
Chapter 29

The Tandem 16:

A Fault-Tolerant Computing System^

James A. Katzman

Summary A fault-tolerant computer architecture is examined that is

commercially available today and installed in many industries. The

hardware is examined in this paper and the software is examined in the

companion paper.

Introduction

The increasing need for businesses to go on-line is stimulating a

requirement for cost efiFective computer systems having continu-

ous availability [Katzman, 1977; Tandem, 1976]. Certain applica-

tions such as automatic toll billing for telephone systems lose

money each minute the system is down, and the losses are

irrecoverable. Systems commercially available today have met a

necessary requirement of multiprocessing but not the sufficient

conditions for fault-tolerant computing.
The greatest dollar volumes spent on systems needing these

fault-tolerant capabilities are in the commercial on-line, data base

transaction, and terminal oriented applications. The design of the

Tandem 16 NonStop^ system was directed toward oflFering the

commercial market an off-the-shelf, general purpose system with

at least an order of magnitude better availability than existing

off-the-shelf systems without charging a premium. This was

accomplished by using a top down system design approach, thus

avoiding the shortcomings of the systems currently addressing the

fault-tolerant market.

Except for some very expensive special systems developed by
the military, universities, and some computer manufacturers in

limited quantities, no commercially available systems have been

designed for continous availability. Some systems such as the ones

designed by ROLM have been designed for high MTBF by

"ruggedizing," but typically computers have been designed to be

in a monolithic, single processor environment. As certain applica-

tions demanded continuous availability, manufacturers recog-

nized that a multiprocessor system was necessary to meet the

demands for availability. In order to preserve previous develop-

ment effort and compatibility, manufacturers invented awkward

devices such as I/O channel switches and interprocessor commu-

'© 1977. Reprinted with the express permission of Tandem Computers

Inc., Cupertino, Calif

^NonStop is a trademark of Tandem Computers.

nication adapters to retrofit existing hardware. The basic flaw in

this effort is that only multiprocessing was achieved. While that is

necessary for continuously available systems, it is far from

sufficient.

Single points of failure flourish in these past architectures (Fig.

I). A power supply failure in the I/O bus switch or a single

integrated circuit (IC) package failure in any I/O controller on the

I/O channel emanating from the I/O bus switch will cause the

entire system to &il. Other architectures have used a common

memory for interprocessor communications, creating another

single point of failure. Typically such systems have not even

approached the problem of on-line maintenance, redundant

cooling, or a power distribution system that allows for brownout

conditions. In today's marketplace, many of the applications of

fault-tolerant systems do not allow any down time for repair.

Expansion of a system such as the one in Fig. 1 is prohibitively

expensive. A three processor system, strongly connected in a

redundant fashion, would require twelve interprocessor links on

the I/O channels; five processors would need forty links; for n

processors, 2n(n-l) links are required. These links often consist of

100-200 IC packages and require entire circuit boards priced

between $6,000 and $10,000 each. Using the I/O channel in this

manner limits the I/O capabilities as a further undesirable side

effect. The resulting hardware changes for expansion, if undertak-

en, are typically dwarfed in magnitude by the software changes

Chapter 29 The Tandem 16 471

needed when applications are to be geographically changed or

expanded.
This paper describes the Tandem 16 architecture at the lowest

level (the hardware). Section 1 deals with the overall system

organization and packaging. Section 2 explains the processor

module organization and its attachment to the interprocessor

communications system. Section 3 discusses the I/O system

organization. Section 4 discusses power, packaging, and on-line

maintenance aspects that are not covered elsewhere in the paper.

1. System Organization

The Tandem 16 NonStop system is organized around three basic

elements: the processor module, dual-ported I/O controllers, and

the DC power distribution system (Figs. 2 and 3). The processors

are interconnected by a dual-interprocessor bus system: the

Dynabus; the I/O controllers are each connected with two

independent I/O channels, one to each port; and the power
distribution system is integrated with the modular packaging of

the system.

The system design goal is two-fold: (1) to continue operation of

the system through any single failure, and (2) to be able to repair

Dynabus

472 Part 2
I Regions of Computer Space Section 6

{

Fault-Tolerant Systems

supply. If a failed module is to be replaced in this section its

associated power supply is shut ofiF, the module is replaced, and

the power supply is turned on. Each card cage slot in the I/O card

cage is powered by two different power supplies. Each of the I/O

controllers is connected via its dual-port arrangement to two

processors. Each of those processors has its own power supply;

usually, but not necessarily, those two supplies are the ones that

power the I/O controller (Fig. 3). Each slot in the I/O card cage
can be powered down by a corresponding switch disconnecting

power from the slot from both supplies without affecting power to

the remainder of the system. Therefore, if a power supply fails, or

tf one is shut down to repair a processor, no I/O controllers are

affected.

The dual-power sourcing to the I/O controllers was originally

designed using relay switching. This plan was abandoned for

several reasons: (a) to contend with relay failure modes is difficult;

(b) the number of contact bounces on a switch-over is neither

uniform nor predictable, making it difficult for the operating

system to handle power-on interrupts from the I/O controllers;

and (c) during the switch-over, controllers do lose power, and

while most controllers are software-restartable, communications

controllers hang up their communications lines. We therefore

devised a diode current sharing scheme whereby I/O controllers

are constantly drawing current from two supplies simultaneously.

