
Chapter 27

The ILLIAC IV computer
1

George H. Barnes / Richard M. Brown / Maso Kato

David J. Kuck / Daniel L. Slotnick / Richard A. Stokes

Summary The structure of ILLIAC IV, a parallel-array computer con-

taining 256 processing elements, is described. Special features include

multiarray processing, multiprecision arithmetic, and fast data-routing

interconnections. Individual processing elements execute 4 X 106 instruc-

tions per second to yield an effective rate of 109 operations per second.

Index terms Array, computer structure, look-ahead, machine lan-

guage, parallel processing, speed, thin-film memory.

Introduction

The study of a number of well-formulated but computationally

massive problems is limited by the computing power of currently

available or proposed computers. Some involve manipulations of

very large matrices (e.g., linear programming); others, the solution

of sets of partial differential equations over sizable grids (e.g.,

weather models); and others require extremely fast data correlation

techniques (phased array signal processing). Substantive progress

in these areas requires computing speeds several orders of magni-

tude greater than conventional computers.

At the same time, signal propagation speeds represent a serious

barrier to increasing the speed of strictly sequential computers.

Thus, in recent years a variety of techniques have been introduced

to overlap the functions required in sequential processing, e.g.,

multiphased memories, program look-ahead, and pipeline arith-

metic units. Incremental speed gains have been achieved but at

considerable cost in hardware and complexity with accompanying

problems in machine checkout and reliability.

The use of explicit parallelism of operation rather than over-

lapping of subfunctions offers the possibility of speeds which in-

crease linearly with the number of gates, and consequently has

been explored in several designs [Slotnick et al., 1962; Unger, 1958;

Holland, 1959; Murtha, 1966]. The SOLOMON computer [Slotnick

et al., 1962], which introduced a large degree of overt parallelism

into its structure, had four principal features.

1 A large array of arithmetic units was controlled by a single

HEEE Trans., C-17, vol. 8, pp. 746-757, August, 1968.

control unit so that a single instruction stream sequenced
the processing of many data streams.

2 Memory addresses and data common to all of the data

processing were broadcast from the central control.

3 Some amount of local control at the individual processing
element level was obtained by permitting each element to

enable or disable the execution of the common instructions

according to local tests.

4 Processing elements in the array had nearest-neighbor con-

nections to provide moderate coupling for data exchange.

Studies with the original SOLOMON computer indicated that

such a parallel approach was both feasible and applicable to a

variety of important computational areas. The advent of LSI cir-

cuitry, or at least medium-scale versions, with gate times of the

order of 2 to 5 ns, suggested that a SOLOMON-type array of

potentially 109 word operations per second could be realized. In

addition, memory technology had advanced sufficiently to indicate

that 106 words of memory with 200 to 500-ns cycle times could

be produced at acceptable cost. The ILLIAC IV Phase I design

study during the latter part of 1966 resulted in the design discussed

in this paper. The machine, to be fabricated by the Defense Space
and Special Systems Division of Burroughs Corporation, Paoli, Pa.,

is scheduled for installation in early 1970.

Summary of the ILLIAC IV

The ILLIAC IV main structure consists of 256 processing elements

arranged in four reconfigurable SOLOMON-type arrays of 64

processors each. The individual processors have a 240-ns ADD
time and a 400-ns MULTIPLY time for 64-bit operands. Each

processor requires approximately 104 ECL gates and is provided

with 2048 words of 240-ns cycle time thin-film memory.

Instruction and addressing control

The ILLIAC IV array possesses a common control unit which

decodes the instructions and generates control signals for all

320

Chapter 27 The ILLIAC IV computer 321

processing elements in the array. This eliminates the cost and

complexity for decoding and timing circuits in each element.

In addition, an index register and address adder are provided

with each processing element, so that the final operand address

Oj for element i is determined as follows:

a . = a + (b) + (Cj)

where a is the base address specified in the instruction, (b) is the

contents of a central index register in the control unit, and (c,)

is the contents of the local index register of the processing ele-

ment i. This independence in operand addressing is very effective

for handling rows and columns of matrices and other multidimen-

sional data structures [Kuck, 1968].

