
Chapter 30

The SYMBOL Computer
SYMBOL:
A Large Experimental System

Exploring Major Hardware

Replacement of Software^

William R. Smith / Rex Rice /

Gilman D. Chesley / Theodore A. LaUotis /

Stephen F. Lundstrom / Myron A. Calhoun /

hawrence D. Gerould / Thomas G. Cook

Introduction

The SYMBOL system is the result of a major developmental efiFort

to increase the functional capability of hardware. Part of the

charter ofthe broad based project was to reexamine the traditional

division between hardware and software, to reexamine the

respective roles of program instruction and data storage, and to

reduce the overall complexity and cost of computing [Rice and

Smith, 1971]. In order to adequately evaluate the concepts that

had been developed it was concluded that an experimental,

usable, real system must be built. The SYMBOL system, now

operational, is the embodiment of this effort.

The system was developed in an environment with hardware

and software design considered in common. Virtually no one

associated with the project could refer to himself as a hardware or

software specialist exclusively. As an example, the logic design of

the field process units was done by an individual with a basic

programming background [Mazor, 1968]. The wire routing auto-

mation was developed by an engineer who was formerly a pure

logic design specialist.

Even before the system became operational much had been

learned about the practical aspects of building highly capable
hardware. No claim is made that SYMBOL represents an

optimum general purpose, time-sharing, multiprocessing system.
In contrast, numerous simplifying assumptions were made in the

system where they did not serve the goals of the project. Certain

modularity restrictions are examples of this. It is claimed that

SYMBOL represents a significant advance in systems technology
and provides the foundation for a significant reduction in the cost

of computing. As the system moves into an intensive evaluation

'AFIPS SJCC, 1971, pp. 601-616.

phase it should prove to be a real asset for advanced systems
research.

This paper represents an overview of the SYMBOL organi-
zation. An attempt is made to give simplified examples of

various key features in contrast to a broad brush treatment of

many topics.

Gross Organization

The system has eight specialized processors that operate as

autonomous units. Each functional unit is linked to the system by
the Main Bus. See Fig. 1. Consider some of the features of the

system and their relationship to the gross processor organization
as outlined in the following sections.

Dynamic Memory Management

Direct hardware memory management is perhaps the most

unique feature of the SYMBOL system. The memory manage-
ment centers around a special purpose processor called the

Memory Controller (MC). The MC effectively isolates the main

memory from the main bus and the other processors and in turn

provides a more sophisticated storage fianction for the various

processors. In contrast to simple read/write memory operations
the MC has a set of fifteen operations that are available to the

490 Part 2
I
Regions of Computer Space Section 7 I i^nguage-Based Computers

other processors of the system. The MC is a special purpose

processor that allocates memory space on demand, performs

address arithmetic, and manages the associative memory needed

for paging. The Memory Reclaimer (MR) supports the MC by

reprocessing used space to make it available for subsequent reuse.

It is a separate unit to allow the task to be performed using a low

priority access to the memory.

Direct Compilation

The Translator (TR) accepts the high level SYMBOL language

[Chesley and Smith, 1971] as input and produces a reverse Polish

object string and name table suitable for processing by the Central

Processor (CP). The TR performs the direct hardware compilation

using only a small table of about 100 words stored in main

memory.

Dynamic Variable Field Length

Within the Central Processor all field processing is done with

dynamically variable field lengths. All alphanumeric string pro-

cessing is done by the Format Processor (FP) while all numeric

processing is done by the Arithmetic Processor (AP). The
resources of the MC are used extensively by the CP in handling
the storage of data.

Dynamically Variable Data Structures

Complete variability of data structures is allowed. They can

change size, shape, and depth during processing. Within the CP
the Reference Processor (RP) manages the storage and referencing

of all data arrays and structure. The MC fiinctions are used

extensively by the RP.

Time-Sharing Supervision

The System Supervisor (SS) is the task scheduler for the system.

All transitions from one processing mode to another are handled

by the SS. Queues are maintained for all of the time-shared

processors. The SS executes two important hardware algorithms,

job task scheduling and paging management. A real-time clock is

used in the process of rationing out critical resources such as

central processor time. The SS also performs key information

transfers needed to tie hardware algorithms into software system

management procedures.

Direct Text Editing

The Interface Processor (IP) and Channel Controller (CC) perform
the input/output tasks of the system. The IP has ability to handle

general text editing in support of interactive communication via a

special terminal. Input/output and text editing do not use the CP
resources.

Virtual Memory Management

When the MC detects that a page is not in main memory it notifies

the requesting processor and the system supervisor. The SS then

utilizes a paging algorithm to supply the appropriate disk transfer

commands to the Disk Controller (DC). Each user of memory
must, upon receiving a page-out response, be able to shut down
and save its current state and status and restart after paging is

complete.

System Configuration

The system has a small complement of peripheral and storage

equipment associated with the main frame. This complement of

equipment has proven sufficient for the experimental purposes of

the system. The main memory is an 8K word X 64 bit/word core

memory with a cycle time of 2.5 microsec. It is organized into 32

pages with 256 words/page. The main paging memory is a small

Burroughs head-per-track disk divided into 800 pages. The bulk

paging memory is a Data Products Disk-file organized into 50,000

pages.