If a power supply fails, all the current for a given controller

is supplied by the second power supply. There is also circuitry

to provide for a controlled ramping of current draw on turn-on

and turn-off so there are no instantaneous power demands

from a given supply causing a potential momentary dip in supply

voltage.

Both fans and power supplies are electrically connected using

quick disconnect connectors to speed replacement upon failure.

No tools are required to replace a power supply. A screwdriver is

all that is needed to replace a fan. Both replacements take less

than 5 minutes.

Interconnections

Physical interconnection is done both using front edge connectors

and back-planes. Communication within a processor module (e.g. ,

between the CPU and main memory) takes place over four 50 pin

front edge connectors using flat ribbon cable. Interprocessor

communication takes place over the Dynabus on the back-plane

also utilizing ribbon cable. The I/O controllers use etch trace on

the back-plane for communication among PC cards of a multicard

controller. The I/O channels are back-plane ribbon cable connec-

tions between the processors and the I/O controllers.

Peripheral I/O devices are connected via shielded round cable

either to a bulk-head patch panel or directly to the front edge
connectors of the I/O controllers. If a patch panel is used, then

there is a connection using round cables between the patch panel
and the front edge connectors of the I/O controllers.

Power is distributed using a DC power distribution scheme.

Physically, AC is brought in through a filtering and phase splitting

distribution box. Pigtails connect the AC distribution box to one of

the input connectors of a power supply. The DC power from the

supply is routed through a cable harness to a laminated bus bar

arrangement which distributes power on the back-planes to both

processors and I/O controllers.

2. Processor Module Organization

The processor (Fig. 5) includes a 16 bit CPU, main memory, the

Dynabus interface control and an I/O channel. Physically the

CPU, I/O channel and Dynabus control consists of two PC boards

16 inches by 18 inches, each containing approximately 300 IC

packages. Schottky TTL circuitry is used. Up to 512K bytes of

main memory is available utilizing core or semiconductor technol-

ogy. Core memory boards hold 32K 17-bit words, and each

occupies two card slots because of the height of the core stack.

Semiconductor memory is currently implemented utilizing 16

pin, 4K dynamic RAMs. These memory boards contain 48K 22-bit

words per board and occupy only one card slot and are therefore

three times denser than core.

The processor module is viewed by the user as a 16-bit,

stack-oriented processor, with a demand paging, virtual memory
system capable of supporting multiprogramming.

The CPU

The CPU is a microprogrammed processor consisting of a bank of

8 registers which can be used as general purpose registers, as a

LIFO register stack, or for indexing; an ALU; a shifter; two

memory stack management registers; program control registers

Ybus
^

Central

processor
unit

Interprocessor

bus
control

^J

Processor module'

Memory I/O channel

control

I

I/O channel

Fig. 5. Tandem 16 processor organization.

Chapter 29
|

The Tandem 16 473

(e.g., program counter, instruction register, environment or

status register, and a next instruction register for instruction

prefetching); scratch pad registers available only to the micropro-

grammer; and several other miscellaneous flags and counters for

the microprogrammer.
The microprogram is stored in read-only memory and is

organized in 512-word sectors of 32-bit words. The microinstruc-

tion has difierent formats for branching, sequential functions, and

immediate operand operations. The Tandem 16 instruction set

occupies 512 words with the decimal arithmetic option occupying
another 512 words. The address space for the microprogram is 2K
words.

The microprocessor has a 100 ns cycle time and is a two stage

pipelined microprocessor; i.e., all microinstructions take two

cycles to execute but one completes each cycle. In the first stage of

the pipeline any two operands are selected by two source fields in

the microinstruction for loading into the ALU input registers. In

the second stage of the pipeline the ALU performs a primitive

operation on the operands placed in the ALU input registers

during the previous cycle and performs a shift operation on the

results. In parallel, a miscellaneous operation such as a condition

code setting or a counter increment can be done, the result can be

stored in any CPU register or dispatched to the memory system or

I/O channel, and a condition test made on the results. Each of

these parallel operations is controlled by a separate control field in

the microinstruction.

The basic set of 123 machine instructions includes arithmetic

operations (add, subtract, etc.), logical operations (and, or,

exclusive or), bit deposit, block (multiple element) moves/

compares/scans, procedure calls and exits, interprocessor SENDs,
and I/O operations. All instructions are 16 bits in length. The

decimal instruction set provides an additional 20 instructions

dealing with four-word operands.

The interrupt system has 16 major interrupt levels which

include interprocessor bus data received, I/O transfer completion,

memory error, interval timer, page fault, privileged instruction

violation, etc.

Provision is made for several events to cause microinterrupts.

They are entirely handled by the CPU's microprocessor without

causing an interrupt to the operating system. One event, for

example, is the receipt of a 16 word packet over the Dynabus. A

packet is the primitive unit of data which is transferred over the

Dynabus for interprocessor communication. The microproces-

sor puts the information in a predetermined area of memory
and does not cause a system interrupt until the entire message
is received.

The register stack is used for most arithmetic operations and for

holding parameters for block instructions (moves/compares/scans)
which need the parameters updated dynamically so that the

instructions may be interruptable and restarted. The 8-register

stack is a "wraparound" stack and is not logically connected to the

memory stack.

Main Memory

Main memory is organized in physical pages of IK words of 16

bits/word. Up to 256K words of memory may be attached to a

processor. In the core memory systems there is a parity bit for

single error detection, and in semiconductor memory systems

there are 6 check bits/word to provide single error correction and

double error detection. Due to the relative reliability of these two

technologies, we have found that semiconductor memory, without

error correction, is much less reliable than core, and that with

error correction, it is somewhat more reliable than core. Battery

backup provides short term non-volatility to the semiconductor

memory system for utility power outage considerations.