Mode control and data conditional operations

Although the goal of the ILLIAC IV structure is to be able to

control the processing of a number of data streams with a single

instruction stream, it is sometimes necessary to exclude some data

streams or to process them differently. This is accomplished by

providing each processor with an ENABLE flip-flop whose value

controls the instruction execution at the processor level.

The ENABLE bit is part of a test result register in each

processor which holds the results of tests conditional on local data.

Thus in ILLIAC IV the data conditional jumps of conventional

computers are accomplished by processor tests which enable or

disable local execution of subsequent commands in the instruction

stream.

Routing

Each processing element i in the ILLIAC IV has data routing

connections to 4 of its neighbors, processors i + 1, i
—

1, i + 8,

and i
— 8. End connection is end around so that, for a single array,

processor 63 connects to processors 0, 62, 7, and 55.

Interprocessor data transmissions of arbitrary distance are ac-

complished by a sequence of routings within a single instruction.

For a 64-processor array the maximum number of routing steps

required is 7; the average overall possible distances is 4. In actual

programs, routing by distance 1 is most common and distances

greater than 2 are rare.

Common operand broadcasting

Constants or other operands used in common by all the processors

are fetched and stored locally by the central control and broadcast

to the processors in conjunction with the instruction using them.

This has several advantages: (1) it reduces the memory used for

storage of program constants, and (2) it permits overlap of

operand fetches with other operations.

common

Processor partitioning

Many computations do not require the full 64-bit precision of the

processors. To make more efficient use of the hardware and speed

up computations, each processor may be partitioned into either

two 32-bit or eight 8-bit subprocessors, to yield 512 32-bit or

2048 8-bit subprocessors for the entire ILLIAC IV set.

The subprocessors are not completely independent in that they

share a common index register and the 64-bit data routing paths.

The 32-bit subprocessors have separate enabled/disabled modes

for indexing and data routing; the 8-bit subprocessors do not.

Array partitioning

The 256 elements of ILLIAC IV are grouped into four separate

subarrays of 64 processors, each subarray having its own control

unit and capable of independent processing. The subarrays may
be dynamically united to form two arrays of 128 processors or one

array of 256 processors. The following advantages are obtained.

1 Programs with moderately dimensioned vector or matrix

variables can be more efficiently matched to the array size.

2 Failure of any subarray does not preclude continued proc-

essing by the others.

This paper summarizes the structure of the entire ILLIAC IV

system. Programming techniques and data structures for ILLIAC

IV are covered in a paper by Kuck [1968].

ILLIAC IV structure

The organization of the ILLIAC IV system is indicated in Fig. 1.

The individual processing elements (PEs) are grouped in four

arrays, each containing 64 elements and a control unit (CU). The

four arrays may be connected together under program control to

permit multiprocessing or single-processing operation. The system

program resides in a general-purpose computer, a Burroughs

B 6500, which supervises program loading, array configuration

changes, and I/O operations internal to the ILLIAC IV system

and to the external world. To provide backup memory for the

ILLIAC IV arrays, a large parallel-access disk system (10 bits, 109

bit per second access rate, 40-ms maximum latency) is directly

coupled to the arrays. There is also provision for real-time data

connections directly to the ILLIAC IV arrays.

322 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

Chapter 27 The ILLIAC IV computer 323

324 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

words (16 instructions), fetch of the next block is initiated; the

possibility of pending jumps to different blocks is ignored. If the

next block is found to be already resident in the buffer, no further

action is taken; else fetch of the next block from the array memory
is initiated. On arrival of the requested block, the instruction

buffer is cyclically filled; the oldest block is assumed to be the

least required block in the buffer and is overwritten. Jump instruc-

tions initiate the same procedures.

Fetch of a new instruction block from memory requires a delay

of approximately three memory cycles to cover the signal trans-

mission times between the array memory and the control unit.

On execution of a straight line program, this delay is overlapped

with the execution of the 8 instructions remaining in the current

block.