The Channel Controller is designed to handle up to 31

channels. This low limit was deemed sufficient for evaluation of

the experimental system. As of this writing one high speed

(100,000 bits/sec. effective data rate) channel and three phone line

(up to 2400 baud) channels have been implemented. More can be

added during the evaluation phase.

The main frame contains about 18,000 dual in-line CT(ji.L

components. Its physical properties are described in other papers

[Cowart, Rice, and Lundstrom, 1971; Smith, 1968]. In order to

get a relative measure of the size of the various autonomous

processors a chart is given in Fig. 2.

System Communication

The main bus of the system is a time-shared, global communica-

tion path. It uses the special properties of the CT^jiL family in its

implementation [Cowart, Rice, and Lundstrom, 1971; Smith,

1968]. The bus contains 111 parallel lines. They are distributed as

follows:

Data Bus 64

Address Bus 24

Operation Code Bus 6

Terminal Identification Bus 5

Priority Bus 10

System Clock 1

System Clear 1

Four types of bus usage are available. They are:

Processor to MC transfers

Chapter 30
|

The SYMBOL Computer 491

Central

Processor

Memory Reclaimer

Disc Controller

Channel
Controller

Interface
Processor.

I

Fig. 2. Breakdown of the SYMBOL hardware showing the relative

sizes of the various processors.

MC to Processor transfers

Processor to Processor transfers

Control exchange cycles

The basic information transfers are priority sequenced. The

priority bus indicates the desired bus usage for the following

cycle; if a unit desires to use the bus it raises its priority line and

then checks the priority bus to see if there are any higher priority

requests. If not it uses the bus on the following cycle.

Control exchange cycles are used to communicate control

information between the SS and the various processors over the

data and address buses. See Fig. 3. During a control cycle the data

and address bus hues have preassigned uses. Certain lines are

used to start the CP. Others indicate the completion mode for the

TR. During a given cycle any combination of the paths can be

used. The SS has autonomous interface control functions that are

used to communicate with the processors during control cycles so

that more than one control signal can be transmitted during a

given cycle.

Memory Organization

Virtual Memory

The SYMBOL memory is organized as a simple two-level, fixed

page size virtual memory [Kilbum et al.
, 1962]. The page has 256

words with each word having 64 bits. Virtual memory is accessed

by a 24 bit address with 16 bits used to select the page and 8 bits to

select a particular word within a page. See Fig. 4.

Fig. 3. Use of the main bus for control exchange cycles.

The main memory for the experimental system is logically

divided into 32 pages. The relative portion of the address is used

directly while the page number accesses an associative memory
which in turn supplies the current page address in main memory.
The associative memory has one cell for each page in the main

memory. By providing an associative memory tied to the main

memory the individual processors need not be concerned with the

location association process. This provides a significant reduction

in the logical complexity ofthe processors even though it may lead

to slightly more overall electronics.

The paging disk memory has fixed assignment ofpage locations.

Virtual

Address

Associative

Menx)ry

492 Part 2
I
Regions of Computer Space Section 7 i^nguage-Based Computers

See Fig. 5. A page is brought into an available location in main

memory upon demand. When it is purged back to disk it is

transferred back to the same location on disk. (The return transfer

is omitted if the page was not changed in main memory.)
The main memory organization is shown in Fig. 6. The first

page is used for system tables. This includes a reserved word table

for the translator, a software call table, and the control words for

memory allocation and queuing. The next set ofpages are used for

storing the control words of the various terminals or users on the

system. Each active terminal has 24 words of control information

in low core. Much of the control information could have been

placed in virtual memory as would certainly be required for a

system with a larger channel capacity. As a simplifying restriction

for SYMBOL all channel tables were placed in main memory.
The input/output buflFers for the various active channels are also

held in core. The buffers require 16 words per active channel.

Variable buffer sizes although possible were not implemented.
The remainder of main memory is available for virtual memory

buffering. Paging is managed by the hardware with the page
selection for purging under the control of the system supervisor.

The algorithm is a very flexible parameterized process that allows

most of the conventional paging algorithms to be executed. The

parameters are maintained for each terminal so that the paging

dynamics can be tailored on a terminal by terminal basis.

The virtual memory organization is quite simple for SYMBOL
in contrast to the more common segmentation schemes [Glaser,

Couleur, and Oliver, 1965; Corbato and Vyssotsky, 1965]. The

Main Memory Paging Memory

Associative

Memory

SYSTEM SUPER-
VISOR TABLES

TERMINAL
CONTROL
TABLES

INPUT/OUTPUT
BUFFERS

VIRTUAL
MEMORY

PAGING SPACE

1 Page

3 Pages

1-2 Pages

Fig. 5. Virtual memory organization showing the fixed location of

pages in the paging memory.

Fig. 6. Layout of main memory.

primary difference that allows the simplified approach to be taken

in SYMBOL is that contiguous addressing above the page level is

not needed. All users and channels share the same virtual memory
space. The 24 bit address space is thoroughly used. With space

allocated only upon demand and with no restriction on a

scrambled assignment of pages to users it is anticipated that 24

bits will be sufficient for many more than the 31 possible

terminals. If file space is needed beyond the 24 bits of address

space it can be addressed via special block input/output transfers.

