[0: SetupRead, I:SetupWrite, 2:SetupCheck];

SetupCheck:

OneBeyondNextBufferWord <— L,

ReadWriteOrCheck?;
L ^ BufferBottom-T,
(Compute number of words remaining to transfer.)

GoTo[0:ReadLoop, l:WriteLoop, 2:CheckLoop];

(Dispatch.)

ReadLoop:
T «— Checksum, Block, L=0?;
(Check L: Enough words transferred?)

L ^ (MD ^ DataBufferWord) XOR T, Task,

GoTo[0:ModifyChecksum, I:TransferFinished];

(Move data word from disk controller to memory, mod-

ify checksum.)

WriteLoop:
T <— Checksum, Block;

(Recall L contains number of words to transfer.)

564 Part 2
I Regions of Computer Space Section 8

'

Personal Computing Systems

L ^ (DataBufferWord ^ MD) XOR T, L=0?;
(Move data word from memory to disk controller, mod-

ify checksum. Check L: enough words transferred?)

Task, GoTo[0:ModifyChecksum, l:TransferFinished];

TransferFinished:

Checksum <— L;

The task's program counter rests here after sending the

last data word to the controller or reading the last data word
from the controller. Now we must either send the computed
checksum to the controller or compare the computed
checksum with that read from the controller.

T *- DataBufferWord
*— Checksum, ReadWriteOrCheck?;
(Only writes into outgoing buffer word.)

L ^ DataBufferWord-T, Block,

GoTo[0:CheckChecksum, l:FinishRecord,

2:CheckChecksum];
(This uses the incoming buffer word.)

Now if we are reading or checking, we test for correct

checksum by checking whether L is 0, etc.

In the main reading loop, all but one of the microinstructions

are executed concurrently with the main memory transfer (i.e.,

between MAR*— and MD«— , which are as close together as they
can be). This is usually true as well for other high-bandwidth
controller microcode loops in the machine. Thus the main speed
bottleneck in the Alto is shared access to a single memory
interface. The additional degradation resulting from also sharing a

single processor is minimal because so much processing is

overlapped with memory references.

ReadWriteOrCheck? is a good example of trading ofiF controller

hardware against shared processor time, register space, and

microcode space. Obviously the same effect could have been

obtained by dispatching on the value in an R register in the

micromachine, or by having completely separate micromachine

routines for reading, writing, and checking. Usually the decision

was made to minimize controller hardware. But in this case by

introducing a small amount of extra hardware (about two ICs)

in the controller, one R register or about 30 microinstructions

were saved. It was economical in 1973, but might not be

today.

5. Communication

A personal computer provides substantial, predictable service to a

single user. Much of the service he wants, however, cannot be

provided by his machine alone, either because sharing is essential

to the service or because of cost. Communication with other

computers and other users is therefore needed. The communica-

tion system expands the service available to an individual, by

allowing several users to share resources.

Such sharing is advantageous for two reasons. First, it allows

several users to access the same data. For example, a person who

composes a memorandum using text-editing facilities contained

entirely in his Alto may wish to distribute copies to several other

people. He transmits the data representing the memorandum to

the Altos of the recipients; each of the recipients can then read it

on his Alto display. The use of communication is analogous to the

use of the telephone or U.S. mail.

Communication can also be used to share resources for

economic reasons. Although it is too costly to provide a hard-copy
raster-scan printer for each Alto, a group of users may share a

printer, transmitting to the printer the data and control informa-

tion necessary to print a document. Sharing is also economical for

high-capacity file storage or for special-purpose processors too

expensive to replicate for each person.

At the time the Alto was designed, several computer communi-
cation networks such as the ARPA network [Kahn, 1972] had

demonstrated the value of packet-switched networks for sharing
resources and providing personal communication among research

collaborators. A design suited for personal computers, however,
has objectives rather different from those of a remote computer
network such as the ARPANET:

The transmission speed should be high enough that most users

will not notice the presence of the network. If network
bandwidth approximately matches local disk bandwidth, the

user may not know or care whether a file is retrieved from a

local disk or from a remote disk.

The size of a network linking personal computers must not be
limited. It is not unreasonable to imagine networks linking
thousands of personal computers. At the same time, just two or

three computers can constitute a reasonable network.