It might be noted that there are some memory systems using a

21 bit error correction scheme (5 check bits on a 16 bit data word

instead of 6). While 5 bits are enough to correct all single bit

errors, it does not detect approximately Vs of the possible double

bit error combinations. In these conditions, this 5 check bit

scheme will incorrectly deduce that some bit (neither of the bits

actually in error) is incorrect and correctable. The scheme will

then correct this bit (actually causing 3 bits to be in error), and

deliver it to the system as "good" reporting a correctable memory
error.

Memory is logically divided into 4 address spaces (Fig. 6).

These are the virtual address spaces of the machine; both the

system and the user have a code space and a data space. The code

space is unmodifiable and the data space can be viewed either as a

stack or a random access memory, depending on the addresssing

mode used. Each of these virtual address spaces is 64K words

long, and is addressed by a 16 bit virtual address.

The physical memory address is 18 bits with conversion from

the virtual address to physical address accomplished through a

mapping scheme. Four maps are provided, one for each logical

address space; each map consists of64 entries one for each page in

the virtual address space. The maps are implemented in 50 ns

access bipolar static RAM. The map access and main memory
error correction is included in the 500 ns cycle time for semicon-

ductor memory systems.

The unmodifiable code area provides reentrant, recursive, and

sharable code. The data space (Fig. 7) can be referenced relative

to address (global data or G-H addressing), or relative to the

memory stack management registers in the CPU.
The lowest level language provided on the Tandem 16 system is

T/TAL, a high-level, block-structured, ALGOL-like language
which provides structures to get at the more efficient machine

instructions. The basic program unit in T/TAL is the PROCE-
DURE. Unlike ALGOL, there is no outer block, but rather a main

474 Part 2
|
Regions of Computer Space Section 6

|

Fauit-Toierant Systems

Logical

address

65.525

Logical

page no.

1

2

3

-

Chapter 29 The Tandem 16 475

Memory reference

instruction in code area:

data

area

9 10 11 12 13 14 16—
r

'G' REL

Addressing mode and

displacement from base

'G'

(256 words)
global

data

G [0] ! base

'L' minus

(31 words)

'L' plus

(128 words)

'S' minus

(32 words)

local

data

G [2551

L(-31)

L (01 ! base

L [1271

Top of

stack area

- Sl-311

S [0] I base

Fig. 7. Tandem 16 data space.

E3EEHE^

CPU

Send
10. Y-

z
Microprocessor

X
Memory

%\

processor

number
1

Processor 1

Bus

control

^=^

X
INQ

Y
INQ

Microprocessor

Micro-interrupt

when buffer

full

* 1

rMemory Processor .

number ^^^—-.^.

Ch
r—T

Buffer Address I

1, Y

Up to 32 buffers

(2 buses • 16 processors)

Processor 10

Fig. 8. Tandem 16 dynabus interface and control.

using this redundant direct shared bus (DSB) configuration

[Anderson and Jensen, 1975].

For any given interprocessor data transfer, one processor is the

sender and the other the receiver. Before a processor can receive

data over an interprocessor bus, the operating system must

configure an entry in a table (Fig. 9) known as the Bus Receive

Table (BRT). Each BRT entry contains the address where the

incoming data is to be stored and the number of words expected.
To transfer data over a bus, a SEND instruction is executed in

the sending processor, which specifies the bus to be used, the

intended receiver, and the number of words to be sent. The

sending processor's CPU stays in the SEND instruction until the

data transfer is completed. Up to 65,535 words can be sent in a

single SEND instruction. While the sending processor is execut-

ing the SEND instruction, the Dynabus interface control logic in

the receiving processor is storing the data away according to the

appropriate BRT entry. In the receiving processor this occurs

simultaneously with program execution.

The message is divided into packets of 15 information words and
an LRC check word. The sending processor first fills its outgoing

queue with these packets, requests a bus transfer, and transmits

upon grant of the bus by the interprocessor bus controller. The

receiving processor fills the incoming queue associated with the

476 Part 2
I
Regions of Computer Space Section 6

{

Fault-Tolerant Systems

Bus receive

table

(system data)

CPU 0-^

<

Bus Y -

1

3<

»1

CPU 0-<^

KK
3<

,2X

,5<

SG(%700)

SG(%702)
BRT entry

SG(%700 + 406+ 2P)

Transfer address

SG(%736)

SG(%740I

1

Chapter 29 I The Tandem 16 477

I/O control

table

system data

Unit

1

2

3

4

5

6

7

Unit

1

2

3

4

5

6

7

r Unit

1

2

3

4

5

6

7

SG (% 1000) ,__, !,,..„,„,IOC table entry

SGI% 10041 SG (%1000 + % IOC + 2ul

Transfer address

Byte count

SG (% 10201

1 3 4 10

P ^ protect bit (1 - output only)

CH ERR = channel error
SG(%1016) o=no error

1=protect violation

2=PAD in violation

3=channet parity violation

4=time out

5=map absent bit detected

6=map parity error

7=uncorrectable memory error

Note: '%' means base 8 notation

SG (% 1200)

Fig. 10. I/O control table.

than an exhausted byte count, e.g. , a terminal controller receiving

an end-of-page character from a page mode terminal, or I/O

channel error condition, or a disc pack being mounted.