Page Lists

Pages are associated together with the use of linked page lists.

Pages available for assignment are maintained on an available page
list. As each user needs space a user page hst is started by

transferring a page from the available page list to the particular

user. A control word is established at this time as a focal point for

all fijture page list management for the user. As more space is

needed pages are added to form a variable length storage area for

general purpose usage. See Fig. 7.

A given user may have more than one page list. Typical page list

usage for a terminal would be one page list for program source

Chapter 30
j
The SYMBOL Computer 493

Available Page List User Rage Lists

V

Fig. 7. Simplified page list structure within the virtual memory.

text, another for the compiled object program, and a third for data

variable storage. Other page lists are used for long or short term

file storage.

Page lists grow monotonically as space is needed. When an

entire list is no longer needed it is given back to the system by

returning it to the available page list.

Page Organization

In order to handle non-contiguous address space a certain amount

of the storage space must be devoted to linking or association data

overhead. In SYMBOL about 11 percent of the storage space is for

overhead bookkeeping.

Pages have three distinct information regions as shown in Fig.

8. The first region called the page header is used to maintain the

page lists and manage the space within the page. The second

region is a set of 28 words. The third region is a set of 28 groups

494 Part 2
I
Regions of Computer Space Section 7

| Language-Based Computers

processor is ready to store a word it transmits the data and

the address previously assigned to the MC along with the

command Store and Assign (SA). The MC stores the word and

generates the address ofthe next available word. When the end of

the group or string is encountered the MC assigns another group

and links it into the string.

In the string storing process the requesting processor receives

addresses from the MC and resubmits them to the MC at a later

time for future extension of the string. All address arithmetic is

done by the MC. Consider the example in Table 1. The first five

commands result in the words A, B, C, and D being stored in a

string beginning with word A.

To reaccess the string the original start address A is submitted

to the MC with the Fetch and Follow (FF) command. The data in

cell A is returned along with the next address in the logical

sequence. When the string is no longer needed a Delete String

(DS) command along with the string starting address is submitted

to the MC. The entire string is then placed on a space reclamation

list. The Memory Reclaimer processor scans the space reclama-

tion lists of the various page lists during idle memory time and

makes the groups of the deleted strings reassignable.

The basic memory usage process deals with variations of

the AG, SA, FF, and DS operations. Eleven other memory
commands are available to give a full memory service com-

plement.

Space utilization efficiency was an important aspect of the

SYMBOL memory design. Studies have been made into the opti-

mum size of the space allocation group [Smith, 1963]. The

trade-oflFs center on balancing the linking overhead cost and the

unused group fragments cost. The overhead cost is compensated

by the allocation on demand approach. In most machines, fixed

size data arrays are allocated to their maximum needed size.

When the average array usage is considered a substantial amount

ofdemand allocation overhead can be afforded before approaching

the normal excess fixed allocation space usage.

Table 1 Simplified Example of a Memory Usage Sequence

Information Forms

Data Fields

Chapter 30
I
The SYMBOL Computer 495

Fig. 10. A vector of string fields and tfie corresponding representa-
tion of the data in memory.

representation in Fig. 10 shows a series of string fields followed by
a special End Vector (EV) code which again is a length indicator

with the data. The string fields are aligned to start on machine

word boundaries. In the case of Elizabeth two machine words are

needed to store the field.

In Fig. 11 the matrix representation is similar to the vector

example except that two levels of vectors exist. The definition of a

structure could be restated as a variable length group of items

where an item may be a string field, a numeric field, or an address

link to another group.

<< 2 N4 32
I
P

< 2N708AP
N P

I

.

C 1 4 2

17)
3

I
NPN I

. 38 >>

AO ^*

496 Part 2 Regions of Computer Space Section 7
I
language-Based Computers

The identifiers are isolated and added to the name table when not

already there. Note that the identifiers can be variable length and

have more than one word. Associated with each identifier is a

control word. All references in the object string involving the

identifier will point to the corresponding control word. The object

string is composed of name table addresses, literal data (the value

3.2), operators in postfix representation, and correspondence links

back to the source string. The correspondence links are for simple

error diagnosis and are therefore ignored during normal execu-

tion. The object string and name table are totally independent of

the future size and data type of the variable.

