
Chapter 31

A Dual-Processor Desk-Top

Computer: The HP 9845A

William D. Eads / Jack M. Walden / Edward L. Miller

I. Introduction

What differentiates a desk-top computer, as described in this

paper, from a minicomputer? Questions of this type are dangerous

and difficult to answer because of the nonspecific usage of the

terms and the wide variety of understandings of their meanings on

the part of readers. Nevertheless, some useful generalizations can

be extracted from common usage, even if they do not apply to all

minicomputers or desk-top computers, or to all users.

First, a desk-top computer, unlike a minicomputer, is a

complete system that necessarily has a high degree of physical

integration of its elements. It has an input device (a keyboard), a

display device (a CRT or a single-line display), a mass storage

device (mag card, cassette, or floppy disk, for example), a

processor, memory, connectors for external I/O devices, and

power supplies built into an integrated package which can literally

fit on the top of a desk. This high degree of integration is made

possible by the large-scale integration of the key components of

the computer, including processor, memory, and control logic for

internal peripherals.

Second, the typical minicomputer is not ready for operation

when it is received by the user, or even when all I/O devices are

connected and it is initially powered up. System software,

including the operating system, compilers, loaders, interpreters,

editors, etc. , must first be loaded into memory. The system must

be told which I/O devices are (or may be) in the system at each I/O

port, and which software module (driver) controls each device;

this process is called I/O configuration. Only now is the system

available for use. In contrast, the desk-top computer arrives with

all system software in ROM already inside the machine, or in

packages of optional ROMs that the user can easily install,

generally in less than a minute. When I/O devices are attached,

the computer can then generally determine for itself the device at

each port and which driver is to be used. Users simply connect the

external peripherals they plan to use, turn on the equipment, and

begin using it. Therefore, desk-top machines incorporate a large

degree of logical integration.

A third distinction is in the method of use of the two machines.

Whereas a mini may have several languages available for the user,

and an editor which allows programs to be written in any of these

languages, a desk-top machine typically has a single language,

with a built-in program editor which understands the syntactic

restrictions of that language, and which does not allow a line with

syntax errors to be entered into the user's program. Since there is

but one language and one user at a time, the operating system for

a desk-top machine can accomplish a task with fewer explicit

directions from the user. There is no need to use a job control

language to specify the language subsystem, any linkage editor,

the memory requirements, or what peripherals are'to be allocated

during program execution. The user simply enters the program or

loads it from the built-in mass storage, edits if necessary, and runs

it by pressing a single key called RUN.
A similar distinguishing feature is that a desk-top computer can

be used as a simple calculator as it stands, at any time during the

entry or execution of a program. On most minis, the operating

system doesn't understand such constructs as SIN (15) unless the

user has entered some interpretive language subsystem, such as

BASIC. Even then they don't necessarily have keyboard

operation
—but may require a program to be run.

The desk-top computer which will now be described is

Hewlett-Packard System 45, shown in Fig. 1. It contains a

typewriter-like keyboard, two cartridge drives for user program
and data storage, a 24-line x 80-coIumn CRT, and a built-in 480

line/min 80-column thermal printer, which can make a dot-for-dot

copy of any CRT image. The internal thermal printer can also be

used as a plotter with 560 by indefinitely many independently

addressable dots. This machine has up to 64 Kbyte of user

read/write memory (R/W), plus a separate 98-Kbyte operating

system including an editor, a BASIC interpreter, and a sophisti-

cated I/O scheduler.

The system is presented in a top-down manner. Section II

Fig. 1. The 9845A desk-top computer.

Chapter 31
I
A Dual-Processor Desk-Top Computer: The HP 984SA 509

discusses the user environment and presents the internal storage

format for user programs. The system organization, including

process and processor synchronization, control, and communica-

tion, is outlined in Sec. III. Some details of each LSI component
are provided in Sec. IV. Section V focuses on interprocessor

communication and memory address sharing. The paper con-

cludes with some considerations about the primary I/O device,

the CRT display.

II. The User Language and Internal Form of Programs

The language of the System 45 is ANSI BASIC, enhanced to

include string and matrix operations, subprograms, program

linking, tracing, formatted output, mass storage files, and graph-
ics. To aid in readability, variable names have been extended from

a single letter or a single letter followed by a single digit to include

zero to fourteen lowercase letters, digits, and/or underscores

following a single uppercase letter. Major design goals in imple-
mentation of the BASIC interpreter were:

1 Expandability, to allow additional language features to be
added to the system by use of plug-in ROMs

2 Interactive operation, to allow the user to interrogate and

change the values of program variables, even as the

program proceeds

3 Maximizing speed of execution within the constraint of

interactive operation

4 Allowing program lines to be parsed to a form from which

they can be reconstructed, in a form similar to that in which

they were originally entered

An understanding of how these goals were achieved may best

be found in an illustrative example. As shown in Fig. 2, the first

operation in the use of the System 45 involves the keying of a

program line into the computer. Completion of the line is signaled

by depression of the STORE key. At this time the ASCII
characters constituting the program line are placed in the line

buffer, used for syntax analysis and listing. The system control

supervisor calls the syntax supervisor, whose task is to convert the

ASCII keystrokes into internal form, that is, into the format of

program lines as stored in user read/write memory. Beginning at

the left side of the source line, the syntax supervisor determines

the line number and creates the first word of internal form in the

internal form buffer (see Fig. 3). Next, the syntax supervisor

attempts to match the statement name internal form (IF) with one

within a linked list of statement keywords, a segment of which is

shown in Fig. 4. In order to allow expandability there are actually

as many as three linked lists which the syntax supervisor must

scan in searching for a match with the statement name. First, an

area of user read/write memory may contain binary programs, the

iH

510 Part 2
I
Regions of Computer Space Section 7

I
Language-Based Computers

Chapter 31
|

A Dual-Processor Desk-Top Computer: The HP 9845A 511

available in contiguous memory, so that any single expression can

have no more than 40 operators. The first operator executed

causes the first scratch-pad register, called TEMP 1, to be filled;

the second operator fills TEMP 2, and so forth through the

expression. Therefore the expression syntax analyzer actually

creates the third triple ofA*B-t-C*D (see Fig. 5) as -I-, TEMP
1, TEMP 2. TEMP 1 is the address of the temporary which will

contain A * B, and TEMP 2 is the address of the temporary for

C*D. The TEMP pointers are distinguishable from symbol table

pointers by the fact that the sign bit (most significant address bit)

is 1 for symbol table pointers and for all other machine pointers,

including TEMP pointers.

When the expression syntax analyzer recognizes the keyword
THEN in the example of Fig. 3, it places a word in the internal

form buifer corresponding to the THEN part of the statement.

Control is returned to the statement syntax monitor, which

recognizes a line number of 200 and places into the internal form

buffer a pointer to the symbol table entry for that line; only those

lines which are referenced in the program are located in the

symbol table. Statement syntaxing is now complete, and control is

returned to the synteix monitor. At this time the length of line 110

is known, so that the syntax monitor can place the length of the

line, in words of internal form, in the lower half of the second

word of the internal form buffer. The final task of the statement

syntax analyzer is the placement of the new line in its proper

position, ordered by line number, in the user's program area in

RAV memory.
The execution of a program as shown in Fig. 2 is most easily

understood as a sequence of operations caused by the internal

form of the program. The execution of a program in the System 45

may be viewed as sequential execution of each program state-

ment, under control of the operating system. We may therefore

use line 110, shown in Fig. 3, as an example. Execution of line 110

within a program would proceed as follows. (The internal code

pointer, ICPTR, points initially to the first word of the internal

form of the fine.)

1 The operating system increments ICPTR by 2.

2 The operating system transfers control to code at the

address given by the word pointed to by ICPTR (IF
statement code).

3 The IF statement increments ICPTR and transfers control

to the expression executor.

4 The expression executor transfers control to the subrou-

tine, which adds two operands.

5 The add subroutine, using ICPTR, fetches Limit and 100
and adds them, placing the result in TEMP 1 and leaving
ICPTR pointing to the internal code for the "greater than"

operator; it then returns to the expression executor.

6 The expression executor transfers control to the subrou-

tine, which checks for the "greater than" relation of two

operands.

7 The "greater than" subroutine computes Time > (Limit -I-

100). If true, it returns 1; if false, it returns 0. It then
returns to the expression executor.

8 The expression executor transfers control to the THEN
subroutine, which returns immediately to the expression

executor, which in turn returns to the IF statement

executor.

9 If the value returned is nonzero, ICPTR is set, using the

symbol table pointer for line 200, to the beginning of that

line. If not, ICPTR points to the beginning of the next line

following 110.

10 Control is returned to the operating system.

Because of the convenient form of the internal representation of

the program line, overhead time for running the above sequence
is quite small compared to the run time required to interpret the

statement type, determine the sequence of the expression

execution, and search through the program for a destination line

number.

Listing of program lines, using the internal form of statements

(Fig. 3) and the linked list ofkeywords in ROM (Fig. 4), occurs in a

process converse to that of syntax analysis. Using the first word of

the internal form, the line number is formed in the source line

buffer, followed by enough spaces (at least one) to begin the

keyword in the column position given by the upper half of the

second word of the internal form. From the third word of internal

form (the statement execution address) the list routine subtracts 3.

From Fig. 4, it can be seen that this is the address of the word
whose lower byte is the offset of the statement keyword from the

first word of execution code. This offset is then subtracted from

the statement execution address to give a pointer to the ACSII

representation of the keyword, which is located at the beginning
of that section of the linked list of keywords, and follows the

pointer to the next keyword. These characters are transferred to

the source Une buffer one by one until a byte is found whose most

significant bit is set, indicating the end of the keyword. Next, the

address of the beginning of the execution code is decremented by
1 to determine the location of the routine which lists the rest of

the internal form for that statement.

Any statement lister may call the expression lister, which

determines the location of the operators and operands associated

with that expression. Associated with the ROM execution code is

the information necessary to list that operator and its operands—
including the ASCII representation of the operator and the

number ofoperands (and how they are arranged syntactically with

respect to the operator)
—as well as the precedence of the

operator. The operator precedence, together with the sequence of

operator execution in the internal code, furnishes the expression
list monitor with sufficient information to list the expression with

512 Part 2
I
Regions of Computer Space Section 7

I
Language-Based Computers

the same sequence of operands and operators as was entered

originally, along with required parentheses. The only dififerences

between the entered and listed lines involve extraneous or

missing spaces and redundant parentheses.

In the example of Fig. 3, control passes from the statement

lister to the expression lister after 110 IF is listed, and it produces

Time > Limit + 100. Note that no parentheses are listed (even if

they were placed around Limit + 100 when it was keyed in). The

statement lister then adds THEN from a keyword association with

its associated execution address and finally adds 200 from the

symbol table reference. Control is then transferred back to the

operating system to output or display the now complete line in the

source line buffer.