Dual-Port Controllers

The dual-ported I/O device controllers provide the interface

between the Tandem 16 standard I/O channel and a variety of

peripheral devices using distinct interfaces. While the I/O

controllers are vastly different, there is a commonality among
them that folds them into the Tandem 16 NonStop architecture.

Each controller contains two independent I/O channel ports

implemented by IC packages which are physically separate from

each other so that no interface chip can simultaneously cause

failure of both ports. Each port of each controller has a 5-bit

configurable controller number, and interrupt priority setting.

These settings can be different on each port. The only require-

ment is that each port attached to an I/O channel must be assigned

a controller number and priority distinct from controller numbers

and priorities of other ports attached to the same I/O channel.

Each controller has a PON (power-on) circuit which clamps its

output to ground whenever the controller's DC supply voltage is

not within regulation. The PON circuit has hysteresis in it so that

it will not oscillate if the power should hover near the limit of

regulation. When the power is within regulation, the output ofthe

PON circuit is at a TTL "1" level. A power-on condition causes a

controller reset and also gives an interrupt to one of the two

processors to which it is attached. The output of the PON circuit is

also used to enable all the I/O channel bus transceivers so that a

controller being powered down will not cause interference on the

I/O channels during the power transient. This is possible because

the PON circuit operates with the supply voltage as low as . 2 volts

and special transceivers are used which correctly stay in a high

impedance state as long as the control enable is at a logical "0."

Logically only one of the two ports of an I/O controller is active

and the other port is utilized only in the event of a path failure to

the primary port. There is an "ownership" bit (Fig. 11) indicating

to each port if it is the primary port or the alternate. Ownership is

changed only by the operating system issuing a TAKE OWNER-
SHIP I/O command. Executing this special command causes the

I/O controller to swap its primary and alternate port designation

and to do a controller reset. Any attempt to use a controller which

is not owned by a given processor will result in an ownership
violation. If a processor determines that a given controller is

malfunctioning on its I/O channel, it can issue a DISABLE PORT
command that logically disconnects the port from that I/O

controller. This does not affect the ownership status. That way, if

the problem is within the port, the alternate path can be used, but

if the problem is in the common portion of the controller,

ownership is not forced upon the other processor.

A controller signals an interrupt on the I/O channel if the

channel has indicated an exhausted transfer count, if the control-

ler terminates the transfer prematurely, or for attention purposes.

When simultaneous interrupts occur on an I/O channel, a

priority scheme determines which interrupt is handled first.

There are two levels of priorities, designated "rank 0" and "rank

1." Each rank has up to 16 controllers assigned to it. Jumper wires

on each controller determine the rank and position within the

rank (positions to 15). The I/O channel issues a rank interrupt

poll cycle and each controller assigned to rank can place an

interrupt request, if it needs service, on a dedicated data bit of the

I/O channel determined by the jumper wires. If there are no

controllers on rank requiring service, the I/O channel issues the

interrupt poll cycle for rank 1. Note, only 32 controllers can be

assigned to a given channel and each one has a unique rank and

478 Part 2
I
Regions of Computer Space Section 6 Fault-Tolerant Systems

IOC

^

All data and

control

information

transfers occur

via the

owned side.

Typically,

ownership is not

changed unless

a failure occurs.

CPUO

Ownership is taken by

CPU when a "take

ownership" is issued

to controller 3.
A command
to the

"unowned"
side is

rejected with

a "device is

owned by
other port"

status.

If necessary, CPU 2

can take ownership

away from CPU

by issuing a "take

ownership" to

controller 17.

Fig. 11. Ownership circuitry.

position designation. The highest priority controller is granted

access to the interrupt system. Thus a radial polling technique

allows the processor to resolve 32 difiFerent controller priorities in

just two poll cycles. Each port of a controller has a separate set of

configuration jumpers so that a controller can have different

priorities on its primary and alternate path.

Controller Bu£Fer Considerations

In the design of the Tandem 16 I/O system, a lot of attention was

paid to the overrun problem. While overruns are possible on this

system, they have been made a rare occurrence. Each I/O

controller has 3 configurable settings: the I/O controller number,

the interrupt priority, and buffer stress threshold reconnect

setting.

Each I/O controller is buffered to some extent. The asynchro-

nous terminal controller has 2 bytes of buffering, while the disc

controller has 4K bytes of buffering. Considerations of device

transfer rate, channel transfer rate, the individual controller's

buffer depth, the controller's reconnect priority, and a given

channel's I/O complement can be used to determine the buffer's

depth (stress threshold) at which a reconnect request should be

made to the channel to minimize the chance of overrun. Each

controller with significant buffering (more than 32 bytes) has a

configurable stress threshold. Buffer stress is defined as the

number of cells full on an input operation, and the number of cells

empty on output operations. In general, the I/O channel relieves

stress while the I/O device generates more stress. Therefore the

higher the stress, the more the buffer needs relief from the I/O

channel, regardless of the direction of data transfer.

Tandem has developed a program which takes a system

configuration and determines the appropriate stress threshold

settings needed to guarantee no data overruns. Since reconnect

overhead time is known, and all transfers on the I/O bus take

place at memory speed, and the upper bound of the block length

is known for each type of controller, it is a deterministic function

as to whether or not an overrun is possible. If it is impossible to

generate a no-overrun configuration, the program will output a

minimum-overrun threshold setting. Most times, however, it is

possible to iterate on the configuration until threshold settings can

be determined that prevent overruns.