Now consider the name table after execution has begun and

assume that the data variables have current values. In Fig. 13 the

variables Beta and Gamma are simple fields. Gamma is a

multiword string and therefore it is stored in a memory string with

a link address placed in the corresponding control word. Beta is a

short field such that it can be stored in one word directly in the

name table. Alpha is an irregular structure. The name table for

Alpha contains a link to the first group which in turn contains two

string fields, two link addresses, and an end vector mark. The link

addresses point to two groups, one containing two fields and one

containing three fields. As execution progresses the attributes and

Data Values-

Alpho <John Doe
|l10

Moin (30-25|dSR)<39|ms|12))

Beta
1

1432.1
|

Gamma I Heading for o report I

Storage Repre sentation '

Name
Table

f

Chapter 30
|

The SYMBOL Computer 497

msttrgm ctmrncK tut

TWmtATOW

fvwTJui Mtdjrwm

I lata
. ICJJICti

m-—
firrniK-—

OM-nuL Hioq»»ow
NirCNCICI MIOUJMa

firnm
f

tTMucTiQM aauiMcc*

oitcWv'

^
HB
—

MMW MOLAaMMS

QWWgL CWTWOLLIW

QBHfiLDaueGSUl"

COWI MIMOWT

•4 (MTA

>9pKC CTCil
g

Fig. 15. A more detailed block diagram of the SYMBOL system

showing register configuration and major functions within each

processor.

or fills I/O buffers and transfers appropriate characters to and from

the virtual memory. The IP works with a current text pointer

while performing its functions. The IP functions include basic text

insertion, searching, displaying designated text portions, deletion

of designated text portions, and moving the current pointer. In

Fig. 16 the basic information flow during the LOAD mode is

summarized.

Part of the justification for implementing editing functions in

hardware came from the desire to eliminate the CP from many of

the system overhead tasks. In addition, response times would be

unacceptable if the CC were to communicate directly with virtual

memory. The IP was developed to make the basic transfers

between small buffers and paging memory. Once a special

processor was developed it was found that many editing tasks and

double buffering could be handled using essentially the same data

transfer hardware.

This IP/CC/SS process is available for both LOAD mode data

preparation and program execution I/O. The full text editing

facilities are available for any program input statement.

Compile Mode

Program compilation and address linkage editing functions are

performed by the Translator (TR). The TR accepts the language

source string from the TWA or some other source text area in

virtual memory. The high level language is converted into a

reverse Polish string and a structured name (identifier) table. The

Polish string, called the Object String, and the Name Table may
be stored in Virtual Memory on separate page lists or on a

common page list. The gross flow of information in the Translation

mode is shown in Fig. 17.

The TR performs a one pass compilation generating the object

Load Mode

The LOAD mode is an input/output text editing mode. Its primary

purpose is for program source loading. In the normal case a

separate page list is used to store the text string. This area is called

the Transient Working Area (TWA).
Three processors work together to perform the text editing

tasks. The Channel Controller (CC) transfers data characters to

and from I/O devices from and to the I/O Buffers in main memory
respectively. When the CC detects control characters in the I/O

stream, it communicates the control information directly to the SS

by way of a control exchange cycle. The CC is a character oriented

processor which services up to 32 processors in a commutating
manner. The CC also has a high speed (block) operating mode
which is priority driven to allow servicing of disk and high speed

tape devices. The block mode is not used in the LOAD or normal

I/O mode.

The Interface Processor (IP) operating on a burst basis empties

498 Part 2
I
Regions of Computer Space

Section 7
I Language-Based Computers

Transient

Working Area

Chapter 30 The SYMBOL Computer 499

OBJECT STRING

500 Part 2
I
Regions of Computer Space Section 7

I Language-Based Computers

group continuation point is accessed from the group link stack.

This process continues until the structure in the IS stack is

exhausted and results in a linked, hierarchical structure.

A similar process takes place when a new structure is assigned

to an existing substructure point. The old structure is deleted (for

later recovery by the memory reclaimer) and the new linear

structure in the stack is structured and linked into the proper
substructure point. All combinations of replacement are allowed:

structure by a structure, field by a field, structure by a field, field

by a structure. The second situation of a field replacing a field can

be a problem in the case where the new field is larger than the old

field because vector expansion must take place (in the opposite

situation, nulls are inserted). The simple solution of providing a

non-hierarchical link out of a new space is inadequate for the

situation where successive words of a large vector are sequentially

expanded. The solution is to link in a new memory group only

after checking if there is no space remaining in the present group
or the next one, and then rewriting the remainder of the present

group adjacent to the new field. In this way, expansion of many
fields of a vector makes use of the newly created space.

The general algorithm for structure referencing is for the RP to

scan back through the IS stack to find the structured link, and

then to proceed upward a subscript at a time, accessing each

vector using special speed-up techniques as appropriate, until the

final subscript is reached. At this point the RP replaces the

subscripted reference in the IS stack with a link to a substructure

or a link to a field if the data level was reached. At any point in

structure referencing, the structure previously stored may not

extend to the referenced point (oversubscripting). The language

rule in this situation is that new space should be created as

required to expand the structure to the subscripted reference

point (fields filled with nulls) and the RP is responsible for

accomplishing this task.

If after structure referencing to the field level, a bound pair of

subscripts appear in the IS stack, the RP scans and counts across

the field, selecting the requisite characters and placing the result

in the IS stack. An error is called if the bound pair is encountered

before the field level is reached.

Arithmetic Processor

The AP is a serial process unit operating on variable length data

consisting of floating-point, normalized, decimal numbers. These

operations are done from high-to-low order to simplify data

handling by allowing the register operations for both string and

numeric processing to be similar. Also, comparisons are faster

because a mismatch is immediately known. Two other important

features are included in the processing hardware: a limit register,

loaded by the IS under command of the language, which causes

processing to terminate at the precision specified, and a precision

controlling mode whereby each operand can be specified to be

accurate to its existing precision and thus control the precision of

the result.