The final feature of the language system to be discussed is that

of the user's ability to interact with the program as it is executing,

a capability which is called having a live keyboard. Since all

variables are accessible through a symbol table, since the program
execution monitor has control of the processor at the end of the

execution of each line, and since the system was built to allow the

addition of variables and the addition or deletion of program lines

at any time (even between executions of program lines), the

capability of interacting with an executing program is extensive.

Users can interrogate or change variables as the program runs;

they can compute complex expressions; they can even delete,

add, or modify program lines as the program executes. While

these capabilities may be dangerous for a production program,

they are certainly convenient during the development and

debugging of new programs, and they can be removed during a

program run by the execution of the command SUSPEND
INTERACTIVE.
The next section provides an overview of the multiprocessor

system used to implement the user program environment just

described.

between processors. One mode of communication is via messages
stored in buffers. Each processor has a fixed buffer of seven words

for sending a message to the other processor. These buffers are

guarded and controlled through flags. The second mode of

communication is quite diverse. Certain words throughout RAM
are allocated as convenient for the processes needing them. They
are used as flags, semaphores, tables, etc., to synchronize and

control the two processors in ways that are specific to the

particular task.

In this control/communication mechanism, there are several

cases where a processor must have exclusive access to a table,

counter, or buffer area; i.e. , while one processor is using this area,

the other processor must not be allowed access into it. This kind of

exclusive access can be rigorously controlled by the use of a

two-flag exclusion algorithm first proposed by T. Dekker [Shaw,

1974]. This algorithm is implemented (in a somewhat simplified

form) in the HP 9845A to control LPU/PPU access to critical

constructs. For example, the LPU alone can create buffers; once

created, a buffer can be filled by either the PPU or the LPU. Roth

the LPU and PPU may have occasion to read from or modify a

given buffer. Buffers may be destroyed by either the PPU or LPU.

Clearly, such cooperative use of buffers requires controlled

access.

The simplified two-flag algorithm of Fig. 9, implemented in the

HP 9845A, does not include the case of mutual exclusion, which,

in the general case, could lead to endless synchronized deadlock if

not accounted for. In the HP 9845A this cannot occur, because the

"failure" paths for the LPU and PPU are different; the LPU

"waits," whereas the PPU "gives up" and returns to process

scheduler.

This exclusive access problem is quite fundamental in all

multiprocessor systems—^which usually implies large systems. It

may surprise some to find it occurring in a desk-top machine.

III. System Organization and Control

Examination of Fig. 8 reveals that all communication with the

outside word is via the Peripheral Processing Unit (PPU). All

peripherals
—keyboard, CRT, printer, etc.—are tied to the PPU's

I/O bus. The Language Processing Unit (LPU) has no peripherals

attached to it, and it can communicate only with the PPU.

The PPU is responsible for managing all the system resources

except block random-access memory (RAM), which is managed

by the LPU. The resources managed by the PPU are block 1

RAM, all I/O devices, and the LPU.

Interprocessor Communications

Communication between the processors is solely through the use

of shared RAM. There are no dedicated signal lines or interrupts

I/O Process Handling

The PPU estabhshes and controls the keyboard entry protocol.

When the user makes a complete keyboard-record entry (termi-

nated by STORE, EXECUTE, or CONTINUE), the keyboard is

disabled until the system interprets the record; i.e., the system

examines the line and determines what it should do. As soon as

the record is interpreted, the keyboard is reenabled while the

actual execution takes place. This sequencing allows concurrent

execution of a number of commands but prevents the user from

submitting a new record before the system is able to accept it. The

PPU allows concurrent execution ofkeyboard commands, and also

execution of keyboard commands concurrent with program
execution ifthere is no resource conflict involved. An example ofa

conflict would be a GET command to load a program from a tape

cartridge, followed immediately by a REWIND of the cartridge

""8
as"

S,3

35

BLOCK 3

INTERPRETER
AND OPTIONAL
lANGUAGE ROMS

c
16 Bl-DIRECTIONAL flULTIPLEXED ADDRESS

8 DATS LINES PLUS COWTROL LINES

c

ADDRESS SPACE

BLOCK 1

OPERATING
SYSTEM ROM
AND I/O

OPTION ROMS

USER

READ/WRITE
MEMORY

15-BIT
ADDRESS SPACE

BK WORDS
STANDARD

OPTIONAL
ADDITIONAL THREE

81t WORD
I NCREHENTS

1 WORD- 16 BITS

ADDRESsX

jNiiy

DUAL PORT

MEMORY CONTROLLER

c}'--=C

HEflORY ADDRESS

EXTENDER

LANGUAGE

PROCESSING UNIT

SWITCH REGULATED

POWER SUPPLIES,

CLOCKS

FORMATTED BY VIRTUE OF HOW
/t/IT WAS STORED IN MEMORY

FORMATTED SERIAL CHARACTER STREAM S

CRT MEMORY ACCESS

PORT WITH MULTI-

PLEXED LINE BUFFERS

(READS MEMORY)

L\ STANDARD INTERNAL

TAPE CARTRIDGE

SELECT CODE 15

SUPPLEMENTAL INTERNAL

TAPE CARTRIDGE

(OPTIONAL)

SELECT CODE 14

CRT GRAPHICS

OPTION

s

-/ 16K WORDS
{LOCAL R/W MEMORY)

SELECT CODE 13

(BEAD AND WRITE)

IN 7 BITS PLUS CONTOL LINES) CRT DISPLAY

^
BUFFERS

FOR

}/
EXTERNAL \

/o

BACK PLANE

ll-DIRECTIONAL MULTIPLEXED ADDRESS

; DATA LINES PLUS CONTROL LINES

PLOTTERS

MAGNETIC DISCS

MAGNETIC TAPES

PAPER TAPE READERS

AND PUNCHES

PRINTERS

GENERAL I/O

PERIPHERAL

PROCESSING UNIT

OPTIONAL INTERNAL

THERMAL PRINTER

Fig. 8. System 45 hardware block diagram.

C PPU eNTRV)

FAILURE N f U
RETURN J V. PRI

CLEAR FP J

PfiOCFSS \
SCHEDULER J

FP is a flag the PPU

uses to protect an

entity against LPU

access.

FL is a flag the LPU

uses to protect that
same entity from PPU

access.

C LPU FNTRl J

Tlpu control)

Fig. 9. The two-flag method of exclusive access.

before the GET is completed. When concurrent operations

cannot be allowed, a SYSTEM BUSY message is given. Since all

peripherals are attached to the PPU, the PPU must perform all

transfers of data and programs between the desk-top computer
and peripheral devices.

I/O processes can be initiated by the program being executed

by the LPU, or by the user via keyboard entry commands. Most

such commands can also be stored as a part of a program. The
LPU syntaxes, stores, and executes all programs; thus it must be

able to interpret and cause execution of most commands. There-

fore most commands, although processed by the PPU during

keyboard entry, are "handed over" to the LPU for interpretation.

Thus, each I/O activity is initiated by the LPU but is turned

over to the PPU to be carried out. Each task involves both

processors carrying out specific subtasks. These subtasks include

communication between processors concerning the state of the

subtasks, as well as monitoring, synchronizing, and terminating

the overall task. To explain this, each processor and its role will be

described.

513

514 Part 2
I
Regions of Computer Space Section 7 Language-Based Computers

FPU Process DeRnition

Except for initialization (power on, SCRATCH ALL) and the

Process Scheduler (which is the "idle loop"), all FPU work is

carried out by processes. When a process is needed it is invoked

by "creating" it. A user process and a keyboard process are

created during initialization. All other processes are created

dynamically at the beginnings of the various individual tasks and

are destroyed upon their individual completions.

A process is represented by at least one Process Control Block

(PCB). The PCB is a 10-word RAV memory entity used to contain

(either directly or indirectly) all the information necessary for the

PPU to execute the associated process. Figure 10 shows the

structure of a PCB.

PCBs are taken from block 1 RAM by the PPU memory
allocator, which maintains a PCB Free List. They are linked to the

Process Tree during their active life, and are linked back to the

Free List when the process is completed. The Free List is linked

through the first word of each PCB.

Some processes need more temporary process control storage

than the 10 words of a PCB. Those 10 words are strictly allocated

in use as per Fig. 10. Additional 10-word entities called data

blocks may be obtained from the Free List; they are linked to the

PCB via the ninth word. Data Block Link (DBL).

Active PCBs are linked together in various ways through the

Brother Link (BL), Father Link (FL), and Son Link (SL), labeled

in Fig. 10. All processes invoked by the user through execution of

a program are represented and controlled by a tree of PCBs linked

to the user process (which was created at initialization and is never

destroyed). The hierarchy of processes is implemented via the SL

BL, and FL links, to create an orderly control structure. In

general, the creation of a process, communication between

processes, and the removal of a process take place between

processes no more than one level apart in this control structure. In

this hierarchical structure, the SL points to a process at a lower

level, the FL points back up to the higher-level process, and the

BL points to associated processes at the same level.

A process tree which might arise during the execution of a

program is illustrated in Fig. 11. The Brother Links (BLs)

represent the existence ofmore than one incomplete I/O operation

invoked by the execution of the program. This can only occur

when the system is running in the OVERLAP mode, which allows

concurrent, overlapped I/O operations (discussed later).

In addition to the process tree linking with SL, FL, and BL
illustrated in Fig. 11, the PCBs are linked together into other

important lists through the tenth word, i.e., the Queue Link.

Each peripheral is attached to the machine via an interface

which has a peripheral address (select code) in the range to 15.

Eabh I/O operation invoked by a program statement specifies

(explicitly, or implicity by system default) the peripheral address

of the device to which it is directed. When the LPU passes to the

PPU the I/O process to be handled, the PPU creates a PCB to

represent the process and links it into the Process Tree. In

addition to this process control mechanism (which is independent
of particular devices or select codes) it must also maintain

knowledge of the specific device. And if other operations to that

device exist (in the Process Tree), it must also see that the

chronological sequence is preserved. This is accomplished by also

linking the PCBs into queues—one for each peripheral address.

These queues are headed (pointed to) by a table with an entry for

each peripheral address. In addition to the actual hardware

peripheral addresses to 15, there are pseudoaddresses 16, 17,

and 18, which represent various areas of the CRT: those for

PRINT, DISP ("display" command) and implied DISP.

sTum a EttcuTE

Chapter 31 A Dual-Processor Desk-Top Computer: The HP 9845A

In addition to the queue of operations for the peripheral

address, there is always an associated device bu£fer. The same

table which heads the peripheral address queues also contains

pointers to those buffers. This total construct—pointers to PCBs
in device queues, and pointers to device buflFers—is called the

QTABLE.
QTABLE plays an important role in the overall process

scheduling. It was mentioned earlier that the Process Scheduler is

the FPU idle loop. What the Process Scheduler does to find

processes which can be "worked on" is to scan QTABLE for

peripheral addresses with active queues attached. If such a queue
exists, the top PCB on the queue is examined to see if that process

is in a state where anything can be done. If not, the scan continues

to the next peripheral address. If something can be done,

depending on the state of the process, it is done.