In a multiple-array configuration, instructions are fetched from

the array memory specified by the program counter, and broadcast

simultaneously to all the participating control units. Instruction

processing thereafter is identical to that for single-array operation,

except that synchronization of the control units is necessary

whenever information, in the form of either data or control signals,

must cross array boundaries. CU synchronization must be forced

at all fetches of new instruction blocks, upon all data routing

operations, all conditional program transfers, and all configuration-

changing instructions. With these exceptions, the CUs of the

several arrays run independently of one another. This simplifies

the control in the multiple-array operation; furthermore, it permits

I/O transactions with the separate array memories without steal-

ing memory cycles from the nonparticipating memories.

Memory addressing

Both data and instructions are stored in the combined memories

of the array. However, the CU has access to the entire memory,

while each PE can only directly reference its own 2,048-word PEM.

The memory appears as a two-dimensional array with CU access

sequential along rows and with PE access down its own column.

In multiarray configurations the width of the rows is increased

by multiples of 64.

The resulting variable-structure addressing problem is solved

by generating a fixed-form 20-bit address in the CU as shown in

Fig. 5. The lower 6 bits identify the PE column within a given

array. The next 2 bits indicate the array number, and the remain-

ing higher-order bits give the row value. The row address bits

actually transmitted to the PE memories are configuration-

dependent and are gated out as shown.

Addresses used by the PE's for local operands contain three

components: a fixed address contained in the instruction, a CU

Array Column

(12)

Chapter 27 The ILLIAC IV computer 325

The addressing indicated by both CFC1 and CFC2 must be

consistent with the actual configuration designated by CFCO, else

a configuration interrupt is triggered.

Trap processing

Because external demands on the arrays will be preprocessed

through the B 6500 system computer, the interrupt system for the

control units is relatively straightforward. Interrupts are provided

to handle B 6500 control signals and a variety of CU or array faults

(undefined instructions, instruction parity error, improper con-

figuration control instruction, etc.). Arithmetic overflow and under-

flow in any of the processing elements is detected and produces a

trap.

The strategy of response to an interrupt is an effective FOBK

to a single-array configuration. Each CU saves its own status word

automatically and independently of other CU's with which it may

previously have been configured.

Hardware implementation consists of a base interrupt address

register (BIAB) which is dedicated as a pointer to array storage

into which status information will be transferred. Upon receipt

of an interrupt, the contents of the program counter and other

status information and the contents of CAB are stored in the

block pointed to by the BIAB. In addition, CAB is set to contain

the block address used by BIAB so that subsequent register saving

may be programmed. Interrupt returns are accomplished through

a special instruction which reloads the previous status word and

CAB and clears the interrupt.

Interrupts are enabled through a mask word in a special regis-

ter. The interrupt state is general and not unique to a specific

trigger or trap. During the interrupt processing, no subsequent

interrupts are responded to, although their presence is flagged in

the interrupt state word.

The high degree of overlap in the control unit precludes an

immediate response to an interrupt during the instruction which

generates an arithmetic fault in some processing element. To

alleviate this it is possible under program control to force non-

overlapped instruction execution permitting access to definite fault

information.

Processing element (PE)

The processing element, shown in Fig. 6, executes the data com-

putations and local indexing for operand fetches. It contains the

following elements.

1 Four 64-bit registers (A, B, R, S) to hold operands and results.

A serves as the accumulator, B as the operand register, R as

the multiplicand and data routing register, and S as a general

storage register.

2 An adder/multiplier (MSG, PAT, CPA), a logic unit (LOG),

and a barrel switch (BSW) for arithmetic, Boolean, and

shifting functions, respectively.

3 A 16-bit index register (BGX) and adder (ADA) for memory
address modification and control.

4 An 8-bit mode register (BGM) to hold the results of tests

and the PE ENABLE/DISABLE state information.

As described earlier, the PEs may be partitioned into subproc-

essors of word lengths of 64, 2 X 32, or 8 X 8 bits. Figure 7 shows

the data representations available. Exponents are biased and rela-

tive to base 2. Table 1 indicates the arithmetic and logical opera-

tions available for the three operand precisions.

