
Chapter 32

The IBM System/38:
A High-Level Machine^

S. H. Dahlby / G. G. Henry / D. N. Reynolds /

P. T. Taylor

One of the primary characteristics of the IBM System/38 that

identifies it as an advanced computer system is its high-level

machine instruction interface, which incorporates new architec-

tural structures and provides a much higher level of function than

traditional machine architectures, such as the IBM System/3. The
function and architectural structures are more similar to those of

high-level languages than to conventional machines. The purpose
of this article is to describe the advantages and salient architectur-

al features provided by the System/38 instruction interface, and

how they are reahzed in the specifics of the System/38 machine.

Relevant system objectives

Many factors influence the choice of the architectural characteris-

tics [Henry, 1978] of a new system. In System/38 the primary

influences, such as anticipated user requirements and hardware

technology trends, led to the adoption of some major objectives

for the total system. Briefly, these were:

• Programming independence from machine implementation
and configuration details

• High levels of integrity and authorization capability with

minimal overhead

• Efficient support in the machine for commonly used

operations in control programming, compilers, and utilities

• EfiRcient support in the machine for key system functional

objectives, such as data base and dynamic multipro-

gramming.

The following sections highlight the major System/38 instruction

interface concepts and features that address these objectives.

Independence from Machine Implementation
and Configuration

In previous systems, the ability for users to take advantage ofnew

technology and implement new function was limited by depen-

'IBM SystemJ38: Technical Developments, pp. 47-50. © 1978 by Interna-

tional Business Machines Corporation. Reprinted by permission.

dence on a specific low-level instruction interface; for example,

dependence upon the hardware-implemented address size. One
of the major gokls of System/38 architecture was to enable users to

be as independent as possible ofhardware and device characteris-

tics.

In System/38, hardware dependencies have been absorbed by
internal microcode functions that provide an instruction interface,

which is largely independent of hardware details. Users of the

instruction interface, therefore, need not be concerned with

hardware addressing [Berstis, Trutal, and Ranweiler, 1978],

auxiliary storage allocation and addressing [French, Collins, and

Loen, 1978], interna! data structures and relationships [Pinnow,

Ranweiler, and Miller, 1978], channel and I/O interface details,

and internal microprogramming details [Hoffman and Soltis,

1978].

This hardware independence characteristic of the System/38
instruction interface is due in large measure to the use of an

object-oriented interface [Pinnow, Ranweiler, and Miller, 1978]

instead of the more conventional byte-oriented interface. An

object is a System/38 instruction interface construct that contains a

specific type of information and can be used only in a specific

manner. A number of different types of objects are defined in the

interface, and various object-specific instructions are provided to

operate upon each object type. An example of a System/38
instruction interface object is a data space (file), which has

associated instructions for operations such as the adding and

deleting of records [Watson and Aberle, 1978].

Each object is created by a System/38 interface instruction that

uses a user-specified data structure to define the object's charac-

teristics and initial values. Once the object is created, its internal

stored format is not apparent to the user (with the one exception

discussed below). The status and values of the object may be

retrieved or changed by using interface instructions, but the

internal format of the object cannot be directly viewed or

modified. That is, objects can be operated upon functionally, but

not as a byte string. This approach prevents dependence on

the internal format of the object and enables applications to

remain independent of evolving internal implementations of the

machine.

There is one specific exception to this shielding of the internal

format of an object. A space object is a construct that can be used

by a program for storage of and operation upon byte-oriented

operands such as character strings and numeric values.

In addition to this object orientation, main storage and auxiliary

storage addresses are not directly apparent in the System/38
instruction interface [Berstis, Truxal, and Ranweiler, 1978; Pin-

now, Ranweiler, and Miller, 1978]. All interface addressing of

objects is accomplished by resolving symbolic names (supplied by
the user) to a pointer. A pointer is an object that is used only for

addressing and does not permit examination or manipulation of

the implied physical address. A system pointer gives a user the

533



534 Part 2
[
Regions of Computer Space Section 7

I
Language-Based Computers

ability to address objects; for example, to create or destroy an

object or to examine or directly modify its content through

associated specific instructions. A space pointer allows the direct

addressability of bytes within a space object. Both of these pointer

types can be contained within a space object, but they can be used

for addressing only when operated on by pointer manipulation

instructions. Pointers are assured of validity via tagged storage in

both main and secondary storage. Direct modification of a pointer

area via a "computational" instruction results in the tag becoming
invalid and causes the pointer to no longer be usable for

addressing purposes.