Disc Controller Considerations

The greatest fear that an on-line system user has is that "the data

base is down" [Dolotta et al., 1976]. Many of these users are

willing to pay the premium of having duplicated or "mirrored"

data bases in case a disc drive fails. To meet this requirement.

Tandem provides automatic mirroring of data bases.

A disc volume is a set of data contained on one spindle or one

removable disc pack. A user may declare any of the disc volumes

as mirrored pairs at system generation time (Fig. 12). The system

then maintains these pairs so they always contain identical data.

Thus protection is achieved for a single drive failure. Each disc

drive in the system may be dual-ported. Each port of a disc drive

is connected to an independent disc controller. Each of the disc

controllers is also dual-ported and connected between two

processors. A string of up to 8 drives (4 mirrored pairs) can be

supported by a pair of controllers in this manner.

Note that in this configuration there are many paths to any

given data and that data can be retrieved regardless of any single

disc drive failure, disc controller failure, power supply failure,

processor failure, or I/O channel failure.

The disc controller is buffered for a maximum length record

which provides several features important in an on-line system.

First, the disc controller is absolutely immune to overruns.

Second, data to be written on two drives need be transferred over

the I/O channel only once. The data may then be posted twice

from the controller's internal buffer. Thus the channel's data

transfer capacity is little impaired by mirrored volumes.

This disc controller uses a Fire code [Peterson, 1961] for burst

error correction and detection. It can correct 11 bit bursts in the

controller's buffer before transmission to the channel. Since

overlapped seeks are allowed by the controller, when data is to be

Chapter 29 The Tandem 16 479

"I r

Processor

5

xn

Disc

controller a

L!=C>
Disc

controller <^

Fig. 12. Tandem 16 disc subsystem organization.

read from a mirrored pair it can be read from the drive which has

its arm closest to the data cyhnder. It is interesting to note that

since the majority of transactions in an on-line system are reads,

mirrored volumes actually can increase performance.

NonStop I/O System Considerations

The I/O channel interface consists of a two byte data bus and

control signals. All data transferred over the bus is parity checked

in both directions, and errors are reported via the interrupt

system. A watchdog timer in the I/O channel detects if a

non-existent I/O controller has been addressed, or if a controller

stops responding during an I/O sequence.
The data transfer byte count word in the IOC entry contains

four status bits including a protect bit. When this bit is set to "1
"

only output transfers are permitted to this device.

Because I/O controllers are connected between two indepen-

dent I/O channels, it is very important that word count, buffer

address, and direction of transfer are controlled by the processor

instead of within the controller. If that information were to be

kept in the controller, a single failure could cause both processors

to which it was attached to fail. Consider what would happen if a

byte count register was located in the controller and was stuck in

such a situation that the count could not decrement to zero on an

input transfer. It would be possible to overwrite the buffer and

cause system tables to become meaningless. The error would

propagate to the other processor upon discovery that the first

processor was no longer operating.

Other error conditions that the channel checks for are violations

of I/O protocol, attempts to transfer to absent pages (it is the

operating system's responsibility to "tack down" the virtual pages

used for I/O buffering), uncorrectable memory errors, and map
parity errors.

4. Power, Packaging, On-Line Maintenance

The Tandem 16 power supply has 3 sections: a 5 volt interruptible

section, a 5 volt uninterruptible section, and a 12-15 volt

uninterruptible section. The interruptible section will stop sup-

plying DC power when AC is lost while the uninterruptible

sections will continue to supply DC power. The interruptible

section powers I/O controllers and that portion of a processor

which is not related to memory refresh operation. The uninter-

ruptible sections provide power for the memory array and refresh

circuitry. The 5 volt sections are switching regulated supplies

while the 12-15 volt section is linearly regulated. The uninter-

ruptible sections have a provision for a battery attachment so that

in case of utility power failure, memory contents are kept for 1.5

to 4 hours, depending on the amount of memory attached to the

supply.

The power supply accepts AC input of 110 or 220 volts ±20% to

provide brownout insensitivity. At nominal line conditions, over

30 msec of ridethrough is provided by storage capacitors. A

power-fail warning signal is provided when there is at least 5 msec

of regulated power remaining so that the processor can go through

an orderly shut down. Some users must remain operational

throtgh utility power failure and have generator systems which

provide continuous AC power for the entire system, including

peripheral devices.

The power-fail warning scheme in the Tandem 16 power supply

monitors charge in the storage capacitors rather than monitoring

loss of AC peaks as is conventionally done. This has the advantage

that the 5 msec to do a power shutdown sequence in the processor

is guaranteed even if it occurs after a brownout period.

The power supply provides all other prudent features required

in a computer system, such as over voltage and over current

protection, and over temperature protection.

480 Part 2
I
Regions of Computer Space Section 6

|

Fault-Tolerant Systems

The power-up sequencing on disc drives has been implemented
with independent rather than daisy chained circuits. In the daisy

chained approach, one bad sequencer circuit can cause the

remaining drives in the chain not to sequence up after a power
failure.

Further Packaging and On-Line Maintenance Considerations

Modularity is a key concept in the Tandem 16 system. The

maintenance philosophy is to make all repairs by module replace-

ment at the user site without making the system unavailable to the

user. Therefore the back-planes, power supplies, fans, and I/O

channels, as well as the PC cards, are modular and easily

replaceable. Thumb screws are used when they can be so that a

minimum of tools are needed for repair. The package is designed

so that there is easy access to all modules.