PE mode control

Two bits of the mode register (BGM) control the enabling or

disabling of all instructions; one of these is active only in the 32-bit

precision mode and controls instruction execution on the second

operand. Two other bits of BGM are set whenever an arithmetic

fault (overflow, underflow) occurs in the PE. The fault bits of all

PEs are continuously monitored by the CU to detect a fault condi-

tion and initiate a CU trap.

Data paths

Each PE has a 64-bit wide routing path to 4 of its neighbors (±1,

±8). To minimize the physical distances involved in such routing,

the PEs are grouped 8 to a cabinet (PUC) in the pattern shown

in Fig. 8. Bouting by distance ±8 occurs interior to a PUC; routing

by distance ±1 requires no more than 2 intercabinet distances.

CU data and instruction fetches require blocks of 8 words,

which are accessed in parallel, 1 word per PUC, into a CU buffer

(CUB) 512-bit wide, distributed among the PUCs, 1 word per

Table 1 PE data operations

326 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

NEWS

DRIVERS/
AND

RECEIVERS
MIR CDB

CONTROL UNIT

J L

R REGISTER
(RGR)

LC
MULTIPLICAND

SELECT
GATES
(MSG)

LLC
PSEUDOADDER

TREE
(PAT)

LLLii
CARRY

PROPAGATE
ADDER
(CPA)

LLL1

S REGISTER
(RGS)

A REGISTER

(RGA)

LEADING
ONES

DETECTOR
(LOO)

DRIVERS
AND

RECEIVERS

MODE
REGISTER
(RGM)

ill
OPERAND
SELECT
GATES
(OSG)

111
B REGISTER

(RGB)

LOGIC
UNJT

(LOG)

MIR

c

BARREL
SWITCH
(BSW)

ADDRESS
—\ ADDER

(ADA)

X REGISTER
(RGX)

MEMORY
ADDRESS
REGISTERS

(MAR)

• MEMORY

Fig. 6. Processing-element block diagram.

Chapter 27 The ILLIAC IV computer 327

328 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

cabinet. Data is transmitted to the CU from the CUB on a 512-line

bus.

Disk and on-line I/O data are transmitted on a 1024-line bus

which can be switched among the arrays. Within each array,

parallel connection is made to a selected 16 of 64 PEs, 2 per PUC.

Maximum data rate is one I/O transaction per microsecond or 109

bits per second. The I/O path of 1024 lines is expandable to 4096

lines if required.

Processing element memory (PEM)

The individual memory attached to each processing element is

a thin-film DRO linear select memory with a cycle time of 240

ns and access time of 120 ns. Each has a capacity of 2048 64-bit

words. The memory is independently accessible by its attached

PE, the CU, or I/O connections.

Disk-file subsystem

The computing speed and memory of the ILLIAC IV arrays re-

quire a substantial secondary storage for program and data files

as well as backup memory for programs whose data sets exceed

fast memory capacity. The disk-file subsystem consists of six Bur-

roughs model IIA storage units, each with a capacity of 1.61 X 108

bits and a maximum latency of 40 ms. The system is dual; each

half has a capacity of 5 X 108 bits and independent electronics

capable of supporting a transfer rate of 500 megabits per second.

The data path from each of the disk subsystems becomes 1024

bits wide at its interface with the array. Figure 9 shows the

organization of the disk-file system.

B 6500 control computer

The B 6500 computer is assigned the following functions.

1 Executive control of the execution of array programs

2 Control of the multiple-array configuration operations

3 Supervision of the internal I/O processes (disk to arrays,

etc.)

4 External I/O processing and supervision

5 Processing and supervision of the files on the disk file sub-

system

6 Independent data processing, including compilation of

ILLIAC IV programs

To control the array operations, there is a single interrupt line

and a 16-bit data path both ways between the B 6500 and each

of the control units. In addition, the B 6500 has a control and data

CU

Chapter 27 The ILLIAC IV computer 329

in number of gates per system should be possible with comparable

reliability.

It is only by virtue of high-density integration (50- to 100-gate

package) that the design of a three-million-gate system can be

contemplated. Reliability of the major part of the system, 256

processing elements and 256 memory units, is expected to be in

the range of 105 hours per element and 2 X 103 hours per memory
unit.