Similarly, users are not concerned with the addressing struc-

tures of either main storage or auxiliary storage [French, Collins,

and Loen, 1978], or even necessarily that there are multiple levels

of storage, since all storage used for all objects in the system is

allocated and managed by the machine. That is, there is no

differentiation in the System/38 instruction interface as to where

an object or portions ofan object reside. The total address space of

System/38 thus consists of an unconstrained number of objects,

uniformly addressable by pointers.

Similar constructs shield the System/38 instruction interface

user from dependencies upon channel and I/O device addresses

and low-level communication protocols.

Figure 1 illustrates this basic object-oriented, high-level inter-

face approach.

Access via

specific functions only

System 38 instruction inteiface

Integrity and Authorization

A natural consequence of the object-oriented approach is im-

proved system integrity and authorization mechanisms [Berstis,

Truxal, and Ranweiler, 1978]. All user information is stored in

System/38 instruction interface objects. Access to that information

is through System/38 instructions that ensure the structural

integrity of the manipulated objects. An attempt to misuse an

object is thus detected and causes the instruction execution

to be terminated and an exception condition to be raised. An exam-,

pie is the attempt to directly change a byte within a program

object.

Authorization capabilities are likewise facilitated by the System/
38 instruction-interface object-oriented structure. Each user of

the machine is identified by a user profile, which is itself an

object. Each object in the system is owned by a user profile, and

the owner may delegate to other user profiles various types of

authority to operate on the objects. Processes (tasks) execute

under a specific user profile (in the name of a user), and functions

executed within a process verify that the objects referenced have

been properly authorized to that user.

Figure 2 illustrates this approach to providing integrity and

authorization capability.

Fig. 1 . System/38 object-oriented structure.

Fig. 2. System/38 instruction interface integrity and authorization

scheme. «



Chapter 32
|

The IBM System/38 535

Support for Common Programming Functions

The Systeni/38 instruction interface is designed to provide direct

support for a wide variety of fiinctions common to control

programming, compilers, and utilities. This increased level of

machine function eliminates the need to implement these com-

mon fiinctions in multiple programming components, increases

consistency across all programming components, and supports

programming approaches conducive to providing integrity and

reliability.

There are two basic modes of addressing in the System/38
interface. The first is pointers, which allow varying addressability

to all objects and bytes within space objects. The second,

dictionary addressing, deals with program references to values

within a space object.

Operands referenced in program instructions are defined in a

dictionary portion of the program separate from the instructions

themselves. Instruction operands are index references to these

dictionary entries which define operand characteristics such as

data type and length. Binary, zoned decimal, packed decimal,

character, and pointer data types are examples of operand
characteristics that may be defined. The dictionary entries do not

contain the operand values; the specific location of the operands is

not apparent to or required by programs. However, the user can

control the general type of location characteristics: for example,
relative to the area addressed by a pointer or relative to the

storage area allocated for program variables within the executing

process.

This approach of having instructions reference dictionary

entries describing the operand characteristics allows additional

capability over low-level instruction interfaces. For example, the

following high-level capabilities are provided:

• Computational instructions are generic with respect to data

type and length. For example, there is only one numeric

add instruction in the System/38 instruction interface: it

operates on whatever data is defined in the operand
definition dictionary. This enables the use of source and

receiver operands of varying type, length, and decimal

positioning with all conversions and scaling being per-
formed by the machine.

• Arrays may be defined in the interface and instruction

operands support array indexing to locate specific elements

of the array.

• Since applications often allow operations on multiple
formats of data, some instructions (for example, the copy

instructions) support late-binding of data definition where
the data (type, length, and decimal positioning) need not be

defined until the instruction is executed.

System/38 instruction interface provides and, in some cases,

requires functions intended to support programming constructs

more directly than in traditional machines. For example, pro-

grams are invoked through call/return functions defined in the

interface. Argument/parameter functions provide communica-

tions from one program to another. Allocation and initialization of

storage for program variables within a process is performed by the

System/38 machine. Additional examples are found in [Watson
and Aberle, 1978] and [Howard and Borgendale, 1978].

Figure 3 illustrates this System/38 program structure and the

general relationship between a high-level language program and

the corresponding System/38 constructs.

Support for Key System Functions

The System/38 machine was designed to support a usage environ-

ment characterized by a dynamically changing application load

consisting of a wide variety of application types
—all utilizing

advanced fiinctions such as data base. For example, batch,

interactive, and transaction processing, along with program

development activities, may all be executing concurrently with

dynamically changing workloads and priorities. One of the key

requirements for the System/38 instruction interface was to

provide efficient support in this type of environment for applica-

tion requirements such as multiprogramming and data base

operations. This centralization of fiinction in the machine simpli-

fies the user programming task and reduces overhead in a

dynamic multi-user environment.