The operations add, subtract, multiply, and divide are per-

formed. For add and subtract, one or the other operand is

streamed through the unit (high-to-low) until the exponents are

aligned, at which time both operands start to stream through.

Since the number representation is magnitude plus sign, a

positive result is desired so that the signs of the operands and the

sign of the operator are combined to control which, if either, of

the operands is streamed through in complemented form. High-
to-low order arithmetic requires a nine's counter [MuUery,

Schauer, and Rice, 1963] to delay output over an intervening

string of nines until a carry/no carry decision is reached. Eventual-

ly, either an empirical end of an operand is reached, or the limit

counter value is reached, or both exact numbers are ended. At

this point, arithmetic is finished and control is turned back to the

IS.

Multiply is accomplished by successive additions or subtrac-

tions followed by a shift until all of the multiplier digits are

exhausted. Only after the fiiU trapezoid of the partial product is

produced is a rounding pass applied to achieve the precision

requirements. The speed-up of adding one to the previous

multiplier digit and subtracting from the partial product if the

multiplier digit is larger than four is used. Of course, with

multiply (and divide) exponents are added (subtracted) so that no

shift of the fractional portions of the operands are required.

Division is accomplished by a gradual non-restoring reduction of

the partial dividend until the precision of the result is equal to the

least precise of the two operands or the limit counter.

Since processing in this system is accomplished serially in a

decimal mode with few speed-ups, the speed of processing is

sharply dependent on the size of the operands. When the limit

counter is set to a small value, say 5, processing can be quite fast

but 99 digit divides can be extremely slow. It is therefore

important that the user selects only as much precision as he really

needs.

The numeric comparisons are performed by the AP as a subtract

operation but terminate immediately upon a mismatch and return

a zero result rather than a one. The IS has the task of combining
the result returned by the AP with the desired comparison

operation to generate the overall result in the IS stack.

Format Processor

The FP unit performs the string JOIN operation, the binary string

operations AND, OR, NOT, the string comparison operations

BEFORE, SAME, AFTER, the FORMAT and MASK operations,

and the automatic type conversion on operands requested by the

IS: numeric to string, string to numeric, and numeric to integer

(used primarily for subscripts). These operations are also per-

formed serially.

Chapter 30
|

The SYMBOL Computer 501

The JOIN operation is performed in the obvious manner of

streaming the second operand onto the tail of the first operand,

forming a single result operand.

The binary operations are performed character-by-character,

performing the required operation by producing 0/1 result

characters, filling in the shorter operand with zeros.

The string comparisons are also performed character-by-

character, comparing successive characters until a mismatch is

found according to the built-in ASCII collate sequence and

returning a 0/1 result.

The FORMAT and MASK operators provide a powerful string

manipulation capability for a wide variety of applications from

payroll and banking forms preparation to system software charac-

ter manipulation. FORMAT is a packed-numeric-to-string opera-

tor that allows the user to describe the format of the result with a

pictorial like character string. The operation is performed in a

serial manner as dictated by the operands. The standard default

conversion from packed numeric form to string is a subset of the

FORMAT operation. MASK is a string-to-string operator similar

to FORMAT. MASK can be used for character insertion, deletion,

and spacing control. It is often used to control or measure the

length of the fields. MASK is also processed in a serial-by-

character manner.

System Supervision

The Load, Compile, Execution, and I/O comprise the basic

processing modes for the system. Three additional modes are

defined for a terminal, oflF-line, on-line idle, and normal comple-
tion. They are all passive modes and differ only in the allowed

transitions that can take place upon an interrupt stimulus. For

example, the normal completion state is the only state from which

the RESTART execution command can be honored. RESTART is

only allowed if the object string were left in a reusable state.

The diagram in Fig. 14 shows a few of the terminal state

transitions. These transitions are significant in that they are all

supported by hardware algorithms. When the control code

corresponding to RUN is received by the SS the transition from

the Load mode to the compile mode can be processed without

software intervention. Many other transitions can occur but they

generally require some system software assistance. The transition

from the Load mode to the Compile mode involves the following

steps. If the IP is active it must be allowed to complete in such a

way that the source string is intact. The task is then removed from

the queue for the IP and added to the queue for the TR. In

addition, the control tables in main memory are initialized for the

TR making available the address of the start of the source string

and the address of the procedure libraries to be used.

A typical task queue is illustrated in Fig. 19. It is comprised of a

linked list of entries (control words). The queue has a pointer to

Queue Top

502 Part 2
I
Regions of Computer Space Section 7

I
language-Based Computers

QUIT

START -

NORMAL COMPLETION

PAGE OUT

•INTERRUPT DUE TO QUIT

I/O COMPLETION

PROCESSING ERROR

SUPERVISOR CALL

Fig. 20. Mode transitions affecting the central processor.

with spooled I/O were desired, it would be necessary to alter the

control process for I/O with a system software procedure. To cause

software to be called for a specific terminal upon an I/O service

request, a specific control bit must be set in the terminal control

word for that channel. This causes an automatic software call to be

generated by the SS.