The reliability of the network is extremely important when
essential services such as printing depend on communication.
If a user's personal computer malfunctions, he can take his disk

cartridge to another one, but a network malfunction severs his

access to essential services. In addition, many users are

inconvenienced when the network fails, but only one when a

machine fails.

Chapter 33
|

AKo: A Personal Computer 565

Personal computers tend to be near to each other and to the
services they need, thus permitting a local network transmis-
sion technique for clusters of machines.

A design for a communication system must anticipate the need
for standard communication protocols in addition to standards for

the physical transmission media. The protocols control the flow,

routing, and interpretation of data in the network. Just as the

design of the Alto disk controller addresses the needs of a file

system, so must the design of a network address the needs of

communications protocols. However, the Alto was designed at a

time when experience with protocols was limited: many lessons

had been learned from the ARPA protocols, but newer designs
such as TCP [Cerf and Kahn, 1974] had yet to emerge. The Alto

therefore provides a general packet transport system, which has

been used for a number of protocol experiments and evolutionary

designs.

5.1 The Ethernet

Local Network

The Ethernet communication system [Metcalfe and Boggs, 1976,

Chap. 26 of this book, pp. 429 through 438] is the principal means
of communication between an Alto and other computers. An
Ethernet is a broadcast, packet-switched digital network that can
connect up to 256 computers, separated by as much as a kilo-

meter, with a 3-Mbit/sec channel. Control of the Ether is dis-

tributed among the communicating computers to eliminate the

reliability problems of an active central controller and to reduce
the fixed costs which can make small, centralized networks un-
economical.

A standard Alto includes an Ethernet controller and transceiv-

er. As soon as there are two Altos within a kilometer ofeach other,

connecting the transceivers together with a coaxial cable establish-

es an Ethernet. Additional Altos and other computers can be
connected simply by tapping into the cable as it passes by, above a

false ceiling or beneath a raised floor. Connections can be made
and power turned on and olT without disturbing network commu-
nication.

An Ethernet is an efficient low-level packet transport mecha-
nism which gives its best efibrts to delivering packets, but it is not

error-free. Even when transmitted without an error detected

by the sender, a packet may not reach its destination without

error; thus, packets are delivered only with high probability.
A hierarchy of layered communication protocols is used to achieve

reliable transmission on the Ethernet, by requiring receiving

processes to acknowledge receipt of correct packets and sending
processes to retransmit packets whose correct receipt is not

acknowledged.

5.2 The Internetwork

Although the physical size and addressing of the Ethernet are

limited, many local networks may be connected together into an
internal network [Boggs et al., 1980]. The internetwork is

implemented by building gateway computers (usually Altos) that

connect two or more networks, often using long-haul digital

communication to connect with gateways on distant local net-

works. The gateway is responsible for routing packets in the

internetwork: it receives a packet from a local network, interprets
a destination address in the packet, and then transmits the packet
into another network which will get it closer to its ultimate

destination. Sometimes packets are forwarded through several

gateways before they arrive at the proper local network. As of

summer 1979, the Xerox internet provided service to several

hundred computers on 25 networks interconnected by 20 gate-

ways.

5.3 Implementation

The Alto Ethernet controller (Fig. 12) contains about 75 MSI TTL
ICs—it is slightly larger than the disk and display controllers. The
transceiver, on the other hand, is much smaller and less expensive
than either the disk drive or the display monitor. The controller

hardware consists of the following functions: phase decoder,
receiver shift register, FIFO buffer and synchronizing register,
transmitter shift register, phase encoder, and micromachine

?5.'.';i:... »rT-»-r;^

¥
I

ShillR»fl
I >il\ >-

j^l'^l

ConlfWHrSlJU.. .

Conl'Diaiotkl

566 Part 2
I
Regions of Computer Space Section 8

|

Personal Computing Systems

interface. The FIFO buffer is shared by the transmitter and

receiver, so the interface is half-duplex: it can either be transmit-

ting or receiving but not both simultaneoulsy. This is not a severe

limitation, since the Ether itself is half-duplex. It does make

hardware checkout more difficult, however, because the control-

ler cannot be looped back on itself; also, the software must make a

special check for packets that it sends to itself Up to three

Ethernet interfaces can be attached to an Alto. Unfortunately the

tasks cannot share a single copy of the microcode, since the

micromachine cannot make indexed R-register references.