Two examples of this system function support will be described

here—multiprogramming and data base. Similar high levels of

Typical

high-level

language
structure

Svstem/38 instruction

interface program

DCL A BIN (16)

B BIN (321

BASED (X)

BIN (16)



536 Part 2
{
Regions of Computer Space Section 7

|
Language-Based Computers

machine capability exist in other major functional areas such as

I/O.

System/38 supports multiprogramming through the concept of

processes. A "process" is similar to a task in other systems and is

the basis for managing work in the machine. The user of the

System/38 instruction interface controls the number of processes

currently initiated, the priority of each process, and the relation-

ship of one process to another, that is, with respect to processor

utilization and storage utilization. The machine then allocates the

processor and storage resources based on these parameters as well

as on the current status of the process, for example, waiting or

dispatchable.

This level of multiprogramming support in the System/38
machine ofiFers advantages like these:

• A single resource management mechanism is applied to

processing across all system activities. This reduces over-

head and results in better management of resources in a

complex and dynamic environment.

• Other efficient resource management mechanisms can be

used to take advantage of hardware characteristics without

programming dependencies.

Similarly, the System/38 machine provides the basic functional

building blocks for a high-function integrated data base. Data base

objects include a comprehensive set of functions supporting

different access mechanisms, file sharing, record format definition

and mapping, efficient record retrieval, update, add, and delete.

This allows, for example, a data base file structure to be defined

that maps a single physical file into records with multiple formats

and content. In addition, a single physical data base file may have

multiple indexes (access paths) defined over it, all of which are

concurrently updated when the file is changed. Each user of the

file may view the data in the form suitable to a particular

application.

Overhead Considerations

One of the major problems inherent in the implementation of a

high-level instruction interface such as that provided for the

System/38 is overhead. In order to reduce the potential overhead,

and also to facilitate future extensions, the System/38 instruction

interface definition does not require a directly executable imple-

mentation of the instruction interface. The instructions and the

operand definition dictionary are presented to the instruction

interface and are translated into an executable microcode struc-

ture called a program object. The internal microcode format is not

apparent at the interface. Figure 4, System/38 executable pro-

gram creation, illustrates this process.

Having an executable program creation step allows the system
to have the advantage of both a high-level instruction interface

and reduced overhead at execution time.

Svstem/38 instruction interface

Program

Create executable

program instruction

z 71
Internal executable

microcode structure

Fig. 4. System/38 executable program creation.

In addition, direct support of high-use functions in the System/
38 instruction interface, as previously described, is itself an

approach toward reducing system overhead. A single implementa-
tion of a complex function that can be applied system-wide
reduces overhead.

Also, by implementing these functions in the machine, hard-

ware facilities can reduce the overhead that is associated with the

higher level implementation typically required in programming.

Summary

The IBM System/38 provides a new type of machine instruction

interface that comprises a high level of function together with

structures similar to high level language structures and includes

computation, addressing, and such traditional programming
functions as process (task) management, resource management
(storage and processor), data base management, and device

handling. This new machine was designed to satisfy major design

objectives for the entire system—hardware, microprogramming,
and program products. The concept of a high-level machine has

been discused in the literature and has been experimented with in

both industrial and research environments; however, System/38 is

the first IBM system to bring the advantages of a high-level

machine to the business user.

References

Berstis, Truxal, and Ranweiler [1978]; French, Collins, and Loen

[1978]; Henry [1978]; Hoffman and Soltis [1978]; Hovv-ard and

Borgendale [1978]; Pinnow, Ranweiler, and Miller [1978]; Watson
and Aberle [1978].



The IBM System/38:

Object-Oriented Architecture^

K. W. Pinnow / J. G. Ranweiler / J. F. Miller

Systein/38 provides a range of capability not previously available

in low-cost data processing systems. This capability is made

possible by the use of a number of technical innovations. One of

these is the object. This article discusses objects
—the means

through which information is stored and processed on System/38.
Included are the concepts, purpwse, and characteristics of System/
38 machine objects and their use by the Control Program Facihty

(CPF).

Object Concepts

Previous machine instruction sets have provided bit- and byte-

string manipulation capabilities. The machine instruction set in

System/38 provides similar functions and also provides machine
instructions that operate on complex data structures to accomplish

high-level functions.

Some of the data structures are similar to such things as

programs and data files in conventional systems. Some are unique
to System/38. The data structures that appear in the instruction

interface are collectively categorized as objects.