The software call is handled in SYMBOL by starting a pseudo
terminal operating with the requesting channel number as a

parameter. In this manner the control header tables for the

requesting channel can be operated upon as data. This is

illustrated in Fig. 21 where an interrupt of a specific class causes

the corresponding program specified in a software call table to be

selected and control transferred to the pseudo terminal with the

Software Call Table

Terminal

Zero
Headers

Parameter

Linkage

Terminal '

N
Headers

Interrupt

Fig. 21. Mechanism for handling a software call caused by a

transition interrupt.

parameter TN. Each different class of interrupt maps into a

different control word in the software control table. In this

manner only the software procedure desired will be accessed in

virtual memory. In SYMBOL over 80 different software interrupts

are controlled via the software control table located in the lower

part of main memory. This represents the principal interface

between hardware and system software.

References

Chesley and Smith [1971]; Corbato and Vyssotsky [1965]; Cowart,

Rice, and Lundstrom [1971]; Glaser, Couleur, and Oliver [1965];

Kilbum et al. [1962]; Mazor [1968]; MuUery, Schauer, and Rice

[1963]; Rice and Smith [1971]; Smith [1963, 1968].

The SYMBOL Computer
SYMBOL:
A Major Departure from Classic

Software Dominated von Neumann

Computing Systems^

R. Rice / W. R. Smith

SYMBOL from a Performance Viewpoint

The evaluation phase of SYMBOL IIR is just beginning with the

hardware near completion. In order to obtain a preview of the

'From AFIPS SJCC, 1971, pp. 575-587.

performance a set of measurements has been made on the

hardware.

Basic Operation Rates

The clock period on SYMBOL IIR now stands at 320 nsec and may
be later reduced to about 200 nsec. All measurements were taken

at the 320 nsec period. The basic clock period in SYMBOL IIR

contains long logic chains allowing relatively complex tasks to be

performed. Many of the key logic chains contain 20 to 25 levels of

AND-OR logic. The system uses Fairchild CT|jlL, type I through-

out. The core memory is a 1964 model with a basic 2.5 jxsec cycle.

Due to a semi-serial interface on the core memory it has an

effective cycle of 4 jtsec.

An improved system (referred to as SYMBOL II) has been

studied and has been partially specified. This system is based on

the technology of the experimental system, SYMBOL IIR, but has

been considerably optimized. SYMBOL II is also specified to use

Chapter 30
|

The SYMBOL Computer 503

the latest cost orientate<i hardware technology. Conservative

performance estimates of SYMBOL II will be made to give a

comparison of how the SYMBOL algorithms would stand up in a

contemporary hardware technology design. They will be based on

a clock period of 100 nsec using a circuit family such as CT(ji,L,

type II and an LSI memory with a 200 nsec period. One should

keep in mind that the following comparisons are between

SYMBOL, which is a VFL machine running in a very dynamic
execution time environment, and a more conventional fixed field

machine running a language with the data boundaries determined

at translate time. The former places more demands on the

hardware while the latter shifts the burden of data management to

the user.

For the purposes of comparison SYMBOL IIR will be referred

to as SIIR and SYMBOL II as SII.

Field Processing Operations

SIIR performs all field operations in a VFL serial-by-character

mode. It was always assumed that after system evaluation and

bottle-neck analysis, if warranted, certain operators such as those

shown below would be executed in a more parallel mode by using

additional hardware. SII estimates are based on serial processing

and known algorithm improvements that reduce or do not

materially increase the hardware required.

The following table gives processing times measured on SIIR

and estimated for SII. The execution time values are specified in

microseconds and do not include the instruction fetch time or

single word operand fetching and storing.

SYMBOL IIR Measured Execution Times In /Lisec

Operation SIIR SII

1234+4321
12345678-87654321

50 digits + 50 digits

Convert to floating point 1234

Convert to floating point 12345678

Convert to floating point 50 digits

Compare 12345678,87654321

Compare 12345678,12345670

|abc|join|clef|

|12345678|join|12345678|
1234 format |ZZZ.DD|
1234 format |ZBZBV|
12345.6789 format|'$-*C***C"*.DD|

5.6

504 Part 2
I
Regions of Computer Space Section 7

{ Language-Based Computers

formed. A similar operation was performed on SIIR. The equiva-

lent output statements in both languages are shown in the table

below.

SYMBOL vs. FORTRAN Output Statement Traces

in {Memory Cycles

Language Statement Traced

Est. overhead

not traced

SYMBOL

FORTRAN

OUTPUT 12345.56

FORMAT |D.DDD,oDD|

10

WRITE (6,1 0)x
FORMAT (1x,E9.3)

130

3466 1000

The trace of the FORTRAN statement indicated 1,753 instruc-

tions being executed. Each instruction requires an average of two

memory cycles. The trace program does not trace any of the

supervisor or channel operations so that well over 3,000 and more

likely near 4,500 memory cycles were used in executing the

FORTRAN statement.