The microcode uses one medium-priority task, two R registers,

and about 100 microinstructions. The task consumes 16% of the

machine in the data transfer loops, since it runs for five cycles (one

memory reference) every 5.44 |jls (one Ethernet word time), doing

all of its bookkeeping while waiting for the memory. To reject a

packet the address filter requires 13 cycles (2.21 jts), which

consumes as much as 20% of the machine in the improbable case

of minimum-length (2-word) back-to-back packets. The rest of the

microcode is executed once per packet accepted or transmitted,

and so consumes a negligible number of cycles.

The Ethernet task communicates with a program much as the

disk and display tasks do. The program builds a command block

describing the operation to be done. When the Ethernet task

wakes up, it carries out the operation, and then posts status in the

command block and causes an interrupt by ORing a word from the

command block into NIW. One difference is in the way the task is

awakened. The disk and display have periodically occurring events

(sector notches and scan line retrace) which cause their tasks to

wake up and check for commands from the software, but there is

no such periodic event for an Ethernet. Instead, there is an

S-group instruction which the program executes to set a flip-flop

in the Ethernet hardware; this flip-flop wakes up the Ethernet

task to act on the command block. Another difference is that disk

and display commands complete after a finite time, but an

Ethernet receiver can be started and not receive a packet for days.

Hence programs always use interrupts to recognize completion of

an operation, rather than busy-waiting as many disk drivers do.

Finally, Ethernet command blocks are not chained, partly

because of a shortage of microcode space in the early implementa-

tions, and partly because it was not then clear how to make use of

chaining.

Packet address filtering is done by the microcode. When the

hardware has accumulated the first word of a packet, it wakes up
the microcode to check the destination address byte. The

microcode accepts the packet and copies it into memory ffany one

of the following conditions is met;

The destination address in the packet matches the host address

field in the command block.

The host address is zero (in this case the machine is said to be

promiscuous, and receives all packets).

The destination address is zero (in this case the packet is a

broadcast packet, and is received by all machines).

Otherwise the microcode tells the hardware to ignore the rest of

the current packet and go to sleep until the beginning of the next

packet. The address filter takes about 20 microinstructions; done

in hardware it would take about 8 ICs.

The flexibility afforded by this filtering scheme has many
applications. Any machine can substitute for another by using the

other machine's address in the host address field. Promiscuity is

invaluable for debugging protocols, since a machine can peek at all

of the packets flowing between two others. It is also easy to study

the performance ofthe net by monitoring all the traSic. Broadcasts

are used to locate resources and to distribute globally useful

information. A less desirable consequence is that the Ethernet

itself provides no security; applications which need secure

communication must use encryption.

The choice ofan eight-bit address has proved to be unfortunate,

since it means that a machine cannot have a unique hard-wired

serial number which is normally used as its host address. Instead,

each Alto has a station address specified by jumpers on the

backplane, which is unique only among the machines on the

particular Ethernets it happens to be on.

Two or more Ethernet transmitters collide when they simulta-

neously decide that the Ether is free and begin transmitting.

When a transmitter detects collision, it aborts transmission and

waits a random time interval before trying again, so as not to

collide repeatedly. As the load on the net increases, a transmitter

retries less vigorously, by doubling the mean of its random

interval each time it participates in a collision. This exponential

backoffalgorithm is done by the microcode and a small amount of

hardware. The software zeros the LOAD location in the Ethernet

command block each time it issues an output command, and the

microcode shifts a one bit into it each time a collision happens.
The microcode generates a random retransmission interval by

masking the LOAD location with the real-time clock R register

maintained by the timed task, and then waiting for that interval by

telling the hardware to wake it up each time the timed task wakes

up, and decrementing the interval register at each wakeup. When
the register goes to zero, the microcode again tries to transmit.

After 16 consecutive collisions the LOAD location overflows, and

the microcode gives up and posts a failure code in the command
block. This algorithm takes about 20 microinstructions; done in

hardware it would require about 10 ICs.