An object is brought into existence through execution of a

create instruction. The user controls the creation of the object

through a template [Allsen, 1978] that provides a set of attributes

and values that are to apply to the new object. The new object also

has operational characteristics that define the set of functions that

may be accomplished through it. Examples of object attributes

and operations are shown in Fig. 1.

The three examples of attributes illustrated in Fig. 1 are (1) a

name that permits symbolic reference to the object, (2) an

existence that specifies whether implicit destruction is allowed,
and (3) ownership that identifies who, ifanyone, owns the object.
The set of instructions that are operationally meaningful to an

object consist of generic operations that apply to all types of

objects and unique operations that apply to a specific type object.
The generic operations are primarily authorization-, addressing-,
and resot/rce-related [Berstis, Truxal, and Ranweiler, 1978]. The

unique operations include a destroy that removes the object from
the system, some form of materialize that identifies the object's
attributes or content, and sometimes a modify that changes the

attributes of the object. Many other unique operations exist that

are not identified in Fig. 1.

HBM SystemJ38: Technical Developments, pp. 51-54. © 1978 by Interna-

tional Business Machines Corporation. Reprinted by permission.



53S Part 2 Regions of Computer Space Section 7
I
Language-Based Computers

Object Characteristics

For an object like a program, creation establishes the essential

content of the object, and subsequent instructions use it opera-

tionally. For other objects, the creation is primarily a space

allocation mechanism for which succeeding operations establish

the content. For example, once a data space has been created,

records may be inserted into it. Management of the size of an

object and changes to that size are generally transparent to the

System/38 user.

All System/38 machine objects are encapsulated. Encapsulation

is the process of accepting a definition of an object through a

create instruction and using this definition to produce an object

whose internal structure is only accessible to the machine.

Objects are encapsulated to maintain the integrity of the internal

structure and to permit difierent implementations of the machine

instruction interface without impact to its users.

It is possible to associate an unencapsulated (byte string) area

with each object. This byte-string area is referred to as a space and

is up to 16 megabytes of virtual storage into which the machine

user can build control blocks of other control information or data.

As a degenerate case of an object, one with essentially no

encapsulated portion, a space exists as an independent object.

Whether it is an object itself or is associated with another object, a

space has its size modified through explicit instructions by the

machine user.

System/38 lUlachine Objects

The following lists and briefly describes the objects of the

System/38 machine-instruction set.

Access group. An object that permits the physical grouping of

other objects to achieve more eEBcient movement of the

objects between main storage and auxiliary storage.

Context. An object that contains the type, subtype, and name

of other objects to allow addressability.

Controller description. An object that represents an I/O

controller for a cluster of I/O devices or a station that attaches

groups of communication devices over the same data commu-
nication link.

Cursor. An object used to provide addressability into a data

space.

Data space. An object used to store data base records of one

format.

Data space index. An object used to provide a logical ordering

of records stored in a data space.

Index. An object used to store and automatically order data.

Logical unit description. An object that represents a physical

I/O device.

Network description. An object that represents a network port

of the system.

Process control space. An object used to contain process

execution.

Program. An object for uniquely selecting and ordering

machine interface instructions.

Queue. An object used to communicate between processes,

and between a process and a device.

Space. An object used for storing pointers and scalars.

User profile. An object used to identify a valid user of the

machine inter&ce.

CPF Use of Machine Objects

The CPF extends the object-oriented approach of the machine

and provides its users with a high-level, object-oriented interface

[Harvey and Conway, 1978]. All data stored on the system by
CPF users is stored in object form and is processable in terms of

control language commands and high-level languages. To the user

of CPF, objects are named collections of data, and the functions

associated with objects provide the vehicle for processing this data

and obtaining work from the system. The 19 objects presented to

the user at the CPF interface include conventional constructs,

such as files and programs, as well as constructs that are unique to

System/38, such as job descriptions and message queues [Dem-

ers, 1978].

The functions that CPF provides for its objects include some

that are object-type specific and some that are generic with

respect to object type. The object-type specific functions define

and limit the way in which an object can be used while the

generic functions provide for authorization, locking, saving, re-

storing, dumping, moving, and renaming objects. Through the

generic functions, the user has a way of managing objects once

they exist.

Objects are brought into existence through the specification of a

create command that defines the name, attributes, and initial

value of the object to be created. Each object is assigned a type

and subtype as a part of the creation process. The object's type is

determined by the kind of machine object created to support the

object that the CPF user wishes to create; the object's subtype

designates the use that CPF intends for the machine object. Each

unique use that the CPF makes of a machine object is assigned a

unique subtype identifier. This aspect of the design is important

because it is through the use ofunique types and subtypes that the



Chapter 32
\

The IBM System/SB 539

system can ensure that each type of object is always used in the

way it was intended. After an object has been created, it remains

on the system until it is explicitly deleted via a delete command.