Task Control Overhead

In order to measure the overhead for compilation and execution a

program consisting of one CONTINUE statement was executed

on SIIR. This causes a null program to be entered, translated, and

executed and thus places a large demand on any system resources

required, isolating overhead from "useful" actions. All memory
cycles were traced with the following distribution:

Processor

Chapter 30 The SYMBOL Computer 505

"user with a PROBLEM" is the input and the "ANSWER" is the

output. It is assumed that the user has his problem well defined

and has the data available but the data is not yet programmed. The

conversion of his problem to a computable language and the

debugging necessary for correct execution is included in the total

cost of operating an installation.

I.S.U. calculated the total system operation on this basis as

approximately $109,600 per month. The rate and labor costs were

adjusted to normal commercial standards for the calculations.

Both commercial and scientific problems were run in the problem
mix. The following sections discuss the breakdown of the overall

cost.

About 37 percent or $40,000 is used by the problem originator

and/or the professional programmer to convert the problem to a

debugged, high-level language and to obtain answers.

Thirty three percent or $36,000 is required for operating

personnel, keypunch operators, file clerks, systems programmers,

administration, space, power, etc.

Thirty percent of the total pie or $33,000 goes for machine

rental. It is estimated that about one third of the rental expense

goes for direct development of hardware and system software

(perhaps halfand half), one third for sales, service, and application

support, and one third for administrative costs, overhead, and

profit.

The choice of a hardware configuration and its machine

language is the tail wagging the dog. Inexpensive hardware and a

good, easy-to-use programming system can reduce the size (i.e.,

total cost) of the pie but in conventional systems will not

materially alter the relative size of the slices.

In the following text the computing pie is used to illustrate

SYMBOL concepts from a cost point of view. Each major slice will

be fiirther subdivided into its own percentage parts (i.e., each

major slice will be 100 percent of the portion under consideration

and will be divided into its constituent parts).

Figure 2 shows the potential problem expense saving to be

BASIC SAVINGS
USERS TIME

GREATER THROUGHPUT
LESS PROFESSIONAL HELP

AOOED SYMBOL SAVINGS
USER'S TIME

CLEAN LANGUAGE
COMPLETE VARIABILITY

FIELDS.
STRINGS,
STRUCTURES

NO DECLARATIONS FOR
TYPE,
SIZE

SOURCE AND MACHINE
LANGUAGE NEARLY
IDENTICAL

obtained from any good conversation-mode, high-level language,

time-sharing system. It has been estimated that approximately 50

percent ofthe problem expense slice can be saved in reduced user

learning time, increased throughput, less professional program-

ming support required, etc. We estimate the SYMBOL system
will fiirther reduce these costs with its "clean" and "concise"

directly implemented high-level language and simplified operat-

ing system [Chesley and Smith, 1971].

The savings in the operation of an installation comes from four

sources. This is illustrated in Fig. 3. First: A good time-sharing

system will reduce the administrative help such as file clerks,

keypunch operators, etc. It is estimated that this saving can be ten

to fifteen percent of the installation operating expense exclusive of

system rental. The SYMBOL system with conversation-mode

multiprocessing and multiprogramming will also share in this

saving. Second: The "system software" support required in a

conventional installation is a very significant portion of the

expense. Here SYMBOL shows a definite added saving. What

system software remains can be written in the high-level,

general-purpose language and will be easier to write, debug, and

understand later. This will reduce the number of professional

personnel required. Third: The SYMBOL language is directly

implemented in hardware and thus uses less main memory for

"system software." For example, a resident compiler is not

required. In addition, much less program swapping occurs and

thus less virtual memory transfer time is needed. Hardware

execution of algorithms is also faster and results in enhanced

instruction execution speed. These features will require less

programming attention and also provide more throughput per
installation dollar spent. Fourth: The SYMBOL hardware is

designed with modem integrated circuits and large two-layer

printed circuit boards. The total system hardware package is

compact and does not need raised floors, special air conditioning,

or vast amounts of floor space. It is estimated that these SYMBOL
features will reduce installation operating expense by an addition-

al 20-35 percent or a total of 30-50 percent.

BASIC TIMESHARING SAVINGS

FEWER KEYPUNCHERS
FEWER FILE CLERKS

ADDED SYMBOL SAVINGS

FEWER SYSTEM PROGRAMMERS
EASIER APPLICATION PROGRAMS
MORE PERFORMANCE /COST
EASIER FACILITIES

NO RAISED FLOOR
LESS AIR CONDITIONING
SMALLER FLOOR AREA

Fig. 2. Savings in problem expense. Fig. 3. Savings in Instailation operation expense.

506 Part 2
I
Regions of Computer Space Section 7

I
Language-Based Computers

The slice of the computing pie representing the computer

manufacturer's hardware contribution is illustrated in Fig. 4;

approximately seventeen percent of this slice is attributable to

hardware. For large systems the peripheral equipment and the

bulk files can approximate about one half of the total cost. The

main storage is another quarter and the CPU logic is another

quarter. Naturally some variation in these amounts will occur

from installation to installation and for dififerent system types.

The SYMBOL approach saves costs in several ways: The first

area of savings is in the use of large two-layer printed circuit

boards and two-layer printed circuit bases with cam-operated

contacts for all system interconnections.