6. A Controller for a Raster-Scanned Printer

The Alto is predominantly a versatile I/O controller: the design

emphasizes the needs of high-bandwidth I/O for personal comput-

ing and relegates instruction interpretation to secondary impor-

Chapter 33 Alto: A Personal Computer 567

tance. One of the objectives of the design is to provide a

convenient framework in which to build experimental or special-

purpose I/O controllers, in addition to those for the standard

display, keyboard, mouse, disk, and Ethernet. This section

illustrates how the resources of the Alto are harnessed to a

complex task: an interface to a high-speed raster-scanned page

printer. The design shows how the page-generation algorithm is

first analyzed and then divided into parts that are implemented in

software, microcode, and hardware.

The objectives of a printer are very similar to those of the Alto

display: several thousand characters may appear in arbitrary sizes,

rotations, font styles, and positions on the page; text may be

proportionally spaced; characters may overlap one another (e.g.,

overstrikes); non-text imagery such as lines and curves may

appear. Printing quality generally exceeds that of a display by

using higher resolution—a typical device might print in one

second an 8.5- by 11-inch page defined with 350 dots/inch

(roughly 4000 horizontal scan lines of 3000 dots each).

These observations suggest that the same techniques used to

generate a digital video signal for the Alto display be used to drive

a printer. The modest average data rate of 12 Mbits/sec means that

an image of the page could be buffered in Alto memory and read

out to generate video, using the same sort of controller as the Alto

display. The image of the printed page can be created the same

way as that for a display: using a character table that gives the x

and y position and character code for each character that appears
in the image, and a font table that defines a rectangular bitmap

pattern for each character, BitBlt is used to OR each character's

pattern into the bitmap buffer at the proper coordinate position.

Unfortunately, this simple approach fails for two reasons: the Alto

does not have enough memory to buEFer a fiill-page image (12

million bits), and the processor cannot execute BitBlt fast enough
to generate a bitmap for a moderately complex page in one

second. These two problems force changes in the image-

generation algorithm. After describing the new algorithm, we
sketch its Alto implementation.

Because buffering the entire page is impractical, an incremental

algorithm must be used to generate portions of the image in

sequence, using a smaller buffer. The image is divided into bands

of 16 scan lines each, and the entire page image is generated by

creating the image for each band in turn. This scheme requires

two buffers, each capable of holding the bitmap for a single band:

while one buffer is being converted into a video signal and sent to

the printer, the image of the next band is being prepared in the

other buffer.

The incremental approach requires modifications to the image-

generation algorithm described for a full-page buffer. The prob-
lem is to identify those characters that lie wholly or partly in the

band being generated. Although the entire character table can be

scanned to compute, for each entry, whether the character lies in

the band, it is more efficient to sort the table by the band number

in which the character begins (i.e., by y coordinate of the topmost
scan line). The sorted table allows easy identification of "new

characters," those that start witihin the band being generated.

Breaking the page image into bands inevitably causes some
characters to span two or more bands, either because they are

more than 16 scan lines high, or because their image on the page

happens to cross a band boundary. For these characters, the

image-generation process is not completed when a band is

generated; instead, a portion of the character is left over and must

be continued in the succeeding band (Fig. 13). The image-

generation algorithm records left-over characters in a list that

contains sufficient information to continue image generation

(BitBlt) in the next band. The companion data structures for new
and left-over characters are characteristic of many incremental

image-generation algorithms, such as those for solid polygons and

hidden-surface images [Newman and SprouU, 1979]. The algo-

rithm to generate the image of a band is:

1 Clear the band buffer to zero.

2 For each character in the character table for this band:

a Use the character code extracted from the character

Ch»raci«'Tabi*

1 DO

;
ODD !

. D
I

' DDDDD 1

Fig. 13. Schematic diagram of the image-generation process for

printing a page. The band buffers show a character that does not

completely fit in band /. It has a "left-over" part extending into the

next band.

568 Part 2 • Regions of Computer Space Section 8 Personal Computing Systems

table to enter the font table and find a character bitmap,

together with a width and height.
b OR into the band bufiFer the image of the character, at

the specified position.

c If the character's image does not terminate in this band,
save a left-over entry, specifying the x position of the

character, its width, its height (now reduced), and a

pointer to the beginning of the next scan line of

character bitmap information in the font table.