Processors and I/O controllers not only can be replaced on-line,

but added on-line without system interruption if expansion is

planned, all without.application software being changed.

Conclusion

The contribution ofthe Tandem 16 system lies in the synthesis ofa

system to directly address the need of the NonStop application

marketplace. By avoiding the "onus of compatibility" to any

previous system, an architecture could be designed from

"scratch" that was "clean" and efficient.

The system goals have been met to a large degree. Systems
have been shipped containing two to ten processors. Many
application programs are on-line and running. They recover from

failures, and stay up continuously.

References

Anderson and Jensen [1975]; Bartlett [1978]; Dolotta et al. [1976];

Katzman [1977]; Locks [1973]; Mil 217 [1965]; Peterson [1961];

Tandem [1976].

The Tandem 16:

A "Nonstop" Operating System^

Joel F. Bartlett

Summary The Tandem/16 computer system is an attempt at providing a

general-purpose, multiple-computer system which is at least one order of

magnitude more reliable than conventional commercial offerings.

Through software abstractions a multiple-computer structure, desirable

for failure tolerance, is transformed into something approaching a

symmetric multiprocessor, desirable for programming ease. Section 1 of

this paper provides an overview of the hardware structure. In Sec. 2 are

found the design goals for the operating system, "Guardian." Section 3

provides a bottom-up view of Guardian. ^

1 . Introduction

1.1 Background

On-line computer processing has become a way of life for many
businesses. As they make the transition from manual or batch

methods to on-line systems, they become increasingly vulnerable

'Reprinted with the express permission of Tandem Computers Inc.

"NonStop" is a trademark of Tandem Computers Inc.

to computer failures. Whereas in a batch system the direct costs of

a failure might simply be increased overtime for the operations

staff, a failure of an on-line system results in immediate business

losses.

1.2 System Overview

The Tandem/16 [Katzman, 1977; Tandem, 1976] was designed to

provide a system for on-line applications that would be significant-

ly more reliable than currently available commercial computer

systems. The hardware structure consists of multiple processor

modules interconnected by redundant interprocessor buses. A
PMS [Bell and Newell, 1971] definition of the hardware is found

in Fig. 1.

Each processor has its own power supply, memory, and I/O

channel and is connected to all other processors by redundant

interprocessor buses. Each I/O controller is redundantly powered
and connected to two different I/O channels. As a result, any

interprocessor bus failure does not affect the ability of a processor

to communicate with any other processor. The failure of an I/O

channel or of a processor does not cause the loss of an I/O device.

Likewise, the failure ofa module (processor or I/O controller) does

not disable any other module or disable any inter-module

communication. Finally, certain I/O devices such as disc drives

may be connected to two different I/O controllers, and disc drives

may in turn be duplicated such that the failure of an I/O controller

or disc drive will not result in loss of data.

Chapter 29 The Tandem 16 481

482 Part 2 Regions of Computer Space Section 6
j

Fauit-Tolerant Systems

I/O controllers, I/O devices, and processor modules consisting ofa

processor, memory, and a power supply. These redundant

modules are in turn interconnected by redundant buses. Error

detection is provided on all communication paths and error

correction is provided within each processor's memory. The

hardware does not concern itselfwith the selection ofcommunica-

tion paths or the assignment of tasks to specific modules.

The first abstraction provided is that of the process. Each

processor module may have one or more processes residing in it.

A process is initially created in a specific processor and may not

execute in another processor. Each process has an execution

priority assigned to it. Processor time is allocated on a strict

priority basis to the highest priority ready process.

Process synchronization primitives include "counting sema-

phores" and process local "event" flags. Semaphore operations are

performed via the functions PSEM and VSEM, corresponding to

Dijkstra's P and V operations. Semaphores may only be used for

synchronization between processes within the same processor.

They are typically used to control access to resources such as

resident memory bufiers, message control blocks, and I/O control-

lers.

When certain low-level actions such as device interrupts,

processor power-on, message completion or message arrival

occur, they result in "event" flags being set for the appropriate

process. A process may wait for one or more events to occur via

the function WAIT. The process is activated as soon as the first

WAITed for event occurs. Events are signaled via the function

AWAKE. Event signals are queued using a "wake up waiting"

mechanism so that they are not lost if the event is signaled when

the process is not waiting on it. Like semaphores, event signals

may not be passed between processors. Event flags are prede-

fined for eight different events and may not be redefined.

When a process blocks itself to wait for some event to occur or

for a semaphore to be allocated to it, it may specify a maximum
time to block. If the time limit expires and the event has not

occurred or the resource has not been obtained, then the process

will continue execution but an error condition will be returned to

it. This timeout allows "watch dog" timers to be easily placed on

device interrupts or on resource allocations where a failure may
occur.

Each process in the system has a unique identifier or "proces-

sid" in the form: <cpu#, process #>, which allows it to be

referenced on a system-wide basis. This leads to the next

abstraction, the message system, which provides a processor-

independent, failure-tolerant method for interprocess communi-

cation.

3.2 Messages

The message system provides five primitive operations which can

be illustrated in the context of a process making a request to some

server process (Fig. 2). The process' request for service will send a

message to the appropriate server process via the procedure

LINK. The message will consist of parameters denoting the type

of request and any needed data. The message will be queued for

the server process, setting an event flag, and then the requestor

process may continue executing.