At the time an object is created, CPF places the name of the

object into a machine object known as a context.

Contexts are presented to the user as libraries. Because the

functions associated with contexts are capable of finding an object

based on its name, type, and subtype, libraries can be considered

as a catalog or container for the user-created objects. Whenever

an object is to be found, CPF initiates a search for the object

either in a single library or through an ordered list of libraries that

the CPF maintains with each executing job. When the list of

libraries is used to find an object, each successive library in the list

is searched until the object is found. Using the list of libraries to

find the objects to be processed is advantageous because the

same commands or program can perform functions on different

objects merely by changing the order of the libraries in the

library list.

CPF maintains descriptive information for all objects and

provides fijnctions for the retrieval and display of this data. The

descriptive information records who the object owner is, when the

object was created, where the object has most recently been

saved, and text information provided by the user to further

describe the object.

An important feature of CPF object architecture is the manner

in which CPF objects are constructed. CPF uses machine objects

as building blocks to produce the objects that CPF users see.

Figure 2 shows an example of how one kind of Control Program

Facility object is constructed.

In this example, four types of machine objects (a data space, a

data space index, a cursor, and a space) are combined to produce
the higher level CPF object known to the user as a data base file.

CPF manages the individual pieces of a file in a way that allows

the user to perceive the file as a single entity. For example, the

separate pieces of the file come into existence when a single

create-file command is processed and remain in existence until

the file is explicitly deleted. Thus, the user is relieved of the

complexity and organizational details ofthe data and can process it

as a logical entity. When lower level objects are put together to

form a higher level object, the higher level object is known as a

composite object. CPF object architecture permits any type of

System/38 machine or CPF object to be combined to produce a

new type of object. In fact, CPF-provided functions for managing

objects are table-driven, based on unique object type and subtype
combinations. This aspect of the design means that the object-

oriented approach can be quickly and easily extended. It also

permits new kinds of objects to be compatibly introduced later on

in the life of the system.

The key advantages of the System/38 building block architec-

ture, however, is that the implicit functions provided by the

User 1



540 Part 2
I
Regions of Computer Space Section 7

I
Language-Based Computers

are implicit in the objects. The key characteristic that makes this

possible is encapsulation of objects in the machine-instruction

interface. Since CPF uses the objects of the System/38 instruction

interface as building blocks, its objects possess all the function of

the machine objects.

References

Allsen [1978]; Berstis, Truxal, and Ranweiler [1978]; Demers
[1978]; Harvey and Conway [1978].

The IBM System/38:

Addressing and Authorization^

V. Berstis / C. D. Truxal / /. G. Ranweiler

convenient way of storing additional (user-defined) data perti-

nent to that object's usage. One type of object, called a space

object, has no functional part. Its associated space is used to

provide storage for control blocks, buflFers, pointers, and other

data.

The high-level machine interface of System/38 achieves user

independence from the internal machine implementation primar-

ily through the use of an object-oriented architecture. Objects

representing storage for constructs such as programs, processes,

and data base files are accessed through a consistent, integrated

addressing structure. Because authority enforcement and control

of shared objects are critical in multiprogramming environments,

these functions have been incorporated into the addressing path.

This article describes some of the key features of the addressing

design of System/38 and how they are presented to the user

through the Control Program Facility (CPF), which is described

by Harvey and Conway [1978].

Objects and Spaces

Before addressing can be described, it is necessary to define what

is accessed. Everything stored in the system is an object (see Fig.

1), which consists of a functional portion and an associated space

(see Pinnow et al. [1978]). The functional part of an object is used

to implement a particular construct. For example, the functional

part of a program object is created by the translation of System/38
machine instructions into microcode. The program is said to be

encapsulated because there is no direct access to the storage used

to support it. Instead, the object is manipulated at a high level

through the System/38 instruction set. In this way, encapsulation

ensures the ftinctional integrity of all objects.

The associated space portion of an object is a region of bytes

that can be directly manipulated by the machine user. The space

is associated with the functional part of the object and provides a

'IBM Systeni/38: Technical Developments, pp. 55-58. © 1978 by Inter-

national Business Machines Corporation. Reprinted by permission.

Pointers

There are four different types of pointers. System pointers address

objects; space pointers and data pointers address specific byte

locations within the space portion of an object; and instruction

pointers control execution flow. This article covers object address-

ing through system pointers.