3 For each character in the left-over table formed when

generating the previous band:

a Same as step 2b.

b Same as step 2c.

4 The image in the band bufiFer is now ready to be converted

into a video signal and sent to the printer.

The algorithm was analyzed carefiilly to design an implementa-
tion for the Alto. Table 1 gives several properties required of the

memories used in the algorithm, obtained by software simulations

of the printing of typical pages. These simulations lead to a

number of design decisions for the algorithm and controller.

Consider the size ofa band: 16 scan lines. The greater the number
of scan lines in a band, the larger the band buffers, and hence the

expense. The smaller the number of scan lines, the more

frequently the left-over tables must be read and written while

generating a page. The table shows that a band size of 16 scan lines

yields both modest left-over bandwidths and inexpensive band

bufiPers. It also shows that the memories required divide into two

classes: small and fast (band bufiFers) and large but slow (font,

character and left-over tables). This division leads to an imple-
mentation strategy for the Alto: the main memory will hold the

font, character, and left-over tables, and the controller will hold

the band bufiFers, together with some image-generation aids. Such

a division is feasible only because the Alto micromachine can

intimately control the image-generation hardware, using charac-

ter parameters and pattern information read from main memory.

6.1 Implementation

The organization of the printer controller is shown in Fig. 14. It is

logically divided into two parts that operate concurrently, the

Table 1

Size (bits * W) Bandwidth (bits * Kflpage)

12.3

6+
12.3

2.4-1-

.08-1-

-S-l-

Numbers ending in
" + "

increase rouglnly linearly with page complexity.

Band buffers

Chapter 33
|

Atto: A Personal Computer 569

Processor Bus

I I f

Image
Gen
Control

sumsum

i:

front Printer to printer

data

enbl

Band Buffer A
4K X 16

Svn
from printer

"^

T
data

enbl

Band Buffer B
4K X 16

Shift Reg

T
-- Video

to printer

Video
Gen
Control

21 S registers

343 Microinstructions

300MSITTL1CS

Controller Status

570 Part 2
I
Regions of Computer Space Section 8 Personal Computing Systems

Interactive programming environments emerged to take advan-

tage of the personal nature of the Alto. The Smalltalk environment

turned the Alto into an "interim Dynabook," a prototype for a

personal dynamic medium that emphasizes visual and audio

communication [Kay and Goldberg, 1977; Kay, 1977; Kay, 1978;

Ingalls, 1978]. Smalltalk has been used to interact with documents

containing text and graphics, to build visual animations [Baecker,

1976], to synthesize music, and to build a variety of simulations of

personal interest.

An implementation of Interlisp [Teitelman, 1978] explored the

problem of providing a large interactive environment on the Alto

[Deutsch, 1979]. Although the Alto micromachine was successful-

ly adapted to interpret byte-coded Interlisp instructions at

reasonably high speeds, the small main memory of most Altos at

the time (64K) proved to be a crippling performance limitation.

The various programming environments used on the Alto

coexist gracefiilly by sharing only files stored on the local disk, and

network protocols for communication among computers. No other

facilities of the Alto are standardized. This policy allows each

environment and each application to exploit the hardware in novel

ways; for example, it fosters different strategies for using the

display and interacting with the user. It also allows a language or

application to use special-purpose microcode to interpret instruc-

tions or perform application-specific calculations. The policy has a

few drawbacks: failure to standardize the use of the display, for

example, makes it essentially impossible for one Alto to be used as

a remote terminal to another one.

7.2 Personal Applications

Some applications use the Alto as a stand-alone computer, usually

making extensive use of the display, mouse, and keyboard for

interaction. The most commonly used applications of the Alto

today are the various programs developed for document produc-

tion: a text editor that supports a wide range of formatting styles

and text fonts, and a set of "illustrators" to prepare diagrams using

geometrical figures such as lines, circles, and curves, or raster

images obtained by scanning existing documents or by free-hand

drawing. Many of the display techniques used are described in

Newman and Sproull [1979]; camera-ready copy for that book was

produced with Alto document-production software.