In the System 45, the normal mode of I/O transfers is

"interrupt-by-the-character," with all transfers to the peripheral
carried out in an Interrupt Service Routine (ISR). The PPU has

vectored interrupt as part of its structure (implemented in the

Input/Output Chip, IOC in Fig. 8). The overall process of carrying
out such tranfers occurs in three stages:

1 Queueing up of the process, obtaining the resources

required (buffers, etc.), and activation of the ISR (setting

interrupt vector table entry, etc.), followed by return of the

PPU to the idle loop or other tasks

2 Character-by-character transfer as interrupts occur and

watching for the last transfer, when interrupt transfers are

terminated

3 Final termination of the process
—release of buffers, de-

queuing of PCBs, etc.

As indicated in Fig. 10, the third word of the PCB is a Process

Status Word (PSW) in which the state of the process is recorded.

During its lifetime, a process may go through a number of states to

accomplish the three stages of I/O transfer activity previously
mentioned. Figure 12 shows the state transitions possible in the

life of a PCB. The device transfers in the ISR occur during the

BLOCKED state.

Formatting Output

Formatting from internal stored form to external form (such as

ASCII character streams) is carried out in the act of transfer from

the block (of memory) data buffer to the block 1 (of memory)
device buffer. This is performed by the PPU, and so it is

interesting to see how this is done within the control structure

that has been described.

To see the process involved, refer to Fig. 13. Suppose that the

LPU, in executing a program, has encountered a PRINT state-

ment with n expressions (items) in its list whose output is to be

directed to an external printer at peripheral address 8. The LPU
obtains a data buffer adequate to hold the n items (the size needed
is determined when the PRINT statement is syntaxed and stored)

from the block memory manager. It sends a Start I/O message to

the PPU with three items of information—the peripheral address,

the block data buffer address, and the starting address for the

PPU PRINT routine.

The LPU now begins (without further concern for the PPU) to

PROCESS
CREATED

HOLD OR
SON-HOLD

SON BLOCKED

.
PROCESS
REMOVED

Fig. 12. Possible state transitions in the life of a PCB.

516 Part 2
I
Regions of Computer Space

Section 7 Language-Based Computers

BLOCK MEMORY BLOCK I MEMORY
Q TABLE

LPU encounters 1/0 stotement

BUFFER ADDRESS

UIheaderIdataI IpgNTERJ IpointerI Idata

[copy OF image]

LPU evaluates IA> list

From dato buffers (using IMAGE]

U|array 0R(^(JsTR1NG|

H VALUE ^ ^AREaJ

one entry for eoch

select code

PCB (Process Control Block)

one for each

I/O process

PPU begins formatting

-
Hheader|formatted output!

PPU initiotes actual tronsfer

To device

|nterrup1-by-chorocIer" for

all osynchronous devices

Fig. 13. LPU/PPU interaction during output.

evaluate the output list expressions. As each is evaluated, it is put

in the next storage cell of the data buffer, followed by a WAIT

item. Simultaneously, the PPU responds to the Start I/O message

by obtaining a PCB, filling it with the buffer pointer (BP) and

starting address (PEP), and setting it up in the Process Tree, and,

we will assume, getting it queued at the head of the appropriate

peripheral address queue. The process is in the HOLD state, but

the PPU immediately attempts to allocate resources and activate

the process. Assuming that a device buffer is available, the PPU

will immediately allocate it and set the PCB READY. The Process

Scheduler will see the READY and begin execution through the

PEP.

The routine at PEP begins the formatting. It will obtain items

from the data buffer, formatting each into the device buffer. Three

obvious possibilities exist:

1 The formatting catches up with the LPU, by encountering

the WAIT item in the buffer. The PPU will change PEP to a

"continue formatting" routine, leave the PCB READY, and

return to the Process Scheduler. This allows the PPU to

work on other processes.

2 The formatting has finished all items when it finds a "done"

item in the buffer. The PPU will set the interrupt return

vector, initiate the interrupt output, set PEP to a "clear up"

routine, BLOCK the PCB, and return to the Process

Scheduler. The PPU works on other I/O and on this I/O by

interrupt until transfer is done, then marks PCB complete.

3 The formatting generates enough data to fill the device

buffer, and so the PPU initiates I/O, sets PEP to a "record

gone, resume formatting" routine, sets PCB BLOCKED,

and returns to the Process Scheduler. When the final

interrupt occurs, the 'process is made READY, and for-

matting resumes.

In case 1 above, the Process Scheduler, finding the PCB READY,
will execute the routine at PEP. This routine will check whether

the WAIT item is still next, or whether it has been replaced by the

LPU with data. IfWAIT is there, it just returns; thus each scan of

the queues causes a recheck. Notice that there is concurrency

present in this process. The LPU is evaluating expressions and

filling the buffer while the PPU follows it (as processor time is

available) item by item in the formatting.

Device Conflicts

One additional task that is extremely important in the correct

handling of I/O is the management of possible device conflicts and

the allocation of resources. These conflicts are handled in the

Process Scheduler routines which switch a process in the HOLD
state to READY.
Some obvious things are involved in resource allocation; for

example, device buffers from the pool at block 1 R/W memory.

One item not so obvious is the DMA channel. There is only one

DMA channel available. However, DMA transfers may be desired

for several processes on different peripheral addresses. Thus, the

resource allocator must keep track ofDMA channel utilization and

sequentially allocate it to processes needing it.

Another area of device conflict is the relationship between

synchronous and asynchronous devices. Synchronous devices,

such as tape transports, require service at intervals dictated by the

device. If service is not rendered when required, data are lost or

erroneous data written. A synchronous device on a low-priority

interrupt might have the processor taken away by a higher-

priority interrupt, causing it to miss an essential transfer.

If a synchronous device is protected from this by being allowed

only on high-priority interrupt levels, DMA transfers may still

cause trouble. The DMA, if activated, may "steal" so many

memory cycles that the interrupt service routine response may be

slowed to a fraction of its normal speed. Again, an essential

transfer may be missed.

These conflicts can be resolved by delaying the transfer from

HOLD to READY for processes that would create these condi-

tions.

Overlapped and Serial I/O Processing

The Process Tree and PCB linkage shown in Fig. 11 show the

existence of PCBs (and therefore active I/O processes) at the head

of three device queues: the printer for the PRINT process; the

CRT for the DISP process; and a mass storage device for the

PRINT # process. Since I/O transfers are, in general, interrupt-

by-character (or DMA for the mass storage device), a number of

J

Chapter 31
i

A Dual-Processor Oesk-Top Computer: The HP 984SA 517

processes at the heads of different queues could have the I/O

transfers initiated and be in the BLOCKED state. Transfers would

occur randomly from one process to another as interrupts

occurred for the various devices. This is buffered and overlapped
I/O. It is the mode for which the System 45 I/O Process Handling
was designed. The LPU is allowed to "forge ahead," sending new
Start I/O messages and filling new data buffers as long as memory
is available for data buffers, PCBs, and device buffers.

However, there are times when all of this overlapped activity is

not desired. For example, it disconnects the LPU execution of a

PRINT statement from the PPU outputting of the data. This can

be very confiising, particularly during program testing and

debugging.
At the end ofeach program line, the LPU examines a flag which

serves to control this overlapping of I/O. If the flag is in the

SERIAL mode, the LPU waits for the PPU to send it a message
that the output associated with that line is finished. It will then

start the next line. If the flag is in the OVERLAP mode, the LPU
does not wait for the message, but proceeds on to the next line.

The PPU does not normally send a message to the LPU upon
the completion of every I/O operation, so how does it know to do

so when the mode is SERIAL? In the discussion of formatting, it

was mentioned that the PPU knew it was at the last item of a

PRINT list when it encountered a "done" item. This item is

placed there by the LPU when it has evaluated the last item on

the list—if the mode is OVERLAP. If the mode is SERIAL, it

places a "reply" item instead of "done." The PPU knows, when it

sees "reply," that this is the end of the list and that it should send a

message to the LPU that the I/O process is done.

IV. The Hardware Architecture of the 9845A

The internal architecture of the 9845A hardware is illustrated in

the block diagram of Fig. 8. The major elements of the diagram
are the two processors called the Language Processor Unit (LPU)
and the Peripheral Processor Unit (PPU), and the Memory
Address Extender (MAE) with its associated four 32-kiloword

blocks of memory (block through block 3). Associated with the

memory are the Dual Port Memory Controller and the CRT
Memory Access Port.

The main purpose of the LPU is to execute the user's program.
To do this it executes a BASIC interpreter encoded in ROM
located in blocks 2 and 3 of memory. The user's program is stored

in block of R/W memory. The main function of the PPU is to

perform I/O and certain other activities. A communications

protocol involving shared memory is the basis of LPU/PPU
communication.

The LPU and PPU are both processors that, in isolation, can

command 16-bit memory address spaces. The PPU does in fact

have access to such a 64-kiloword portion of memory, i.e., block

and block 1. Assembly language coding for the PPU can, in fact,

ignore the memory address extension scheme altogether and

simply consider the designations of block and block 1 as an

artificial distinction between the two halves of its address space.

For the LPU, however, the 64-kiloword address space is split into

parts of equal size (32 kilowords) and logically distributed among
blocks of memory, the sum ofwhose memory space is far in excess

of the address space of the processor. In the scheme embodied by
the MAE the LPU can also access the same memory that the PPU
does. This gives rise to the need for the Dual Port Memory
Controller, whose function is to resolve conflicts arising when the

LPU and PPU try simultaneously to access the same block of

memory.
The CRT Memory Access Port accesses memory on behalf of

the CRT to provide ongoing access to the information stored in the

system-managed CRT buffer in block 0. The alphanumeric (i.e.,

nongraphic-mode) display is formed on the basis of that informa-

tion, which must be reread each time the CRT screen is to be

refreshed.