The organization of the ILLIAC IV as a collection of identical

units simplifies its maintenance problems. The processing ele-

ments, the memories, and some part of power supplies are designed

to be pluggable and replaceable to reduce system down time and

improve system availability.

The remaining problems are (1) location of the faulty subsys-

tem, and (2) location of the faulty package in the subsystem.

Location of the faulty subsystem assumes the B 6500 to be

fault-free, since this can be determined by using the standard

B 6500 maintenance routines. The steps to follow are shown in

Fig. 10.

The B 6500 tests the control units (CU) which in turn test all

PEs. PEMs are tested through the disk channel. This capability

for functional partitioning of the subsystems simplifies the diag-

nostic procedure considerably.

References

HollJ59; KuckD68; MurtJ66; SlotD62; UngeS58

330 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

APPENDIX 1

Al. CLASSIFIED LIST OF CU INSTRUCTIONS

Al.l Data transmission

ALIT

BIN

BINX

BOUT
BOUTX
CLC
COPY
DUPI

DUPO

EXCHL

LDL

LIT

LOAD

LOADX

OBAC
SLIT

STL

STORE
STOREX

TCCW

TCW

A 1.2 Skip and test

|T, AlCTSB

Instructions:

(T Al

If
fT, Al

eol(f)

4 Instructions:

Add literal (24 bit) to CAR.

Block fetch to CU memory.
Indexed (by PE index) block fetch.

Block store from CU memory.
Indexed block store.

Clear CAR.

Copy CAR into CAR of other quadrant.

Duplicate inner half of CU memory ad-

dress contents into both halves of CAR.

Duplicate outer half of CU memory ad-

dress contents into both halves of CAR.

Exchange contents of CAR with CU mem-

ory address contents.

Load CAR from CU memory address con-

tents.

Load CAR with 64-bit literal following the

instruction.

Load CU memory from contents of PE

memory address found in CAR.

Load CU memory from contents of PE

memory address found in CAR, indexed

by PE index.

OR all CARS in array and place in CAR.

Load CAR with 24-bit literal.

Store CAR into CU memory.
Store CAR into PE memory.
Store CAR into PE memory, indexed by
PE index.

Transmit CAR counterclockwise between

CUs in array.

Transmit CAR clockwise between CUs in

array.

Skip on nth bit of CAR. If Tis present, slap

if 1; if F is present, slap if 0. If A is pres-

ent, AND together bits from all CUs in

array before testing; if absent, OR together

bits from all CUs in array before testing.

CTSBT, CTSBTA, CTSBF, CTSBFA.

Skip on CAR equal to CU memory ad-

dress contents. The letters T, F, and A
have the same meaning as in CTSB above.

EQLT, EQLTA, EQLF, EQLFA.

H?)

4 Instructions:

fT, AlGRTRn
4 Instructions:

fT, Al
LESSn

4 Instructions:

fT, Al
ONESn

4 Instructions:

fT, A"!
ONEXn

4 Instructions:

fT, AT
SKIPn

4 Instructions:

SKIP

TXJT, A, I

8 Instructions:

Skip on index portion of CAR (bits 40

through 63) equal to bits 40 through 63 of

CU memory address contents. The letters

T, F, and A have the same meaning as in

CTSB above.

EQLXT, EQLXTA, EQLXF, EQLXFA.

Skip on index part of CAR (bits 40 through

63) greater than bits 40 through 63 of CU

memory address contents. The letters T,

F, and A have the same meaning as in

CTSB above.

GRTRT, GRTRTA, GRTRF, GRTRFA.

Skip on index part of CAR (bits 40 through

63) less than bits 40 through 63 of CU
memory address contents. The letters T, F,

and A have the same meaning as in CTSB
above.

LESST, LESSTA, LESSF, LESSFA.

Skip on CAR equal to all l's. The letters

T, F, and A have the same meaning as in

CTSB above.

ONEST, ONESTA, ONESF, ONESFA.

Skip on bits 40 through 63 of CAR equal

to all l's. The letters T, F, and A have the

same meaning as in CTSB above.

ONEXT, ONEXTA, ONEXF, ONEXFA.