When the server process wishes to check for any messages, it

calls LISTEN. LISTEN returns the first message queued or an

indication that no messages are queued. The server process will

then obtain a copy of the requestor's data by calling the procedure

READLINK.
Next, the server process will process the request. The status of

the operation and any result will then be returned by the

WRITELINK procedure, which will signal the requestor process

via another event flag. Finally, the requestor process will

complete its end of the transaction by calling BREAKLINK.
A communications protocol was defined for the interprocessor

buses that would tolerate any single bus error during the

execution of any message system primitive. This design assures

that a communications failure wiU occur ifand only if the sender or

receiver processes or their processors fail. Any bus errors which

occur during a message system operation will be automatically

corrected in a manner transparent to the communicating pro-

cesses and logged on the system console. The interprocessor

buses are not used for communication between processes in the

same processor, which can be done faster in memory. However,

the processes involved in the message transfer are unable to

detect this difierence.

The message system is designed such that resources needed for

message transmission (control blocks) are obtained at the start of a

message transfer request. Once LINK has been successfully

completed, both processes are assured that sufficient resources

are in hand to be able to complete the message transfer.

Furthermore, a process may reserve control blocks to guarantee

that it will always be able to send messages to process a request

Chapter 29 I The Tandem 16 483

that it picks up from its message queue. Such resource controls

assure that deadlocks can be prevented in complex producer/
consumer interactions, if the programmer correctly analyzes and

anticipates potential deadlocks within the application.

3.3 Process-Pairs

With the implementation of processes and messages, the system is

no longer seen as separate modules. Instead, the system can be
viewed as a set of processes which may interact via messages in

any arbitrary manner, as shown in Fig. 3.

By defining messages as the only legitimate method for

process-to-process interaction, interprocess communication is not

limited by the multiple-computer organization of the system. The
system then starts to take on the appearance of a true multipro-
cessor. Processor boundaries have been blurred, but I/O devices

are still not accessible to all processes.

System-wide access to I/O devices is provided by the mecha-
nism of "process-pairs." An I/O process-pair consists of two

cooperating processes located in two different processors that

control a particular I/O device. One of the processes will be
considered the "primary" and one will be considered the "backup."
The primary process handles requests sent to it and controls the
I/O device. When a request for an operation such as a file open or

close occurs, the primary will send this information to the backup
process via the message system. These "checkpoints" assure that

the backup process will have all information needed to take over
control of the device in the event of an I/O channel error or a

failure of the primary process' processor. A process-pair for a

redundantly-recorded disc volume is illustrated in Fig. 4.

Process Process

Process Process

Primary

process -checkpoints-
Backup
process

Fig. 3. System structure after the addition of processes and
messages.

Fig. 4. Process-pair for a redundantly recorded disc voiume.

Because of the distributed nature of the system, it is not

possible to provide a block of "driver" code that could be called

directly to access the device. While potentially more efiRcient,

such an approach would preclude access to every device in the

system by every process in the system.
The I/O process-pair and associated I/O device(s) are known by

a logical device name such as "$DISC1" or by a logical device

number rather than by the processid of either process. I/O device

names are mapped to the appropriate processes via the logical
device table (LDT) in every processor, which supplies two

processids for each device. A message request made on the basis

of a device nanie or number results in the message being sent to

the first process in the table. If the message cannot be sent or if

the message is sent to the backup process, an error indication will

be returned. The processid entries in the LDT will then be
reversed and the message resent. Note two things: first, the error

recovery can be done in an automatic manner; and second, the

requestor is not concerned with what process actually handled the

request. Error recovery cannot always be done automatically. For

example, the primary process of a pair controlling a line printer
fails while handling a request to print a hne on a check. The

application process would prefer to see the process failure as an
error rather than have the request automatically retried, which

might result in two checks being printed.
The two primitives, processes and messages, blur the bounda-

ries between processors and provide a failure-tolerant method for

interprocess communication. By defining a method of grouping
processes (process-pairs), a mechanism for uniform access to an
I/O device or other system-wide resource is provided. This access

method is independent of the functions performed within the

processes, their locations, or their implementations. Within the

process-pair, the message system is used to checkpoint state

changes so that the backup process may take over in the event ofa

failure. This checkpoint mechanism is in turn independent of all

other processes and messages in the system.
The system structure can be summarized as follows. Guardian is

484 Part 2
I
Regions of Computer Space Section 6

j

Fault-Tolerant Systems

constructed of processes which communicate using messages.

Fault tolerance is provided by duplication of components in both

the hardware and the software. Access to I/O devices is provided

by process-pairs consisting of a primary process and a backup

process. The primary process must checkpoint state information

to the backup process so that the backup may take over on a

failure. Requests to these devices are routed using the logical

device name or number so that the request is always routed to the

current primary process. The result is a set of primitives and

protocols which allow recovery and continued processing in spite

of bus, processor, I/O controller, or I/O device failures. Further-

more, these primitives provide access to all system resources from

every process in the system.

3.4 System Processes

The next step in structuring the system comes in assigning

fijnctions to processes. As previously shown, I/O devices are

controlled by process-pairs. Another process-pair known as the

"operator" is present in the system. This pair is responsible for

formatting and printing error messages on the system console.