Neither the LPU nor the PPU is a homogeneous, monoUthic

entity. Each is composed of smaller functional units which are LSI

chips. Among these units are a Binary Processor Chip (BPC),

Input-Output Controller (IOC), and, for LPU only, an Extended

Math Chip (EMC). The BPCs used in the LPU and PPU are of

identical design, as are the lOCs. The main functions of a BPC are

to fetch instructions from memory, execute most instructions that

reference memory, execute various instructions that perform bit

manipulation, and accomplish program branching. Thus, the

BPCs are relatively general-purpose devices, and each serves

more or less the same general fimction in the LPU and PPU. The
main functions of the IOC are to provide I/O and instructions for

manipulating firmware stacks. The reason the PPU has an IOC is

to obtain both those capabilities. The LPU, however, does not do

I/O; it contains an IOC merely to obtain the use of the stack

instructions. The main function of the EMC is to perform BCD
arithmetic. This is strictly an LPU activity; therefore the PPU is

not equipped with an EMC.
Also shown in Fig. 8 is the PPU-managed I/O Data Bus and the

various peripherals that are normally permanently connected to

it. The manner in which I/O is accomplished is discussed in

conjunction with the IOC. The notion of a select code as the

address of a peripheral will be fully explained at that time. At this

point, however, it is appropriate to point out that, in general, two

peripherals cannot have the same select code. But the keyboard
and the internal thermal printer both have select code 0. This is a

special case that doesn't cause any problems, because the

keyboard is strictly an input device and the printer is strictly an

output device.

There now follows a description ofthe LPU hardware. Since the

hardware description of the PPU is a subset of the LPU hardware

description, the PPU will not be described separately.

518 Part 2
I
Regions of Computer Space Section 7 Language-Based Computers

ceramic substrate bib's IOC

BPC

EMC

ur|i|i|>|i{i|Mi|i|i)<|<M|>|i|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l
STERLING 11 21 3

Fig. 14. The processor on Its substrate.

Hardware Description of the LPU

The LPU consists of seven integrated circuits mounted on a

ceramic substrate (see Fig. 14). Of these, the BPC, IOC, and

EMC are N-channel MOS LSI chips. The remaining four chips

(Bi-Directional Interface Buffers, or BIBs) are entirely bipolar and

serve as buffers to connect the LSI circuitry to circuitry external to

the substrate.

Figure 15 is a block diagram of the LPU and PPU. All of the

processing capability of the processor resides in the three LSI

chips; except for inversion of the IDA Bus the four BIBs are

logically powerless. The three LSI chips communicate among
themselves, and also with the outside world, via a collection of

control signals and a 16-bit bus called the IDA Bus (IDA stands for

instruction/data/address). The processor uses 16-bit addressing

for memory and implements a single level of indirect addressing.'

Memory Conventions

Most of the traffic on the IDA Bus has to do with memory. Both

the address of memory locations and the contents of those

locations (data and machine instructions) are transmitted over the

IDA Bus. Further, memory can be physically distributed along the

bus. Each of the three chips in the processor contains registers

which are addressable, and of course, addressable memory also

exists external to the processor.

'Except during interrupt, when a two-level indirect is forced. This is

explained in connection with interrupts.

USED IN PPU ONLY

I g g i s IS I g Is 1 II

POWER SUPPLIES

AND GROUNDS

III

PABO-
PABl-PERIPHERAL).....

ADDRESS JEMi
\ PAB3'

I/O BUFFER
ENABLE

DIRECTION
CONTROL

CONTROL SIGNALS

lODn-IOD
15

1/0 DATA

BUS TO

PERIPHERALS

INPUT

OUTPUT

CONTROLLER

(IOC)

8-BIT

BIB

8-BIT

BIB

EXTENDED

MATH

CHIP

(EMC)

BINARY

PROCESSOR

CHIP

(BPC)

JZ PRESENT IN
LPU ONLY -
DELETE FOR
PPU

DIRECTION CONTROL

IDA BUS (IDAo-IDA^5)

PERIPHERAL BIB'S MEMORY BIB'S

J?-hl

- STM
- RDW
- SMC
- UMC
- RAL
- BYTE

 PBO J TO BUS

• CONTROL

•PBE I CIRCUIT

HYBRID MICRO PROCESSOR

\ <-^
n3JQ-TBAi5

TO EXTERNAL

MEMORY

Fig. 15. Processor blocic diagram.

Chapter 31
|

A Dual-Processor Desk-Top Computer: The HP 984SA

The first 32 addresses of the address space do not refer to

external memory. Instead, these addresses (O-STg) are reserved to

designate addressable registers within the microprocessor. Figure
16 hsts these registers. There are also a number ofnonaddressable

internal-use registers in the processor. Registers range in size

from 1 to 16 bits; most are 16-bit registers.

A memory cycle in\oIves some control lines as well as the IDA
Bus. Start Memorv' (STM) is used to initiate a memory cycle by

identifying the contents of the IDA Bus as an address. Either of

two memory complete signals is used to identify the conclusion of

a memory cycle. These are Unsynchronized Memory Complete
(UMC) and Synchronized Memory Complete (SMC). A line called

Read/Write (RWD) specifies the direction of data movement.

Each element in the system decodes the addresses for which it

contains addressable memory. To initiate a memory cycle, an

element in the system puts the address of the desired location on

the IDA Bus, sets the ReadAVrite line, and gives Start Memory. It

is part of the system definition that whatever is on the IDA Bus

when a Start Memory is given is an address of a memory (or

register) location. Then, elsewhere in the system the address is

decoded and recognized, and that agency begins to function as

memory.

Among the several service functions performed by the BPC, for

Octal
Address

520 Part 2 ! Regions of Computer Space Section 7 i language-Based Computers

MEMORY REFERENCE

CM 15 AN ASSEMBLY LANGUAGE LABEL, OR
EXPLICIT ADDRESS)
CI,!} IS THE INDIRECT SPECIFrER)

LDS M [, 1 1

LOAD A (OR B) FROM M.

COMPARE THE CONTENTS OF M WITH
THE CONTENTS OF A COR B); SKIP
IF UNEQUAL.

AD-i M
I , I 1

ADD THE CONTENTS OF M TO A COR

STORE THE CONTENTS OF A COR B> IN

5M M
1 , I I

JUMP TO SUBROUTINE. THE CONTENTS
OF THE RETURN STACK REGISTER CR)
ARE INCREMENTED 8V ONE AND THE
CONTENTS OF P STORED IN R, i .

PROGRAM EXECUTION RESUMES AT M.

VALUE OF N MAY RANGE FROM -52 TO 51,
INCLUSIVE. AT THE CONCLUSION OF THE
RET R IS DECREMENTED BY ONE.

EXE < M 37a [,I 1

INCREMENT M;

EQUALS ZERO.
SKIP IF M THEN

LOGICAL "AND'
RESULT IS LEFT IN

A AND M; THE

DECREMENT M;

EQUALS ZERO.
SKIP IF M THEN

INCLUSIVE "OR" OF A A^D I

THE RESULT IS LEFT IN A.

JUMP TO M. PROGRAM EXECUTION
CONTINUES AT LOCATION M.

RETURN. A READ R, I OCCURS. THAT
PRODUCES THE ADDRESS C-^P>) OF THE
LATEST JSM THAT OCCURRED. THE BPC
THEN JUMPS TO ADDRESS <?-• + N. THE

EXECUTE REGISTER M. THE CON-
TENTS OF ANY REGISTER CAN BE
TREATED AS THE CURRENT INSTRUC-
TION, AND EXECUTED IN THE NORMAL
MANNER. THE NEXT INSTRUCTION
EXECUTED WILL BE THE ONE FOLLOW-
ING THE EXE M, UNLESS THE CODE IN
M CAUSES A BRANCH.

C-52'^N<51, M WITHIN N OF •, * = CUR-
RENT VALUE OF P)

RZS *!N/M i.e., C* i N)/(M), NOT 'UN/M)
SKIP IF A COR B) IS NOT ZERO.

SKIP IF A (OR B) IS NOT ZERO, THEN
INCREMENT A COR B) .

SZH *iH/H

SKIP IF A (OR a) IS ZERO.

SIS *1N/M

SKIP IF A (OR B) IS ZERO, THEN
INCREMENT A (OR B) .

SF>(*tN/H

SKIP IF FLAG LINE SET COR CLEAR).

5DV •tN/M

SKIP IF DECIMAL SET (OR CLEAR).

SSV 'iN/M

SKIP IF STATUS LINE SET (OR CLEAR).

SHK "iN/M

SKIP IF HALT LINE SET (OR CLEAR).

CIF EITHER S OR C IS PRESENT THE
TESTED BIT IS SET OR CLEARED AFTER
THE TEST)

SLS "iN/M 1,S/,C]

SKIP IF THE LEAST SIGNIFICANT
BIT OF A (OR B) IS ZERO.

[...] = OPTIONAL SPECIFIERS

/ INDICATES CHOICE OF SPECIFIERS

RLH "tN/M |,S/,C]

SKIP IF THE LEAST SIGNIFICANT
BIT OF A (OR B) IS NON-ZERO.

SHP *tN/M [,S/,C !

SKIP IF A (OR B) IS POSITIVE.

SHM -IN/M |,S/,C]

SKIP IF A (OR B) IS MINUS.

SDK *iN/M I ,S/,C 1

SKIP IF OVERFLOW SET (OR CLEAR).

SE^ '*N/M 1 ,5/,C 1

SKIP IF EXTEND IS CLEAR (OR SET).

COMPLEMENT
TC*/*

TWO"i COMPLEMENT A COR 8).

COMPLEMENT A COR B). THE A (OR B)
REGISTER !S REPLACED BY ITS ONE'S
COMPLEMENT.

SHIFT-ROTATE

(-52'=N< 51)

ASR N

ARITHMETIC RIGHT SHIFT OF A (OR B). A
(OR B) IS SHIFTED RIGHT N PLACES WITH
THE SIGN BIT (BIT 15) FILLING ALL
VACATED BIT POSITIONS.

SHIFT A COR 8) RIGHT. A COR B)
SHIFTED RIGHT N PLACES WITH ALL
VACATED BIT POSITIONS VACATED.

SHIFT A (OR B) LEFT. A (OR B) IS
SHIFTED LEFT N PLACES WITH ALL
VACATED BIT POSITIONS CLEARED.

RNR N

ROTATE A (OR B) RIGHT. A (OR B)
ROTATED RIGHT N PLACES, WITH BIT
ROTATING INTO BIT 15.

Fig. 17. BPC machine-instructions.

execution, the contents of the referenced location will be read and

its entire 16-bit contents treated as the address of the final

destination to be read from or written into.

Memory Reference Instructions and Page Addressing Machine

instructions fetched from memor\' are 16-bit instructions. Some of

those bits represent the particular type to which that instruction

belongs. Other bits diflferentiate the instruction from others of the

same type. If a BPC machine instniction is one that involves

reading from, storing into, or otherwise manipulating the contents

of a memory location, it is said to be a memory reference

instruction. Load into A (LDA) and store from B (STB) are

examples Each memory reference instruction contains 10 bits to

represent the address of the location that is to be referenced by
the instruction. Those 10 bits represent one of l,024io locations on

either the base page or the current page of memory; an additional

bit (the B/C bit) in the machine instruction indicates which. As far

as the processor is concerned, its base page is always a particular,

nonchanging range of addresses that is exactly l,024io in number.