A system pointer, used to address an object, contains both the

location of the object in storage and object usage rights, as will be

discussed later. Only specific System/38 instructions can create

pointers. Although pointers can be copied, the user cannot

construct pointers by bit manipulation. As a result of these

properties, System/38 has the basic elements of capability based

addressing [Linden, 1976].

Name Resolution

A system pointer exists in one of two states: resolved or

unresolved. In the unresolved state, the pointer specifies the

name of an object and not its location. When the pointer is first

referenced (see Fig. 2), the machine searches for an object having

the specified name. Once found, the resulting object location is

stored in the pointer, thereby eliminating subsequent searches.

The pointer is then said to be in the resolved state.

The search performed during pointer resolution involves the

use of objects called contexts, containing object names and

locations. Various execution environments are obtained by speci-

fying an ordered list of contexts to be searched. For example, the

production and test versions of files can be located through
different contexts. Therefore, by simply exchanging the contexts

searched, either programming environment can be achieved.





542 Part 2
I
Regions of Computer Space Section 7

j
Language-Based Computers

of authority than that available to the calling program. To

accomplish this, programs can adopt a user profile (Fig. 3). The

adopted user profile adds its authority to what is already present

in a process. When the program calls other programs, the adopted

user profile authorities can be optionally propagated to the called

program. This provides considerable flexibility in controlling the

security environment.

Once authority to an object has been established, it can be

optionally stored in the pointer to that object. This provides faster

authority verification than with unauthorized pointers.

Other Authorizations

One type of authority not related to objects is the privileged

instruction authority. Such authorization is used for process

initiation, user profile creation, machine reconfiguration, etc.

Other special authorities range over many machine functions

rather than specific instructions. For example, all object special

authority permits unlimited use of all objects in the system. The

control of storage resources is another wide-range authority. The

storage occupied by objects is charged against the storage limit of

User profiles contributing authority to program

Process initiation Program Program

Initial call

Process

user

profile

User profile

associated

with a

process

Call

Adopt &
propagate

Adopt & not

propagate

User profile

User profile

User profile

Fig. 3. User profiles as sources of authority.



Chapter 32
{

The IBM System/38 543

the user profile (the owner) under which they were treated

Owners have imphed object authority to the objects they own.
programs, and hbraries. Because ofthis, an installation can control

system resources to the extent desired.

Locking and Synchronization

The authority mechanism of System/38 ensures that an application

accesses only objects within its intended rights. When multiple

applications attempt to reference the same objects concurrently,

additional controls are provided to prevent interference. System/
38 incorporates implicit synchronization fiinctions into the object

access implementation to accomphsh this. For example, if one

process is updating an object while another process is attempting

to access the same object, the operations are automatically

serialized. On the other hand, ifboth processes are retrieving data

from the same object, the operations are allowed to proceed

simultaneously. Therefore, contention is reduced and integrity of

the object is ensured.

Explicit synchronization is available to the users in the form of

locks. By locking an object, the user can control the access ofother

users to the object. Entire sequences of operations can be

serialized when required to maintain data integrity. In addition,

record level locks in data base files reduce much of the contention

that would be present if the entire file were locked.

Synchronization functions complete the machine addressing

path, which starts with the object name and continues through

pointer resolution and authority verification.

Addressing Path Usage

The Control Program Facility (CPF) is an IBM program product

providing the user a high-function, ease-of-use interface to the

machine [Harvey and Conway, 1978]. With the high-level

machine facilities available in the System/38, the CPF addressing

and authorization function uses both capability-based and sym-
bolic object addressing with authority validation at execution

time.

CPF uses machine pointer resolution, authorization manage-

ment, and locking to implement internal CPF security and

synchronization. It provides these facilities to the user through
CPF interfaces.

Within CPF, the work management component isolates and

protects its critical resource control and scheduling functions by

executing them under the system user profile. The remaining
CPF modules execute under the user's profile. Thus, the machine

authorization management directly validates the user's authority

to perform every requested function on any specified object.

Everything in CPF is an object. I/O devices and Control

Language commands are objects, as are more typically files.

Instaiiation Authorization

This control of an installation's resources has led to the concept of

one specific user as an installation's security administrator. This

user is entrusted with authorities allowing system-wide control of

all users and their resources. A set of IBM-supplied user profiles is

delivered with CPF, including one for the security officer. This

profile has all-object authority, as well as authority to create and

modify user profiles. Therefore, the security officer can enroll

users on the system and control their use of system resources.

When a user profile is created or modified, special authorities,

resource allocation parameters, and a user password can be

specified. The user password is for verification of user identity at

sign-on and for determining the user profile associated with a

process.