Some uses of the Alto support research in computer science

within Xerox. The best example is a design automation system
used to aid designers of digital hardware. Logic drawings are

prepared with an illustrator, and are then analyzed by a program
to determine what integrated circuits are pictured in the diagram
and how they are connected. Other software then checks loading

rules, makes wire lists, and drives semi-automatic wiring equip-

ment. The Alto also serves as a console computer to simplify

debugging or diagnosis of experimental hardware. An umbilical

cord connects the Alto to the hardware so that it can load registers

and memories, issue control commands such as "single step," and

read back important internal state. An Alto program presents this

information on the display, accompanied by symbolic names of the

registers or signals in the experimental hardware. The display also

presents menus of operations, such as "step," that are invoked by

pointing with the mouse and cursor. In this way, the Alto is used

to provide a comfortable user interface for an engineer, technician,

or system programmer working on the hardware.

7.3 Communication in Applications

No Alto users depend only on the resources available within a

single Alto; all use communication to extend these services. Even

the user of document-production application requires communi-

cation to obtain hardcopy output at a shared printer or to

distribute a document file to other users. Alto applications and

users depend on a wide variety of services implemented on server

machines throughout the network:

•
Printing. An application program running in any Alto may
transmit to the printing server a description of a document
to be printed. The printing server is an Alto that queues

requests, and later prints the files using the raster printer

controller described in Sec. 6 of this chapter.

• File storage. File services are provided both to allow

sharing of files among users and to escape the limitations of

the local storage available on the standard Alto. The service

machines have one or more high-performance disks at-

tached and offer several different styles of file access. Some

provide a "page level" access [Swinehart, McDaniel, and

Boggs, 1979], some a "file transfer" access patterned after

the ARPA network file transfer facilities [Crocker et al.,

1972], and some a "transaction access" suitable for imple-

menting a file service that is distributed over several

machines [Israel, Mitchell, and Sturgis, 1978].

• Mailboxes. A popular application of the Alto is an electronic

mail service. The personal machine is used to prepare

messages for transmission to other Alto users, and to display

and retain on the disk messages that have been received. A
network mailbox service is provided to hold messages for a

user until he wishes to receive them with the mail program.
The mailbox service is often implemented within the same

computer that provides network file storage [Levin and

Schroeder, 1979].

• Timesharing. The Alto can be used as a terminal on the

MAXC timesharing system [Fiala, 1978]. For simple appli-

cations, the Alto simulates a conventional video character

display. More ambitious applications use a "display proto-

col" to format text and graphics carefully on the screen

[Sproull, 1979]. DLISP, which provides display-oriented
access to the Interlisp programming environment, is the

primary user of the display protocol [Teitelman, 1977].

• Time of day. A simple but necessary service is to inform

Altos of the correct time. A time serve is conveniently

Chapter 33
I Atto: A Personal Computer

located in the same computer as a communication gateway.

• Error logging. This service records a log of error informa-
tion sent to it, and is usually operated by hardware and
software maintenance groups. Altos that are not in use run a

diagnostic program that periodically sends error summaries
to the logger. The maintenance organization examines the

log to schedule service calls.

•
Bootstrap. Alto microcode allows the computer to be

bootstrap-loaded from either the local disk or the Ethernet.
An Ethernet bootstrap service accepts a request for an Alto

program, reads it from a local disk, and sends it over the

network to the computer making the request. This service
was first used to bootstrap the Scavenger program, which

repairs a damaged disk file structure. Many programs are
now distributed in this way, reducing the demands on local

disk storage. The ability to bootstrap diagnostic programs
over the Ethernet is especially useful to the maintenance
staff.

The services outlined above are implemented on various server

machines spread throughout the internetwork. Servers can be
added or removed straightforwardly as needs grow or shrink. All

application programs access the services using standardized

protocols, which in effect define the services that are offered.

Standardization is necessary to allow sharing; applications that

share a file must obey the protocol standards of the service used to

store the file. Thus the protocols constitute a standardized

interface, analogous to the file system on the disk, which is

observed by all programs in the environment [Boggs et al., 1980].
In addition to standard services, individual applications use the

network in special ways. For example, the debugger may commu-
nicate with an identical debugger running elsewhere in the

network, essentially passing the user's commands to the remote
machine and returning information to be displayed. Thus a

programmer in California can examine and fix a bug on a machine
in New York. The Ethernet is used as a performance-analysis tool:

the program to be analyzed transmits packets that summarize

system status or that record the occurrence of a particular event.