A memor\ -reference machine instruction fetched from any loca-

tion in memory^ (i.e., from any value of the program counter) may
reference directly (i.e., without using indirect addressing) any
location on the base page. The base-page addresses are OOOOOOg-

0007778 and 1770008-1777778.

The reason the base page was split was to provide a convenient

means to ensure that half of it would be in ROM and half in RAV

memory, without resorting to special decoding circuits. By

separating the base page as described the desired division comes

for free, simply by putting the right kind of memory at the right

addresses.

What goes in a machine instruction's 10-bit address field is a

displacement from some reference location, as an actual complete
address has too many bits in it to fit in the instruction. Also, it is

the responsibihty of the assembler to control the B/C bit at the

Chapter 31 A Dual-Processor Desk-Top Computer: The HP 9845A 521

time the machine instruction is assembled. It does this easily

enough b>' determining whether the address of the operand (or its

"value") of an instruction is in the range ITTOOOg through 1777778

or through 7778.

For base-page references the 10-bit field is sufficient to indicate

completely which of the 1,024 locations on the base page is to be

referenced. The 32 register addresses are considered a part of the

base page.

Current-page addressing refers to memory-reference instruc-

tions which reference a location which is not on the base page.
Since there are more than 1,024 locations that are not the base

page, the 10-bit field by itself is not enough to completely specify

the exact location involved. Also, there are two types of current

pages. Each type is also l,024io consecutive words in length. The
value of P determines the particular collection of addresses that

are the current page at any given time. This is done in one of two

distinct ways, as determined by the signal called RELA. Depend-
ing upon RELA, the BPC is said to address memory in the relative

mode or in the absolute mode. Both the BPC in the LPU and the

BPC in the PPU operate in the relative addressing mode.

In the absolute mode ofaddressing the memory address space is

divided into a base page and 64 possible current pages. The

possible current pages are the consecutive l,024io word groups

beginning with OOOOOOg. The possible current pages can be

numbered through 63io. Thus, the "zero page" is addresses

0000008-0017778. Note that the base page is not the same as the

zero page; the base page overlaps pages and 63.

In relative addressing there are as many possible current pages
as there are values of the program counter. In the relative

addressing mode a current page is the 512io consecutive locations

prior to (that is, having lower-valued addresses than) the current

location (value of P), and the 511io consecutive locations following
the current location.

During the execution of each memory-reference machine

instruction referencing the current page, the BPC uses the value

of the P register to form a full 16-bit address based on the 10 bits of

address contained within the instruction. How the supplied 10

bits are manipulated before becoming part of the actual address,

and how the remaining 6 bits are supplied, depends upon whether
the addressing mode is relative or absolute. Base-page addressing

requires different manipulation but is the same in either mode.

Subroutines The processor implements subroutines in the fol-

lowing way. The Jump Subroutine (JSM) instruction is used to

cause a jump (change in value of P) to the start of the subroutine.

The BPC saves the value of P that corresponds to the word of

programming that is the JSM. That value is saved in a section of

ReadAVrite memory called the return stack.

The return stack is a group of contiguous locations whose

starting address less 1 was initially stored in the R register (in the

BPC). Thus, R is an indirect pointer. What a JSM does is to

increment the value in R and then yse that new value as the

address at which to store the value of P. Once this activity is

complete, P is actually set to the address of the first word of the

subroutine and its execution commences.

A subroutine is terminated with a RET n instruction. The
essence of this instruction is to read the location that R points to,

set P to that value plus n, and then decrement R. The most

common return is a RET 1. Different values of n permit different

returns corresponding to error or other special conditions. For

instance, interrupt service routines are generally terminated with

a RET 0.

Subroutines can be nested as deep as the size ofthe return stack

will allow. The subroutines themselves can be in either ROM or

ReadAVrite memory.

Flags The BPC is capable of branching based on the condition of

each of four signals externally supplied to the chip. These signals

are Decimal Carry (DC), Halt (HLT), Flag (FLG), and Status

(STS). In the LPU the EMC acts as a source for Decimal Carry,
which represents an overflow condition during certain arithmetic

operations performed by the EMC. There is no EMC in the PPU,
and the DC signal in the PPU is controlled by the CRT. It is used

to indicate the duration of CRT retrace.

Bus Requests and Interrupts

Bus Request and Interrupt are two protocols that involve

interchip communication. Bus Request (BR) provides a way for a

chip in the processor, or even a device external to the processor

(such as the CRT), to request unfettered use of the IDA Bus. A
signal called the Bus Grant (BG) is generated if all chips and any
other interested entities agree to allow it. The requesting agency
can use the IDA Bus for whatever purpose it wants (typically to do

memory cycles). During the time that Bus Grant is in effect all

chips suspend their activity. Bus Grant can be given even in the

middle of the execution of an instruction. Because of this, the

chips do not grant a Bus Request indiscriminately. Furthermore, a

Bus Grant not requested by the IOC is used by the IOC to create

Extended Bus Grant (EXBG), which is routed from chip to chip in

a definite order; chips or other entities not at the top of the chain

can exercise the right not to pass along the signal. This allows a

Bus Request from the IOC to have a higher priority than any

entity farther down the chain. Even if both are requesting the

Bus, the IOC can "steal" EXBG by not passing it along. Farther

down the chain from the IOC, BG serves to indicate only that the

IDA Bus is being granted to somebody; a particular requesting
device must wait until it sees EXBG before it can use the bus.

An entity on the Bus may ground BG as long as BG is not

already being given. This allows any entity anywhere on the chain

to protect its own access to the Bus against all agencies. Further,

the BPC itself refuses to issue a BG as long as any memory cycle is

in progress.

522 Part 2
I
Regions of Computer Space Section 7 Language-Based Computers

During an instruction fetch a line called interrupt (INT) can

signal the other chips to which the IOC has agreed to allow an

interrupt requested by a peripheral. The management of this

decision is complicated, but once the decision is made, the IOC

signals the BPC with INT. This has to occur during a certain

period of time ending with the end of the instruction fetch. (A

signal called SYNC identifies the instruction fetch.)

What the chips in the system must do when an interrupt occurs

is to abort the execution of the instruction just fetched (it will be

fetched again, later). The INT causes the BPC to execute the

instruction JSM lOg-indirect in place of the fetched instruction.

Register address lOg is located in the IOC, and is the Interrupt

Vector register (IV). That register is a pointer into a stack of

indirect addresses for the starting locations for the various

interrupt service routines. These routines handle the traflBc

needed by the interrupting peripheral. A special mechanism in

the IOC sets the bottom four bits of IV to correspond to the select

code or peripheral address of the particular peripheral that

requested the interrupt. Thus IV points to difierent service

routines, according to which peripheral has interrupted.

The JSM lOg-indirect causes the value of P for the aborted

instruction to be saved on the return stack. A RET at the end of

the service routine results in that very instruction's being fetched

over again, at the conclusion of the service routine.

General Description of the IOC

The IOC has two main functions. One is to manage the transfer of

information between the processor and peripheral devices. This is

done by providing capabilities classified as Standard I/O, Inter-

rupt, and Direct Memory Access (DMA). The second main

function is to provide machine instructions allowing software

management of stacks in ReadAVrite memory. Figure 18 is a

condensed description of the machine instructions in the IOC's

repertoire.

General Information about I/O The IOC allows up to 16

peripheral devices to be present at one time. Each peripheral

device is connected to the I/O Data (lOD) Bus, Peripheral Address

Bus, and the various control signals necessary for that particular

device's operation. Individual I/O operations (exchanges of single

words) occur between the processor and one peripheral at a time,

although interrupt and DMA modes of operation can cause

automatic interleaving of individual operations . A select code

transmitted by the Peripheral Address Bus (PAB(>-PAB3) identifies

which of the 16 devices is the object of an individual I/O

operation.

In addition, the peripheral interface is the source of the Flag

and Status bits for the BPC instructions SFS, SFC, SSS, and SSC.

Since there can be many interfaces, but only one each of Flag and

Status, only the interface addressed by the select code is allowed

Chapter 31
|

A Dual-Processor Desk-Top Computer: The HP 9845A 523

Standard I/O Standard I/O is I/O that has been explicitly

programmed by the system programmer, using explicit assembly

language coding. Standard I/O involves three activities:

1 Setting the peripheral address (in the PA register)

2 Investigating the status of the peripheral

3 Initiating an I/O Bus Cycle

During standard I/O operation, an I/O bus cycle is initiated by

any machine instruction that incorporates a reference to one of

addresses R4 through R7 ("in" the IOC). One way that can be

done is with a BPC memory-reference instruction: for instance,

STA R4 (for a write cycle), or LDA R4 (for a read cycle). However,

there are no addresses R4 through R7. The use ofaddresses 4-7 is

just a signal to the IOC to initiate an I/O bus cycle. Each different

address produces a different combination of ICI and IC2.

The Interrupt System When the processor grants an interrupt,

the program segment currently being executed is automatically

suspended, and there is an automatic JSM to an interrupt service

(sub)routine that corresponds to the device that has interrupted.

The service routine uses Standard I/O to accomplish its task.

The IOC allows two levels of interrupt, and has an accompany-

ing two levels of priority. Priority is determined by select code:

select codes 0-78 are the lower level (priority level I), and select

codes 108-178 are the higher level (priority level 2). Within a

priority level all devices are of "equal" priority, and operation is

on a first-come-first-served basis; a level-1 device cannot be

interrupted by another level-I device, but only by a level-2

device. However, priorities are not equal in the case of simultane-

ous requests by two or more devices on the same level. In such an

instance the device with the higher-numbered select code has

priority. With no interrupt service routine in progress, any

interrupt will be granted.

Devices request an interrupt by grounding one oftwo interrupt

request lines (IRL and IRH—one for each priority level). The IOC

determines the requesting select code by means of an interrupt

poll. If the IOC grants the interrupt, it saves on an internal stack

the existing select code located in PA, puts the interrupting select

code in PA, and does a JSM-Indirect through an interrupt table to

get to the interrupt service routine. [The top of this stack is the

Peripheral Address register (PA-llg).] The stack is deep enough to

hold the select code in use prior to any interrupts, plus the select

codes for two levels of interrupt.

It is the responsibility of the firmware to maintain an interrupt

table of 16 consecutive words, starting at some Read/Write

Memory address whose four least significant bits are Os. The

words in the interrupt table are set to the starting addresses of the

various interrupt service routines for use with the 16 different

select codes. When a peripheral is allowed to interrupt, its select

code is used to determine which interrupt service routine to jump
to. The interrupt service routine then handles the I/O operations

needed by the interrupting device.

The firmware must also store the address of the first word ofthe

interrupt table in the IV register (Interrupt Vector register,

address 10, located in the IOC). Those contents will merge with

the interrupting select code to produce the address of the

appropriate table entry. A two-level indirect jump is used to

arrive at the interrupt service routine. This happens automatical-

ly, because the BPC aborts its instruction fetch and generates a

JSM IV, 1 as part of what it does during an interrupt, and because

the IOC forces the BPC to do two consecutive "first-level"

indirect accesses.