Skip on T-F flip-flop previously set. The

letters T, F, and A have the same meaning
as in CTSB above.

SKIPT, SKIPTA, SKIPF, SKIPFA.

Skip unconditionally.

Skip on index portion of CAR (bits 40

through 63) less than limit portion (bits 1

through 15). The letters T, F, and A have

the same meaning as in CTSB above. If /

is present, the index portion of CAB is in-

cremented by the increment portion of

CAR (bits 16 through 39) while the test is

in progress; if / is not present, no incre-

menting takes place.

TXLT, TXLTI, TXLTA, TXLTAI, TXLF,

TXLFI, TXLFA, TXLFAI.

Skip on index portion of CAR (bits 40

through 63) equal to limit portion of CAR

(bits 1 through 15). See CTSB for the

meaning of T, F, and A; see TXL above

for the meaning of /.

Chapter 27 The ILLIAC IV computer 331

8 Instructions:

fT, A, II
TXGr 1

)

8 Instructions:

ctions:

ZER

4 Instructions:

ZERX(

4 Instructions:

TXET, TXETI, TXETA, TXETIA, TXEF,

TXEFI, TXEFA, TXEFIA.

Skip on index portion of CAR (bits 40

through 63) greater than limit portion of

CAR (bits 1 through 15). See CTSB for the

meaning of T, F, and A; see TXL above

for the meaning of /.

TXGT, TXGTI, TXGTA, TXGTAI, TXGF,

TXGFI, TXGFA, TXGFAI.

Skip on CAR all 0's. See CTSB for the

meaning of T, F, and A.

ZERT, ZERTA, ZERF, ZERFA.

Skip on index portion of CAR (bits 40

through 63) all 0's. See CTSB for the

meaning of T, F, and A.

ZERXT, ZERXTA, ZERXF, ZERXFA.

A1.3 Transfer of control

EXEC

EXCHL

HALT

JUMP
LOAD

LOADX

STL

A1.4 Route

RTE

A1.5 Arithmetic

ALIT

CADD

CSUB

INCRXC

A1.6 Logical

CAND
CCB

Execute instruction found in bits 32 through

63 of CAR.

Exchange contents of CAR with contents

of CU memory address.

Halt ILLIAC IV.

Jump to address found in instruction.

Load CU memory address contents from

contents of PE memory address found in

CAR.

Load CU memory address contents from

contents of PE memory address found in

CAR, indexed by PE index.

Store CAR into CU memory.

Route. Routing distance is found in address

field (CAR indexable), and register con-

nectivity is found in the skip field.

Add 24-bit literal to CAR.

Add contents of CU memory address to

CAR.

Subtract contents of CU memory address

from CAR.

Increment index word in CAR.

AND CU memory to CAR.

Complement bit of CAR.

CLC Clear CAR.

COR OR CU memory to CAR.

CRB Reset bit of CAR.
CROTL Rotate CAR left.

CROTR Rotate CAR right.

CSB Set bit of CAR.

CSHL Shift CAR left.

CSHR Shift CAR right.

LEADO Detect leading ONE in CAR of all quad-

rants in array.

LEADZ Detect leading ZERO in CAR of all quad-

rants in array.

ORAC OR all CARS in array and place in CAR.

A2. CLASSIFIED LIST OF PE INSTRUCTIONS

A2.1 Data transmission

LDA

332 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

6 Instructions: IXL, IXLI, IXE, IXEI, IXG, IXGI.

(L

|

Set / on comparison of X register and op-

E, 1
1

erand. See above for meaning of L, E, G,

G J and I.

6 Instructions: JXL, JXLI, JXE, JXEI, JXG, JXGI.

XI Increment PE index (X register) by bits 48

through 63 of operand.

XIO Increment PE index of bits 48 through 63

of operand plus one.

A2.3 Mode setting/comparisons

EQB Test A and B for equality bytewise.

GRB Test B register greater than A register

bytewise.

Test B register less than A register bytewise.

Change word size.

Set J if A register is less than operand. L

means test logical; A means test arithmetic;

M means test mantissa.

ILL, IAL, IML.

Set J if A register is equal to operand. See

above for meaning of L, A, and M.