Here is an example of where Guardian has not followed a strict

level structure. The operator makes requests to a terminal process

to print the messages, yet the terminal process wishes to send

messages to the operator to report I/O channel errors. An infinite

cycle is prevented by having the terminal process not send

messages for errors on the operator terminal and having I/O

processes never wait for message completions when sending
errors to the operator. While it may be preferable to prevent

cycles of any type in system design, they have been allowed in

Guardian when it can be shown that they will terminate. The

ability to reserve message control blocks assures that no cycle will

be blocked because of resource problems.
Each processor has a "system monitor" process which handles

such functions as process creation and deletion, setting time of

day, and processor failure and reload cleanup operations.

A memory management process is also resident in each

processor. This process is responsible for allocating a page of

physical memory and then sending messages to the appropriate
disc processes to do the actual disc I/O. Pages are brought in on a

demand basis and pages to overlay are selected on a "least

recently used" basis over the entire memory of the processor.

The choice of relatively unsophisticated algorithms for schedul-

ing and memory management was a result of the fact that the

system was not intended to be a general-purpose timeshare

system. Rather, it was to be a system which supported multiple

processes and terminals in an extremely flexible manner.

3.5 Application Process Interface

Above the process and communication structure there exists a

library of procedures which are used to access system resources.

These procedures run in the calling process' environment and

may or may not send messages to other processes in the system.

For example, the file system procedures do not do the actual I/O

operations. Instead, they check the caller's parameters, and if

all is in order a message is sent to the appropriate I/O process-

pair. Likewise, process creation is seen as a procedure call to

NEWPROCESS, which does nothing but check the caller's

parameters and then send a message to the system monitor

process in the processor where the process is to be created. On
the other hand, a procedure such as TIME which returns the

current time of day does not send any messages. In either case,

the access to system resources appears simply as procedure calls,

effectively hiding the process structure, message system, hard-

ware organization, and associated failure recovery mechanisms.

3.6 Initialization and Processor Reload

System initialization starts with one processor being cold loaded

from some disc on the system. The load file contains a memory
image of the operating system resident code and data, with all

system processes in existence and at their initial states. The

system monitor process then creates a command interpreter

process.

Guardian may be brought up even though a processor or

peripheral device is down. This is possible because operating

system disc images may be kept on multiple disc drives, I/O

controllers may be accessed by two different processors, and the

terminal that has the initial command interpreter on it is selected

by using the processor's switch register.

After a cold load, the system logically consists of one processor

and any peripherals attached to it. More processors and peripher-

als may be added to the system via the command interpreter

command:

:RELOAD 1,$DISC

This command will read the disc image for processor 1 from the

disc $DISC and send it over either interprocessor bus to processor

1. Once it is loaded, all processes residing in other processors in

the system will be notified that processor 1 is up.

This command is also used to reload a processor after it has been

repaired. Guardian does not differentiate between an initial load

of a processor and a later reload. In each case, resources are being

logically added to the system and processes must be notified so

that they may make use of them.

The previous example of a reload message being sent to all

processes is an example of how functions are split in Guardian. A
mechanism is provided for informing a process of a system status

change. It may then take some unspecified action (including doing

nothing). Similarly, a system power-on simply sets the PON event

flag for all processes. The operating system kernel must only

insure that the process structure and message system are correctly

Chapter 29 The Tandem 16 485

saved and restored. It is then the responsibiUty of individual

processes to do such things as reinitiaUze their I/O controllers.

3. 7 Operating System Error Detection

Besides the hardware-provided single error detection and correc-

tion on memory, and single error detection on the interprocessor
and I/O buses, additional software error checks are provided. The
first of these is the detection of a down processor. Every second,

each processor in the system sends a special "I'm alive" message
over each bus to all processors in the system. Every two seconds,

each processor checks to see that it has received one of these

messages from each processor. If a message has not been

received, then it assumes that that processor is down.

Additionally, the operating system makes checks on the

correctness of data structures such as linked lists when operations
are done on them. Any processor detecting such an error will halt.

All I/O interrupts are bracketed by a "watch dog" timer such

that the system will not hang up if an I/O operation does not

complete with the expected interrupt. If an I/O bus error occurs

then the backup process will take over control of the device using
the second I/O bus.

As previously noted, the interprocessor bus protocol is de-

signed to correct single bus errors. In addition to this, extensive

checks are made on the control information received over the

buses to verify that it is consistent with the state of the receiving

processor.

Power-fail/automatic restart is provided within each processor.
A power-failure is detected independently by each processor
module and as a result is not a system-wide, synchronous event.

The system was designed to recover from either a complete

system power-fail, or a transient which will cause some of the

processors to power-fail and then immediately restart.

4. Conclusions

The innovative aspects of Guardian lie not in any new concepts
introduced, but rather in the synthesis of pre-existing ideas. Of
particular note are the low-level abstractions, process and mes-

sage. By using these, all processor boundaries can be hidden from
both the application programs and most of the operating system.
These initial abstractions are the key to the system's ability to

tolerate failures. They also provide the configuration indepen-
dence that is necessary in order for the system and applications to

run over a wide range of system sizes.

Guardian provides the application programmer with extremely
general approaches to process structuring, interprocess communi-
cation, and failure tolerance. Much has been said about structur-

ing programs using multiple communicating processes, but few

operating systems are able to support such structures.

Finally, the design goals of the system have been met to a large

degree. Systems, with between two and ten processors, have
been installed and are running on-line applications. They are

recovering from failures and failures are being repaired on-line.

References

Bell and Newell [1971]; Brinch Hansen [1970]; Dijkstra [1968a]
Enslow [1977]; Katzman [1977]; Tandem [1976].