It is difficult to say specific things about interrupt service

routines in general; much depends upon the particulars ofthe host

software system. The next few paragraphs examine some generali-

ties relating to interrupt service routines.

The first observation is on the number of service routines. In

general, there is not a single service routine for each select code,

or even for each type of peripheral. The usual case is collections of

routines that perform related functions within the needs of a

certain class of peripheral activity; each class ofactivity has its own
collection.

For instance, it is unlikely that there will be a single interrupt

service routine for a disk. On the customer's level there are many
commands in the disk's operating system. On the firmware level

there are a series of routines that perform "ftmdamental units" of

activity, where each fundamental unit involves some amount of

I/O. Most commands in the user's disk operating system are made

up of a series of these fundamental units of activity. Fundamental

units of activity for the disk are things like moving the head to a

given track, reading a given sector from a track into such and such

a buffer, and writing from such and such a buffer into a given

sector.

Assume a fairly involved user's command for a disk is to be

performed, one that requires reading the directory on the disk to

determine the location of a certain file on the disk and then

loading that file into memory. The series of routines here include

moving the head to the start of the directory, reading through the

information in the directory sector by sector until the information

about the desired file is found, moving the head to the file's

location, reading its header, reading its first sector, etc.

Each service routine is told or already knows which service

routine follows it for the particular high-level task at hand, and if it

has a choice based on the way events turn out (error conditions

etc.), it knows how to handle that, too. As each new step in the

sequence requiring a different interrupt service routine is

reached, the concluding routine changes the appropriate entry of

the interrupt table to the starting address of the next service

routine. In this way a versatile collection of interrupt service

routines can serve many purposes.

524 Part 2
I
Regions of Computer Space Section 7

j
language-Based Computers

The computer can be almost anywhere in its internal coding

when an interrupt is granted. Since the code is suspended, with

JSM, it is obvious that the way to get back to the right spot is with

a RET 0,P. (The ,P instructs the IOC to return to the select code

in use prior to the interrupt.) But it will do no good to come back if

the items in memory related to the routine are not the same. The

interrupt service routine must save and later restore any memory
location that will be directly or indirectly disturbed by the activity

of the service routine. This could include the extend and overflow

registers of the BPC, decimal carry and shift-extend of the EMC,
and possibly CB and DB of the IOC.

The entire interrupt system can be turned offby a DIR machine

instruction. After this instruction is given the IOC will refuse to

grant any interrupts whatsoever until the interrupt system is

turned back on with EIR. While the IOC will not grant any

interrupts, the RET 0,P works as usual so that interrupt service

routines may be safely terminated, even while the interrupt

system is turned off.

Direct Memory Access Direct memory access is a means to

exchange entire collections of data between memory and

peripherals. Such a collection must be a series of consecutive

memory locations. Once started, the process is automatic; it is

done under control of hardware in the IOC, and regulated by
the interface.

The DMA process can transfer data in two ways: single words

are transferred one at a time, on a cycle-steal basis; or strings of

words are transferred consecutively in a burst mode. In either

instance data are transferred one word at a time. To transfer a

word, a peripheral signals the IOC, which then requests control of

the IDA Bus with BR. That results in an external halt in all other

system activity on the bus for the duration of the peripheral's

request for DMA service. Herein lies the difference between

burst mode and cycle-steal operation: in cycle-steal operation the

peripheral ceases to request service after one word is transferred,

and requests service again when ready, while in the burst mode
the request is held to allow a series of high-speed consecutive

transfers to occur.

During a DMA transfer of a collection of data, the IOC knows

the next memory location involved, whether to input or output,

which select code to use, and (possibly) whether or not the

transfer of the entire collection is complete. This information is in

registers in the IOC, which are set up by the firmware before the

peripheral is told to begin DMA activity. After that, actual

transfers are initiated at the request of the interface.

The DMA process is altogether independent of the operation of

standard I/O and of the interrupt system and, except for theft of

the IDA Bus for memory cycles, does not interfere with them in

any way.

The four letist significant bits of DMAPA specify the select code

which is to be the peripheral side of the DMA activity. During an

Name Address Meaning

DMAPA

Chapter 31
|

A Dual-Processor Desk-Top Computer; The HP 9845A 525

B, for word or byte. The next character is either a C or D,

depending upon which stack pointer is to be used. There are eight

combinations, and each is a legitimate instruction.

The place and withdraw instructions outwardly resemble the

memory reference instructions of the BPC: a mnemonic followed

by an operand that is understood as an address, followed by an

optional, I or, D. The range ofvalues that the operand may have is

restricted, however. The value of the operand must be between

and 7, inclusive. Thus, the place and withdraw instructions

can place from, or withdraw into; the first eight registers. These

are A, B, P, R, and R4 through R7. Therefore, the place

and withdraw instructions can initiate I/O bus cycles; they can do

I/O.

Regardless of which of ,1 (increment) or ,D (decrement) is

specified, a place instruction will do the increment or decrement

of the pointer prior to the actual place operation. Withdraw

instructions do the increment or decrement after actual withdraw

operation. The reason for this is that it always leaves the stack with

the pointer pointing at the new "top of the stack," and allows

intermixing of place and withdraw instructions without adjust-

ment of the pointer.

Because the stack in memory is composed of words rather than

bytes, some means is required to extend the addressing of the

pointer registers to include designation of bytes within the

addressed word.

Left-right indication of bytes is accomplished with a signal

called BL. BL (Byte Left Not) is in turn controlled by bit of

either the C or D register. Sixteen-bit addressing is maintained by

providing an additional 1-bit register for use with each stack

pointer register. The nonaddressable registers are called CB (C

Block) and DB (D Block). They are designated block because, as

the most significant bit of the word pointer value, they divide the

address space into two halves, or blocks. It is unfortunate that this

terminology was chosen (it was done before the MAE was

developed). Do not confuse those blocks with block through
block 3 of the Memory Address Extension scheme.

During the automatic increment or decrement to the pointer

register, CB and DB function as most significant seventeenth bits

of their respective registers. An advantage of having the bit that

designates the byte be the least significant bit is that it simplifies

the process of arithmetic computation upon byte addresses.

The CB and DB registers can be set to their initial values by
machine instructions for setting and clearing each register. For

instance, DBU (D Block Upper) sets the DB register; CBL (C
Block Lower) clears the CB register.

General Description of the EMC
The Extended Math Chip (EMC) provides 15 instructions. Eleven

of these operate on BCD-coded 3-word mantissa data. Two

operate on blocks of data of from 1 to 16 words. One is a binary

multiply and one clears the Decimal Carry (DC) register. A

condensed description of these machine instructions is shown in

Fig. 19.

Unless specified otherwise, the contents of registers A, B, SE,
and DC are not changed by the execution of any of the EMC's
instructions.

ARl is the label of the 4-word arithmetic register located in

RAV memory, locations 1777708 through 1777738. The assembler

predefines the symbol ARl as address 177770g.

AR2 is the label of a 4-word arithmetic accumulator register

located within the EMC, and occupying register addresses ZOg

through 238. The assembler predefines the symbol AR2 as address

208.

SE is the label for the 4-bit shift-extended register, located

within the EMC. Although SE is addressable and can be read

from and stored into, its primary use is as internal intermediate

storage during those EMC instructions that read something from,

or put something into, A0-A3. The assembler predefines SE as

248.

DC is the mnemonic for the 1-bit decimal-carry register located

within the EMC. DC is set by the carry output of the decimal

adder. Sometimes DC is part of the actual computation, as well as

being a repository for overflow. In such cases the initial value of

DC aflfects the result. However, DC will usually be zero at the

beginning of such an instruction. The firmware sees to that by
various means. DC does not have a register address. Instead, it is

the object of the BPC instructions SDS and SDC (Skip if Decimal

Carry Set and Skip if Decimal Carry Clear) and the EMC
instruction CDC (Clear Decimal Carry).

It takes a special mechanism to handle BCD numbers. Done in

firmware alone, such a mechanism would be slow and cumber-

some. The EMC supplies some useful operations on portions of

BCD floating-point numbers. This trims the mechanism in size

and speeds it up significantly.

The EMC can perform operations on 12-digit BCD-encoded

floating-point numbers. Such numbers occupy 4 words of memo-

ry, and the various parts of a number are put into specific portions

of the 4 words, as shown in Fig. 20. The exponent and mantissa

signs (Es and Ms, respectively) are encoded as and 1 for positive

and negative, respectively. All the digits Di through Di2 are

encoded in BCD, while the exponent is a 10-bit signed 2's

complement number. Di is the most significant digit, and D12 is

the least significant digit. A decimal point is assumed to exist

between Di and D2.

Except for intermediate results within the individual arithmetic

operations, Di will never be unless the entire number is 0.

Sometimes, after each individual arithmetic operation the answer

needs to be normalized; that is, the digits of the answer need to be

shifted toward Di until Di is no longer 0. The exponent then

needs to be adjusted to reflect the change.
An important consideration concerning BCD arithmetic, as

implemented by the processor, is that mantissas are represented

THE FOUR-WORD GROUP

 LOCATION

LOCATION -

XFR N LOCATION
LOCATION

; A > -• LOCATION < B :

: A > + 1 * LOCAirON -

-- LOCATION •

THE MANTISSA SHIFT GROUP

l«X ^WNTISSA RIGHT SHIFT OF ARl i

l5t SHIFT: < Ao_i > • Di;..

j+h SHIFT: -• Di; < D

rth SHIFT: • Dj; < D

LOCATION < B :

 * D
1*1'

>, AND 0£ r < 17(= 15i,

.Di; IS LOST

IS LOST

2 > -* Ao,,; O -- DC; - Ai

MRY ^W^ITISSA RIGHT SHIFT OF AR2 < Bo-j >-TINES. OTHERWISE IDENTICAL TO MRX.

MLY MANTISSA LEFT SHIFT OF AR2 ONE T1^E.

< Ao_3 > * Dii;...< D. > ->

D|_,;
< Di > ^ Ao.i; • DC; -* A,_i5

AT THE CONCLUSION OF THE OPERATION SE EQUW.S < Aj,-, >.

DRS MANTISSA RIGHT SHIFT OF ARl ONE TIME.

* Di; < D. > -
D.^i;

< Di; > * Ai,.,; * A«_,i

AT T^C CONCLUSION OF THE OPERATION SE EQUALS -: Ao_) >.

NRN NORMALIZE AR2. THE hW^TISSA DIGITS OF AR2 ARE SHIFTED LEFT UNTIL Dj t 0.