An analysis program running elsewhere in the network records

and displays the information [McDaniel, 1977]. The network is

also used to couple programs together so that two people can

cooperatively edit and illustrate documents in real time, sending
digitized voice as well as keystrokes and mouse movements
through the network.

8. Conclusions

As an experiment in personal computing, the Alto has been very
successfiil. The number of Altos in use exceeds the original

expectations of its designers by more than an order of magnitude.

The Alto has led to an entirely new kind of computing
environment, because it puts computing power near the user, and
makes it possible for him to do most of his work without relying on
a centralized facility. The Alto environment provides a high-
bandwidth, comfortable user interface, is extremely reliable

because of its distributed nature, and provides performance that

scales linearly with cost. One of the Alto's most attractive features
is that it does not run faster at night [Morris, personal communica-
tiont-

— —
A few aspects of the Alto design did not work out well. The

limitations on the size of the address space and on the amount of
real memory have been serious. Although some programming
systems have been able to take advantage of the extended memory
banks, not all Altos have this extension, and a great deal of time
has been spent fitting standard software that must run on all

machines into the limited space available. To a great extent, the

memory size limitation is due to the fact that the system's life has
been longer than planned.
The facilities of the micromachine are not well suited for

emulating existing architectures with structured opcodes. Fortu-

nately, the virtual machines for which new emulators have been
built use simple instruction encodings that fit well with the

micromachine's dispatch mechanism. The emulator for the Mesa
machine interprets instructions just as fast as the emulator for

BCPL, even though the latter has some hardware assistance for

decoding, and the former does not.

The sharing of the micromachine among I/O activities and
emulation has been extremely successful. The micromachine
allows these activities to interact by sharing memory, and
provides the high memory bandwidth necessary to support the

high-speed I/O requirements of the personal computer. Today,
hardware costs are low enough that it is possible to replicate the

processor in every I/O controller, but if this is done without taking
additional steps such as using cache memories to decouple the

processors from the memory, or using more complex multi-ported
memories, shared memory access will still limit the system's
performance. Since both these alternatives add cost, while the

multitasking is very inexpensive, we feel that this architecture is

still viable today.

Some of the early decisions in the design of the Alto computing
environment worked out very well. The arrangement by which all

software is standardized at the level of disk files and network

messages has made it possible to build a wide variety of

cooperating software subsystems. The disk file system has proven
to be extremely reliable, primarily due to the distributed redun-

dancy. Although the hardware and software have both had bugs,
the reliability as perceived by users has been exceptionally high,
since files are almost never irretrievably lost.

The high-bandwidth communication provided by the Ethernet
has been more valuable than anticipated, since we underestimat-
ed the importance of servers. The network and network services

572 Part 2
I
Regions of Computer Space Section 8

|

Personai Computing Systems

have been the mainstays of the environment, and we feel that a [1978]; Geschke, Morris, and Satterthwaite [1977]; Ingalls [1978];

facility with an order of magnitude lower bandwidth would have Israel, Mitchell, and Sturgis [1978]; Kahn [1972]; Kay [1977]; Kay

had a qualitatively difiFerent effect. U978]; Kay and Goldberg [1977]; Lampson and Sproull [1979];
^

Levin and Schroeder [1979]; McDaniel [1977]; Metcalfe and

Boggs [1976]; Mitchell, Maybury, and Sweet [1979]; Morris

References [personal communication]; Newman and Sproull [1979]; Richards

[1969]; Ritchie, Johnson, Lesk, and Kemighan [1978]; Shoch and

Baecker [1976]; Boggs, Shoch, Taft, and Metcalfe [1980]; Cerfand Hupp [1977]; Shoch [1979]; Sproull [1979]; Swinehart, McDaniel,

Kahn [1974]; Crocker, Heaftier, Metcalfe, and Postel [1972]; and Boggs [1979]; Teitelman [1977]; Teitelman [1978].

Deutsch [1979]; English, Englebart, and Berman [1967]; Fiala