LSB

CHWS

'E)
L

Instructions:

fLl

I A E
ImJ

Instructions:

Instructions:

3z

Instructions:

fL|
I A O
ImJ

Instructions:

fL LI

E
gJ

z

o
15 Instructions:

eg,

J A,

Im

ILE, IAE, IME.

Set / if A register is greater than operand.

See above for meaning of L, A, and M.

ILG, IAG, IMG.

Set 7 if A register is equal to all zeros.

ILZ, IAZ, IMZ.

Set J if A register is equal to all ONES.

ILO, IAO, IMO.

Set / under conditions specified in set of

instructions immediately above.

JLL, JAL, JML, JLE, JAE, JME, JLG,

JAG, JMG, JLZ, JAZ, JMZ, JLO, JAO,

JMO.
Set I on comparison of X register and op-

erand. See Section A2.2 for meaning of L,

E, G, and /.

6 Instructions:

,X
|'I

6 Instructions:

fLl

IS E
IgJ

3 Instructions:

fLl

js|e
Ig'

3 Instructions:

ISN

JSN
SETE

SETEO
SETF

SETFO
SETG
SETH
SETI

SETJ
SETCO
SETC1

SETC2

SETC3

IBA

JBA

A2.4 Arithmetic

IXL, IXLI, IXE, IXEI, IXG, IXGI.

Set / on comparison of X register and op-

erand. See Section A2.2 for meaning of L,

£, G, and I.

JXL, JXLI, JXE, JXEI, JXG, JXGI.
Set / on comparison of S register and op-

erand. See Section A2.2 for meaning of L,

E, and G.

ISL, ISE, ISG.

Set / on comparison of S register and op-

erand. See Section A2.2 for meaning of L,

E, and G.

JSL, JSE, JSG.

Set J from the sign bit of A register.

Set / from the sign bit of A register.

Set £ bit as a logical function of other bits.

Set El bit similarly.

Set F bit similarly.

Set Fl bit similarly.

Set G bit similarly.

Set H bit similarly.

Set 7 bit similarly.

Set / bit similarly.

Set Pth bit of CAR similarly.

Set Pth bit of CAR 1 similarly.

Set Pth bit of CAR 2 similarly.

Set Pth bit of CAR 3 similarly.

Set I from Mh bit of A register; bit num-

ber is found in address field.

Set / from Mh bit of A register; bit num-

ber is found in address field.

ADB Add bytewise.

SBB Subtract operand from A register bytewise.

ADD Add A register and operand as 64-bit

operands.

SUB Subtract operand from A register as 64-

bit quantities.

AD{R, N, M, S} Add operand to A register. The fl, N, M,

S specify all possible variants of the arith-

metic instruction. The meaning of each

letter, if present in the mnemonic, is

fl round result

N normalize result

M mantissa only

S special treatment of signs.

Chapter 27 I The ILLIAC IV computer 333

16 Instructions:

ADEX

DV{R, N, M, S}

16 Instructions:

EAD
ESB

LEX

ML{R, N, M, S}

16 Instructions:

SAN
SAP

SBEX

SB{R, N, M, S}

16 Instructions:

NORM
MULT

ADM, ADMS, ADNM, ADNMS, ADN,

ADNS, ADRM, ADRMS, ADRM,
ADRNMS, ADRN, ADRNS, ADR, ADRS,

AD, ADS.

Add to exponent.

Divide by operand. See AD instruction for

meaning of R, N, M, and S.

DVM, DVMS, DVNM, DVNMS, DVN,

DVNS, DVRM, DVRMS, DVRNM,
DVRNS, DVRN, DVRNS, DVR, DVRS,

DV, DVS.

Extend precision after floating point ADD.

Extend precision after floating point SUB-

TRACT.

Load exponent of A register.

Multiply by operand. See AD instruction

for meaning of R, N, M, and S.

MLM, MLMS, MLNM, MLNMS, MLN,

MLNS, MLRM, MLRMS, MLRNM,
MLRNMS, MLRN, MLRNS, MLR, MLRS,

ML, MLS.

Set A register negative.

Set A register positive.