IF THE ORIGimL Di IS NON-ZERO, NO SHIFTS OCCUR. IF TWELVE SHIFTS OCCUR,
ThEN AR2 EQUALS ZERO, AND NO FURTHER SHIFTS ARE DONE. THE NUMBER OF SHIFTS
IS STORED AS A Bir*WY NUMBER IN B.

THE ARITHMETIC GROUP

CMX TEN'S CCMPLEMENT OF ARl. THE MANTISSA OF ARl IS REPLACED WITH ITS TEN'S

COMPLEf&IT, Arc DC IS SET TO ZERO.

CMY TEN'S COMPLEftKT OF AR2. THE hW^TISSA OF AR2 IS REPLACED WITH ITS TEN'S

COMPLEMENT, AND DC IS SET TO ZERO.

CDC CLEAR DECIMAL CARRY. CLEARS THE DC REGISTER; - DC.

FXA FIXED-POINT ADDITION.

DURING THE ADDITION THE EXPONENTS ARE NOT CONSIDERED, AhD ARE LEFT

STRICTLY ALONE. ThC SIGNS ARE ALSO LEFT COMPLETELY ALONE.

: ARl > = Di Di Dj Dn
: AR2 > = Di Di Dj Di,

+ < DC > * INITIAL VALUE OF DC

-* "Do" Di Di Dj Di2 - AR2

^DC CFIWL VALUE OF DC5

<A>, <B^, ETC., DENOTE THE CONTENTS
OF THE INDICATED REGISTER

MWA MANTISSA WORD ADD.

DURING THE ADDITION THE EXPONENTS ARE NOT CONSIDERED, AND ARE LEFT
STRICTLY ALOtC, AS ARE THE SIGNS. MWA IS 1NTE^DED PRIMARILY FOR USE IN

ROurCING ROUTINES.
< ft >

D, Dio Dii Di2

< AR2 > = Di D, Dio Dii Du
+ < DC > -^ INITIAL VALUE

__^^ ^ DC

COVERFLOW) • "Do" D, D, Dm Di, 0i2-*AR2

^*DC (FIMAL VALUE OF DC)

FMP FAST MULTIPLY. THE MANTISSAS OF ARl AND Aft2 ARE ADDED TOGETHER (ALONG
WITH DC AS Dii) < Bo-j >-TIME5; Tl* RESULT ACCUMULATES IN W*2.

T>^E REPEATED ADDITIONS ARE LIKELY TO CAUSE SOME UNKNOWN NUMBER OF OVERFLOWS
TO OCCUR. T^E NUMBER OF OVERFLOWS THAT OCCURS IS RETURNED IN A0.3.

FMP IS USED REPEATEDLY TO ACCUMULATE PARTIAL PRODUCTS DURING BCD
MULTIPLICATION. FMP OPERATES STRICTLY UPON MANTISSA PORTIONS; SIGNS AND
EXPONENTS ARE LEFT STRICTLY ALONE.

REPRESENTS THE IMITIAI. VALUE

^tyf OC. AFTERWWOS, DC -

< AR2 > + C(< ARl >)
•

C < Bij_3 >)5 + DC * AR2

-• DC, -• Au_i5 ft OF OVERFLOWS * Aq.,

BINARY MULTIPLY USING BOOTH'S ALGORlThW. THE (BINARY) SIG^«D TWO'S
COMPLEMENT CONTENTS OF Th€ A AND B REGISTERS ARE MJLTIPLIED TOGETHER.
THE THIRTY-TWO BIT PRODUCT IS ALSO A SIGNED TWO'S COMPLE^tNT NL>1BER,
A^C IS STORED BACK INTO A AMD 6. 8 RECEIVES THE SIGN AM3 MOST-
SIGNIFICANT BITS, AND A THE LEAST-SIGNIFICANT BITS:

FAST DIVIDE. THE MANTISSAS OF ARl AND AR2 ARE ADDED TOGETHER UNTIL THE

FIRST DECIMAL OVERFLCW OCCURS. ThC RESULT OF THESE ADDITIONS ACCUMULATES

INTO AR2. THE NUMBER OF ADDITIONS WITHOUT OVERFLOW Cn) IS PLACED INTO B.

; X > ^ AR2 (REPEATEDLY UNTIL OVERFLOW)

THEN

FDV IS USED IN FLOATING-POINT DIVISION TO FIh4) THE QUOTIENT DIGITS OF A

DIVISION. IN GENERAL, MORE THAN ONE APPLICATION OF FDV IS NEHJED TO FirC

EACH DIGIT OF THE QUOTIENT.

AS WITH THE OTHER BCD INSTRUCTIONS, THE SIGNS A^*) EXPONENTS OF ARl Aro AR2

ARE LEFT STRICTLY ALONE.

Fig. 19. EMC machine-instructions.

FLOATING-POINT DATA FORMAT,

ADDRESS

Chapter 31
|

A Dual-Processor Desk-Top Computer: The HP 984SA 527

It was recognized that certain kinds of memory contents would

always be grouped together. That is, the main operating system

(whose code is in ROM), the various user's programs (in RAV),

operating system data, user's data, and option ROM coding are all

occupants of groups of memory disparate but contiguous within

themselves. Furthermore, these separate collections frequently

need access to each other. The occasions when operating-system

code wishes to access the user's program, or when the user's

program wishes to access the user's data, are occasions when it

would be desirable to have some sort of automatic mechanism for

changing the values of the additional address bits. Not only would

this save a lot of code (and execution time) otherwise used for

manipulating the contents of the address extension registers, but

it can also provide an external structure useful in organizing the

architecture of the internal software system.

The key features of the memory address extension scheme

explained below are these. First, there are several registers used

to determine the values of the additional address bits. There is a

means to identify the purpose for which a memory cycle is being

performed: instruction fetch, indirect reference, base-page refer-

ence, etc. Each such purpose can invoke different registers, each

providing different and previously determined additional address

bits. Note that this is not done simply on a machine instruction-

to-machine instruction basis. The process is automatic on a

memory cycle-by-memory cycle basis. This is a very important

distinction because it allows programmers to let the MAE
hardware do the work for them as their program runs, freeing

them from constantly giving machine language instructions to a

less automatic address extension device.

Second, the MAE hardware is responsive to the most signifi-

cant bit of the address produced by the processor. By controlling

the value of this bit (at programming and assembly time for direct

references and at run time via programmer algorithms for indirect

accesses), the programmer can signal the MAE hardware whether

the additional address bits are to be selected according to the

various registers mentioned above, or are to be selected from

among fixed and predetermined values. (It could as easily have

been from a second collection of additional registers, but this

added level of flexibility was deemed unnecessary for the 9845A.)
In this way, code executing at addresses in one-half the proces-

sor's address space can easily access data in the other half—but the

two halves of the processor's address space are represented by a

preselected range of memory addresses, on the one hand, and by
an arbitrary range of memory address anywhere in memory, on

the other. This is of great utility in an operating system whose

controlling programming has to be able to quickly access memory
anywhere in the system, or in a system where code to be executed

can be located anywhere in memory.
As shown in Fig. 8, the computer has a memory with 128

kilowords, yet each processor has the inherent ability to address

only 64 kilowords. On the surface it might seem that each

processor handles half the memory, but that is not so. Instead, the

memory is divided into four 32-kiloword blocks.

The LPU's 64-kiloword address space is split into two 32-

kiloword blocks, as shown in Fig. 21. The Memory Address

Extender (MAE) embodies a set of conventions to dynamically
determine which blocks make up the two halves of the processor's

address space. These conventions involve the processor's most

significant addresses bit, the type of memory cycle (i.e., for what

purpose—instruction fetch, indirect reference, etc.), and the

contents of some additional registers in the MAE. Those registers

are R34, R35, and R37 (each is named for its octal address). These

each have two bits. The size of the registers is related to the

number of blocks managed by the MAE; in principle those

registers could be 16 bits each, allowing a possible 64K blocks of

32 kilowords each.

System programmers have exclusive control of the contents of

R34-R37. In this way they can control what particular blocks are

accessed as the MAE implements its conventions.

The memory address extension scheme is performed for the

LPU only. The address space for the FPU is exactly 64K. It just so

happens that the bottom half of that address space is the same

physical memory that the LPU calls block 1, and that the upper
half is the same as what the LPU calls block 0. This arrangement is

somewhat arbitrary and was chosen for convenience in coordinat-

ing LPU and FPU activities. Bear in mind that the FPU has no

connection with the MAE. The function of the MAE is, in

principle, altogether separate from the notion of having the

processors share memory. If the computer had only the LPU, it

would still (presumably) have the MAE. Also, the problems

LPU PROCESSOR'S 64K ADDRESS SPACE

1/2 0F64K

I

LO*

—
I

HIGH

ONE 32K BLOCK ONE 32K BLOCK

/
ONE BLOCK WILL BE A HOME BLOCK,

THE OTHER BLOCK WILL BE A WORKING BLOCK :

I
I

I I

^ ^™IS ^ ,

BLOCK 3 IS HOME BLOCK

WORKING BLOCK (0-3IPER R35

WORKING BL0CK(0-3)PER R37

1/ \

^""^

WORKING BL0CK(0-3)PERR34

BLOCK OIS HOME BLOCK

BLOCK IS HOME BLOCK

Fig. 21 . Block addressing structure implemented by the memory
address extender (MAE).

528 Part 2
{
Regions of Computer Space Section 7 Language-Based Computers

arising from both processors' trying, at the same time, to access

block or block 1, and the subsequent need for a dual-port

memory controller, are not related to memory address extension.

Basic Principles

The LPU's processor, in terms of its internal architecture and

operation, knows absolutely nothing of the memory address

extension scheme. Regardless ofhow many blocks are implement-

ed by the MAE, the LPU understands only a single 64K address

space. Yet it is typical for a memory-reference machine instruction

for the BPC (refer to Fig. 17) to be fetched from (i.e., located in)

one block while its operand (the location in memory referenced) is

in a different block. Such an instance requires automatic block

switching by the MAE during the execution of the memory-
reference instruction. Figure 22 illustrates the various conditions

under which the various blocks are accessed.

An understanding of Fig. 22 requires the notion ofhome blocks

and working blocks. A home block is a block that is always the

accessed block whenever some particular condition is met. The

various home block designations are fixed and cannot be changed.

(The foregoing does not mean that certain blocks are always home
blocks. Rather, particular circumstances always access certain

blocks as home blocks. But any block can also be accessed as a

working block, too.) A working block is one that is designated

according to the contents of R34—R37. The circumstances which

determine which block is the home block also determines which of

R34 through R37 is used to identify the working block.