Except for cables to peripherals and wires used for correction of

design errors and for logical extensions no wire exists in the

system. It is estimated as much as a 50 percent saving will be

achieved over small board, wire-wrap back panel, multi-cabinet

conventional systems. This same technique reduces costs in

terminal equipment but not to such a large degree. We estimate

that three percent of the manufacturer's slice of the pie can be

saved by this fiinctionally-factored, bus-oriented, large printed

circuit board design philosophy. The second way savings are

obtained is in the hardware efficiency gained by the SYMBOL
system. Since most of the normal system software is hard wired,

very little resident main memory is used, thus providing much

larger percentages of main memory for application programs. The

execution of system instructions is done at "clock speeds" in a

"macro" rather than a "micro" manner. This provides much faster

high-powered instruction execution. Finally, more of the system

hardware is simultaneously operating due to the system organiza-

tion which allows multiple jobs to be in the main frame for

(5.8%
TOTAL PIE)

z% SYMBOL swiNos
LESS STOKAOE RCOUKCO
rO« SYSTtH SOfTWARE

^2% SYMBOL uviNos
SIHPLC ELC8ANT PACKAOINa

overlapped execution. We estimate that an additional 2 percent

of the manufecturer's slice of the pie is saved here.

The largest and most important single saving for SYMBOL is in

the "System Software." Figure 5 illustrates this point. Irrespec-

tive of whether the system manufacturer or someone else

produces the software for a conventional computer this large

expense is real. The SYMBOL features directly implemented in

logic (i.e. , hard wired) make unnecessary at least 80 percent of the

conventional system software used in large time-sharing ma-

chines. This represents an estimated 16 percent saving in the

system manufacturer's slice of the computing pie.

The field support ofthe system software is a major expense. The

sheer volume of paper and record keeping to keep current with

the latest changes is a major problem. In the design of the

SYMBOL system this problem was given great attention. In

studying the software delivered with large systems using a

relatively static high-level language, we note that most (if not all)

of the changes made were on the programmed implementation or

were due to programming errors. Many levels of machine and

assembly language programs and machine runs were between the

hardware language and the programmers' source language. This

quite naturally introduces confusion (and errors) either in original

programming or in understanding the hidden rules when using

the system.

It may also be noted that as more and more applications are

programmed in a language it automatically becomes more rigid.

We believe that the "clean," high-level, general-purpose SYM-
BOL language is excellent for most uses. Since direct hardware

implementation requires little field support in the software sense.

USER GENERATED OR
CONTRACT SOFTWARE

Fig. 4. Manufacturer's direct hardware expense. Fig. 5. Manufacturer's system software expense.

Chapter 30
,

The SYMBOL Computer 507

35% POTENTIAL SAVING

USER WITH
I

PROBLEMS

SOLUTIONS

>

POTENTIAL SAVING

Fig. 7. Potential savings witli a good conversation mode liard-

ware/software system.

Fig. 6. iManufacturer's software application expense.

we estimate approximately a six percent saving in the manufactur-

er's support expense. This is illustrated in Fig. 6.

Good service is a must in a large system. The SYMBOL
hardware has been engineered for good reliability and at the same

time easy maintenance. We do not anticipate any added expense
for SYMBOL hardware maintenance over conventional systems
with equivalent storage and logic circuit counts. Our experience
on the SYMBOL model has verified this belief

The previous material has split the computing dollar up in parts

and has described how major savings can be realized with a "total

systems" approach. The SYMBOL techniques described herein

together with good time-sharing, conversation mode practice can

reduce computing costs up to 50 percent. Referring to Fig. 7, one

may visualize how the savings in the whole computing pie add up.

Conclusion'

The traditional boundary between hardware and software has

been weakened during the past ten years and is due for a

significant shift beyond the token improvements. It is believed

that in SYMBOL a major step towards significantly more capable
hardware has been attained.

The SYMBOL system is now entering an extensive evaluation

phase where the system's strengths and weaknesses will become
more apparent through actual day to day usage. The developers of

'This conclusion is taken from the paper by Smith et al. that makes up the

first part of this chapter.

the system have gained much insight into the merits of each of the

approaches taken. The overall approach to memory management
is considered a breakthrough. The moving of data attributes from

instructions to the data is considered ftindamental.

No claim is made that the SYMBOL system has been balanced

for optimum performance and use of hardware. Certain critical

areas of memory management and system supervision are felt to

be 10 to 100 times more eflRcient than conventional means.

Certain aspects of structure referencing are a major advance over

software list processors but fall short ofbeing competitive for some

types of large array referencing. Many of the weaknesses in this

first SYMBOL model were solved by the designers too late to be

factored into the actual hardware. Many other aspects of the

system such as the paging and system supervisor algorithms can

be evaluated after significant usage experience.
The computing professionals have debated for many years the

questions: Can a compiler be developed in hardware? Can the

heart of system supervision be committed to hardware? Can data

space management be taken over by hardware? Can hardware be

designed to take over major software functions? Can complex
hardware be debugged? These and many other questions have

been positively answered with the running SYMBOL system. The
most significant part ofthe entire project is that the concepts were

reduced to full scale, operating hardware.

References

Chesley and Smith [1971]; Rice [1967].