Once the user is executing, functions are performed by

executing programs or commands. These functions reference

objects (such as files) by name, and CPF locates the object

through the use of the machine-addressing facilities. This is easily

implemented because contexts (objects that contain names of

other objects [Pinnow, Ranweiler, and Miller, 1978]) are used by
CPF as system and user libraries. When an object such as a

program or file is created, it is placed in a hbrary. Subsequent

referencing of the object initiates pointer resolution, and the

machine not only locates the object, but validates the current

user's authority to the object and determines whether serialization

of an operation is necessary. To expedite authority checking, CPF
requests that the authority be set in the pointer for future use.

CPF Object Authorities

When a user creates an object, it can be declared "public" or

"private." Subsequently, any of the object's authorities can be

granted or revoked to individual users or the public. Display
commands are also available to report object authority.

Summary

The System/38 is based on an object-oriented architecture in

which everything in the system is an object. An object can be

referenced by its name, which is used in a pointer resolution

process that includes authorization and synchronization functions.

The resulting resolved pointer can contain object location and

authority to avoid subsequent searches. The machine enforces



544 Part 2
I
Regions of Computer Space

Section 7
I
Language-Based Computers

authority requirements on every object referenced, verifying the

authority from the pointer or user profile(s). The user profile is an

object that identifies a user in the system and contains all of that

user's authorities. The CPF uses the machine addressing, authori-

zation, and synchronization facilities, and provides their function

to the user.

The System/38 thus delivers the flexibility of named object

addressing and the integrity of machine-enforced authorization

and synchronization of those objects.

References

Harvey and Conway [1978]; Linden [1978]; Pinnow, Ranweiler,

and Miller [1978].

The IBM System/38:

Hardware Organization of the

System/38^

R. L. Hoffman / F. G. Soltis

The IBM System/38 hardware is designed to efficiently support its

high-level machine architecture. An engineering design objective

was to take advantage of new technologies such that certain

high-level functions would be implemented in hardware and

microcode. As a result, fiinctions such as task dispatching, queue

handling, virtual storage translation, stack manipulation, and

object sharing became a basic part of the hardware control

structure. A further objective was to provide for sufficient

extendability to permit future implementation trade-offs.

Figure 1 shows the hardware configuration of the System/38.

This article describes the hardware organization and the functions

used by the hardware control structure.

Hardware Organization

System/38 hardware consists of a processor communicating over a

high-speed channel to independently functioning I/O units. The

processor and the I/O units have access to a main storage array.

The System/38 processor, which is implemented in a new,

high-performance large-scale integration (LSI) technology [Cur-

tis, 1978], fetches 32-bit micro instructions from the random

access memory (RAM) control store shown in Fig. 1 (8K words for

both the 5381 Model 3 and Model 5). One micro instruction is

executed for each processor cycle. The processor cycle times are

HBM Systeml38: Technical Developments, pp. 19-21. © 1978 by Interna-

tional Business Machines Corporation. Reprinted by permission.

400 to 500 ns for the 5381 Model 3 (200 or 300 ns for the 5381

Model 5), depending on the micro instruction operation. In a

single cycle, either one- or two-byte arithmetic operations may be

performed on signed binary, unsigned binary, or packed format

decimal data.

A new, high-density metal oxide semiconductor field effect

transistor (MOSFET) technology main storage [Donofrio, Flur,

and Schnadt, 1978] is available at two performance levels: 1100 ns

fetch cycle time for the 5381 Model 3 and 600 ns fetch cycle for the

5381 Model 5. Data path width is four bytes to either memory.

Available memory capacities are 512K, 768K, 1024K, 1280K, and

1536K bytes for either the Model 3 or 5. In addition, the Model 5

may have memory capacities of 1792K and 2048K bytes. Error

correction circuitry (ECC) is used in both models.

Direct memory access for I/O units as well as for the processor

is provided by the virtual address translation (VAT) hardware

which converts 6-byte segmented virtual addresses to main

storage addresses. Address translation tables in main storage and a

translation lookaside buffer in hardware provide mapping from

virtual to real main storage addresses, as discussed by Houdek and

Mitchell [1978]. Virtual addresses are used in I/O operations, and

page faults are allowed during data transmissions with low-speed

devices.

Page faults are resolved by data transfer from secondary

storage. Data is moved to main storage in 512-byte page units

from disk storage via the channel.