As an example, block 3 is the home block for instruction fetches,

while R34 designates the working block for instruction fetches. In

other words, the programmer can execute code in block 3 by

N. THESE\ CONDITIONS\ PREVAIL:
FOR \
THESE TYPESX
OF MEMORY \
CYCLES: \^

530 Part 2
I Regions of Computer Space Section 7 I Language-Based Computers

a Current-page nonindirect references are almost always
made to the same block the instruction was fetched

from.

b Base-page nonindirect references are made to the

particular part of the base page specified.

c Block 3 contains the lower half of the base page and

block has the upper half, regardless of which working
block is specified.

d For indirect references the link pointer is accessed

according to whether it is on the current page or on the

base page, as described above, but the access to the

final destination location is made according to the block

allocation rules for IOC and EMC instructions.

These facts summarize memory access during a bus grant:

1 The MAE remembers which block allocation scheme was

suspended in order to do the bus grant and will correctly

restore the suspended mode when that activity is complet-
ed.

2 During a bus grant:

a Home block is block 0.

b Working block is determined by R37.

c Bit 15 equal to 1 implies home block; bit 15 equal to

implies working block.

VI. Description of the Display System

General Description

The display is a dual raster-scan CRT display. A 12-in, high-

resolution, magnetic-deflection CRT is used to provide adequate

viewing area for high-quality alphanumeric and graphic informa-

tion. In the alphanumeric mode, up to 25 lines of 80 characters

can be displayed at one time from a standard 128-character ASCII

character set. A foreign character set can be added, as an option,

to allow the user to display either French, Spanish, German, or

Katakana. Other languages are also possible. Three methods of

highlighting information are available to the user: inverse video,

underlining, and blinking. Each of these functions can be

independently changed on a character-by-character basis. The

viewing area for 25 lines of80 characters, called the alpha raster, is

approximately 9.3-in. by 4.8-in. This permits a matrix of 720 x

375 dots to be displayed. Characters are formed from 7 by 9 dot

matrices located in 9 by 15 dot fields.

High-resolution raster graphics can be added to the display as

an option. In the graphics mode of operation, the viewing area,

called the graphics raster, is approximately 7.9 in by 6.5 in. This

permits a matrix of 560 x 455 dots to be displayed. The graphics

raster is a separate, independent raster that is switched into

operation when the display is in the graphics mode. The dual

raster-scan capability allows the size and aspect ratio ofeach raster

to be chosen to optimize the quality and capability of the display

for the function the user wishes to perform, and to achieve

compatibility with the internal thermal printer/plotter.

Display Quality

A considerable emphasis was placed on optimizing the design to

achieve a high-quality display. To achieve high quality in a CRT
display requires the optimization of many parameters. Some of

the most important include character size and legibihty, bright-

ness, resolution, contrast, glare, focus, position distortion, and

stability. Display quality was one of the major reasons for adding
the dual raster-scan capability. The alpha raster is tailored to

display 80 adequately spaced characters per line, while using the

maximum width possible without introducing excessive distortion

due to nonuniformity in the CRT screen. A 7 by 9 character font in

a 8 by 15 cell was chosen because this matrix is sufificient to

generate aesthetically pleasing characters. The extra rows in the

cell are used for spaces, ascenders that are needed for some of the

European characters, and descenders that are used in some of the

lowercase Roman characters.

The graphics raster displays the same high-quality characters

but is limited to 62 per line. The graphics raster increases the

resolution in the vertical dimension to maximize the proportion of

screen area that can be used.

Uniform character size over the entire screen is diiBcult to

achieve in CRT displays. Nonlinear current drives must be

supplied to the yoke because the faceplate is not spherical. To

achieve a more accurate current waveform, an active correction

technique was employed in the display. The yoke current is

compared to a reference current generated by a diode function

generator and is corrected when a diflerence occurs. With this

scheme, an improvement factor greater than 2 was achieved in the

position distortion.

Since visible motion on a display is quite annoying, it was

decided to refresh the display at 60 Hz even when the line

frequency is 50 Hz to minimize flicker. Sufiicient magnetic

shielding has been added to eliminate interference due to internal

sources within the mainframe itself, as well as from reasonable

external magnetic fields.

In the graphics mode of operation the CRT is treated as a

genuine peripheral with a select code and driven via the lOD Bus.

This capability is briefly considered at the end of this section.

In contrast, the alphanumeric interface is a dedicated mecha-

nism that automatically generates the CRT's display according to

the contents of memory. It is connected to the FPU's IDA Bus and

performs its own accesses to memory. Thus, to generate a display,

the FPU needs only to format and manage the contents of a CRT

display buffer in block 1 memory. The alphanumeric interface

uses bus requests to interrogate that buffer, and responds to

certain conventions regarding control bytes that are placed into

the buffer amid the data by the controlling firmware.

Chapter 31 I A Dual-Processor Desk-Top Computer: The HP 9845A 531

The control bytes and their associated conventions amount to a

command set for the alphanumeric display. Their employment
allows efficient use of the memory allocated to the CRT display

buffer. Rather than structuring the buffer to be a character-for-

character image of the display, the buffer contains a compacted
version of the data. For instance, the blanks to the right of a line

are supplied automatically by the display itseff, following an

end-of-line (EOL) control character. Other control bytes instruct

the alphanumeric interface where in the buffer to begin the

display; control the location of the cursor; and spectfy underlining

or blinking.

The size chosen for the display buffer is large enough to contain

enough characters to fill an entire display. But because of efficient

allocation of memory (e.g., suppression of trailing blanks by EOL
control characters) the buffer is rarely full and can be loaded with

more lines of information than the CRT can display at one time.

The display buffer can hold four pages of average BASIC
statements. The controlling firmware can cause the display to

scroll through the data in the buffer in response to the operator's

pressing various control keys on the keyboard. Scrolling requires

only the manipulation of a few control bytes, not the wholesale

rearrangement of data in the display buffer.

Alpha Display Control Logic

The Control Logic is the alphanumeric interface between the

mainframe and the display. It reads memory via DMA, processes
the data, and holds them in a format that the display can use. Each

byte of a data word represents either a combination of features to

be set or cleared, an ASCII character, or a control code for the

display. Figure 24 shows the functions that can be interpreted
from each byte.

Data bytes consist of a 7-bit ASCII code and a high-order 0, and

they will be interpreted as the corresponding ASCII code unless

the foreign character set has previously been chosen. If the

high-order bit is set, the five low-order feature bits are latched

and held until another feature byte occurs to change the state.

The EOL command fills the remainder of the current line buffer

532 Part 2
I Regions of Computer Space Section 7

I Language-Based Computers

CRT. The purpose of having two Hne buffers is to provide the

Display Logic with one full line of characters to display while

the Control Logic is loading the next line of 80 characters into the

other buffer. This means that the Control Logic is actually one line

ahead of the display. When the Control Logic has entered 80

characters into a line buffer, it waits for the Display Logic to

indicate that it is ready for a new line. The Control Logic provides

the Display Logic with the newly filled Line Buffer and starts to

refill the used Line Buffer with new data. This occurs for each

character line on the display. As the Control Logic completes each

line it signals the Display Logic that there is a full Line Buffer.

The Display Logic cannot wait for a new line once one has been

requested, or the data will not be displayed in the correct position

on the screen. So ifa new full Line Buffer is not available when the

Display Logic indicates that it is ready for a new line, the Display

Logic will blank the video for the remainder of the page. This is

done because the Control Logic and Display Logic will not be

synchronized until the beginning of the new page. The Line

Buffer must be filled in 637 p-s. This figure comes from the time it

takes to display the 15 scans that make up the dot matrix of a line

of characters. For each scan all 80 words in the buffer are read 15

times before the buffer is refilled.

The Display's Effect on the Mainframe

On account of the nature of the display's mode of data retrieval,

there is a definite effect on the performance of the mainframe.

Since it is necessary for the display to access memory on a regular

basis, it uses memory cycles which might have been used by the

PPU for other operations. This will inevitably slow down the FPU.

The PPU can execute about 1 million memory cycles per second.

The display must read at least one word for every two lines of

characters (two blank lines) but doesn't need to read more than 82

words per line of characters (a feature byte and a character byte in

every word with a new word address). If a character line is 40

words in length (80 characters or partial lines with features), the

display will require 40 memory cycles/line x 25 lines/page x 60

pages/s, or 60,000 memory cycles per second. This would reduce

the PPU to the use of 940,000 memory cycles per second, or a 6.0

percent increase in execution time. These memory cycles may
also indirectly slow the LPU by temporarily holding the Dual Port

Memory Controller in an inconvenient position, but that result is

probably negligible.

Over a short term (less than 637 \i.s) the display will be accessing

memory to fill a single line of characters. This rate is 158,000

memory cycles per second, which increases PPU execution time

by 23 percent (PPU will be allowed 763,000 memory cycles per

second). However, as soon as the line is complete, memory access

drops to zero until the next line needs to be refreshed.

A conflict occurs when some peripheral device, such as a disk,

attempts a burst-mode DMA and where the efiBciency of the

device depends upon a data transfer rate close to the maximum.
The problem arises when the display requires a suflScient number
of memory cycles to complete a character line in less than 637 |is

while at the same time a disk requires data at a rate determined by
the rotating speed of the disk. If the display is allowed memory
cycles in such a DMA burst, a disk location might be past the head

when the data finally arrive. Similarly, if the display is deprived of

memory cycles during the burst, the analog scanning of the

display might have started displaying a line before the digital

circuitry has completely acquired and processed the next line

from memory. To avoid this and allow for efficient use of disk

systems the following convention has been adopted. If the display

is deprived of enough memory cycles that it cannot fill a character

line by the time that line starts to be scanned on the display, then

the remainder of the video output for that page will be blanked.

Video will be resumed at the beginning of the next instance of

displaying that page. Therefore, it is possible for the display to be

blank for about 0.3 s if a DMA occurs which reads 64 Kbyte of

memory at once. A longer blanked period can occur if smaller

DMAs occur regularly after the start of each refresh cycle.

Graphics Overview

Graphics-mode operations allows the generation of entirely

arbitrary patterns on the CRT screen through the use ofa separate

graphics raster. The screen appears as a field 560 dots wide by 455

dots high. The CRT is equipped with an additional interface

(select code 13) and a 16-kiloword cache memory. A correspon-

dence between the bits in the cache memory and the dots on the

screen is estabhshed. The user's software, with help from extra

BASIC language constructs supplied by a GRAPHICS option

ROM, can generate an image on the CRT by manipulating the

contents of the cache memory.
The graphics mode of operation has its own cursors, including

one for digitizing information presented on the screen. Also, the

CRT need not be in the graphics mode for manipulation of the

graphics memory to occur. The CRT display can be switched

between the graphics image and the regular alphanumeric format

at will.

An additional feature is the CRT-Thermal Printer dump. This

was made possible by providing the ability to use the contents of

the 16K cache memory as a source of data to drive the internal

thermal printer. That printer has a thermal printhead with 560

uniformly spaced print resistors. The Graphics Dump produces a

dot-for-dot image of the CRT's graphics-mode display on the

printer.

References

Shaw [1974]