Each I/O device is connected to a controller which is connected

to the channel. Magnetic media controllers (MMC) [Froemke,

Heise, and Pertzborn, 1978] are used for high data-rate de-

vices such as disks, while microprogrammed I/O controllers

(IOC) [Dumstorff, 1978] handle a multiplicity of lower data-rate

devices.

Each system also includes a system control adapter (SCA) which

shares an IOC with the keyboard display console. The SCA

performs the system maintenance fijnctions, including testing the

hardware logic circuitry as described by Berglund [1978].



Chapter 32
|

The IBM System/38 545

Control

Store

Procesiing

ur>ii

Ditk ttorage
COntrolle'

<5

MUC
Duketie

coiT'oUe'

n[

O

SCA
CE/OP
panel

Communications
COntroHfr

Fig. 1 . Hardware configuration.

Control Structure

Systein/38 manipulates a unit of execution called the "task.
"

All

computer systems need to control execution and, in multipro-

grammed systems like System/38, switch between units of

execution, i.e., tasks. Traditionally, an interrupt structure with a

fixed number of interrupt levels or classes, built on the hardware,

is transformed by a software supervisor into a multilevel,

interrupt-driven system to bridge the gap between the actual

hardware and the abstract concepts of multiprogramming. The

System/38 replaces this interrupt structure with a single tasking

mechanism which is used to control all processing.

A multilevel, queue-driven task control structure is implement-
ed in microcode and hardware on the System/38. A task dispatch-

er implemented in microcode allocates processor resources to

prioritized tasks. I/O and program processing tasks are integrated

in a common dispatching structure, with their priorities adjusted
for system balance. I/O processing takes place when system
resources are available, not when an I/O interrupt occurs.

I/O and program processing requests are stacked in main

storage on a linked list called the task dispatching queue (TDQ).

The task dispatcher selects the highest priority request from the

TDQ and gives it control of the processor. Instructions associated

with this task, known as the active-task, are executed until control

is passed to another task.

A set of system control operations (SEND and RECEIVE) are

used to communicate between tasks and to pass control between

tasks via the task dispatcher. If the active task is to communicate

with another task, it does so by sending a message to a queue in

main storage known to both tasks. If the active task is to obtain a

message from a queue, it executes a RECEIVE operation. If the

message is available on the queue, the message is passed to the

active task and processing continues. If the message is not

available (e.g., it has not yet been sent), the active task is made
inactive and the task waits for the message. The task dispatcher is

then invoked to select the new active task from the TDQ. The task

dispatcher is also invoked on a SEND operation if a task of higher

priority than the active task is waiting for the message. If the

waiting task is of lower priority than the active task, the task

dispatcher is not invoked, but the processing request for the

waiting task is placed on the TDQ.
I/O in System/38 is implemented with a queue-driven com-



546 Part 2
I
Regions of Computer Space Section 7 Language-Based Computers

mand structure using the SEND/RECEIVE mechanism to pass

information across the I/O interface, which is described by

Lewis, Reed, and Robinson [1978]. To a task, a device looks Uke

another task, Commands to devices and responses from devices

are exchanged in the same way that messages are communicated

between any two tasks in the system. The messages sent to the

devices are specially formatted and contain the device commands.

In addition to individual commands, a complete channel program
can be sent as a single message. Because a queue structure is

used, command stacking is automatic. In a similar manner, the

device sends response and status information back to a task via a

main storage queue. Note that only commands and responses use

the queueing structure; data transfers between devices and main

storage are direct.

High-level call/return functions are directly supported by

another set of system control operations which provide the linkage

mechanism between routines executing within the same task. The

performance of programs written using structured programming

techniques is enhanced by the use of this mechanism. The same

linkage mechanism is used by the hardware to report program

exceptions. With this mechanism, exceptions for any task (includ-

ing such things as page faults) execute at the same priority level as

the task itself. A low priority task incurring an exception will not

interfere with the execution of higher priority tasks.

Summary

The hardware implementation of System/38 provides the founda-

tion on which the high-level machine architecture is built.

Through the use of advanced LSI technologies, System/38
achieves a high level of processor performance and reliability. The

use of intelligent controllers for I/O device attachments distrib-

utes the I/O workload throughout thfe system.

A unique aspect of the System/38 hardware and microcode is

the incorporation of very powerful control functions. These

functions provide a single mechanism which is used to control all

processing in the system. Other high-level functions implemented
in the microcode further enhance the flexibility and performance
of the system.

References

Berglund [1978]; Curtis [1978]; Donofrio, Flur, and Schnadt

[1978]; DumstorfiP[1978]; Froemke, Heise, and Pertzbom [1978];

Houdek and Mitchell [1978]; Lewis, Reed, and Robinson [1978].