Subtract exponent of operand from expo-

nent of A register.

Subtract operand from A register. See AD
instruction for meaning of R, N, M, and S.

SBM, SBMS, SBNM, SBNMS, SBN, SBNS,

SBRM, SBRMS, SBRNM, SBRNMS, SBRN,

SBRNS, SBR, SB, SBS.

Normalize A register.

In 32-bit mode, perform MULTIPLY and

leave outer result in A register and inner

result in R register, with both results ex-

tended to 64-bit format.

16 Instructions:

CBA
CHSA
fNl

fNj
Z EOR Z

loJ loJ

16 Instructions:

RBA
RTAL
RTAML
RTAMR
RTAR
SAN
SAP

SBA

SHABL
SHABR
SHAL
SHAML
SHAR
SHAMR

AND, ANDN, ANDZ, ANDO, NAND,
NANDN, NANDZ, NANDO, ZAND,

ZANDN, ZANDZ, ZANDO, OAND,
OANDN, OANDZ, OANDO.

Complement bit of A register.

Change sign of A register.

Exclusive OR A register with operand.

EOR, EORN, EORZ, EORO, NEOR,
NEORN, NEORZ, NEORO, ZEOR,

ZEORN, ZEORZ, ZEORO, OEOR,
OEORN, OEORZ, OEORO.
Load exponent of A register.

OR A register with operand.

OR, ORN, ORZ, ORO, NOR, NORN,

NORZ, NORO, ZOR, ZORN, ZORZ,

ZORO, OOR, OORN, OORZ, OORO.

Reset bit A register to ZERO.

Rotate A register left.

Rotate mantissa of A register left.

Rotate mantissa of A register right.

Rotate A register right.

Set A register negative.

Set A register positive.

Set bit of A register to ONE.

Shift A and B registers double-length left.

Shift A and B registers double-length right.

Shift A register left.

Shift A register mantissa left.

Shift A register right.

Shift A register mantissa right.

AND A register with operand. The left-

hand set of letters specifies a variant on

the A register, the right-hand set, on the

operand. The meaning of these variants is

not present use true

N use complement
Z use all ZEROS
O use all ONES.

Chapter 20

The llliac IV System'

W. J. Bouknight / Stewart A. Denenberg
David E. Mclntyre / J. M. Randall

Amed H. Sameh / Daniel L. Slotnick

Abstract The reasons for the creation of Illiac IV are described and the

history of the lUiac IV project is recounted. The architecture or hardware

structure of the IlUac IV is discussed—the lUiac IV array is an array

processor with a specialized control unit (CU) that can be viewed as a small

stand-alone computer. The Illiac IV software strategy is described in terms

of current user habits and needs. Brief descriptions are given of the

systems software itself, its history, and the major lessons learned during its

development. Some ideas for future development are suggested. Applica-

tions of Illiac IV are discussed in terms of evaluating the function f{x'j

simultaneously on up to 64 distinct argument sets Xj. Many of the

time-consuming problems in scientific computation involve repeated

evaluation of the same function on difierent argument sets. The argument

sets which compose the problem data base must be structured in such a

feshion that they can be distributed among 64 separate memories. Two

matrix applications: Jacobi's algorithm for finding the eigenvalues and

eigenvectors of real symmetric matrices, and reducing a real nonsymme-
tric matrix to the upper-Hessenberg form using Householder's transfor-

mations are discussed in detail. The ARPA network, a highly sophisticated

and wide ranging experiment in the remote access and sharing of

computer resources, is briefly described and its current status discussed.

Many researchers located about the country who will use Illiac IV in

solving problems will do so via the network. The various systems,

hardware, and procedures they will use is discussed.

Introduction

It all began in the early 1950's shortly after EDVAC ["Electronic

Computers," 1969] became operational. Hundreds, then thou-

sands of computers were manufactured, and they were generally

organized on Von Neumann's concepts, as shown and described in

Fig. 1. In the decade between 1950 and 1960, memories became

cheaper and faster, and the concept of archival storage was

evolved; control-and-arithmetic and logic units became more

sophisticated: I/O devices expanded from typewriter to magnetic

tape units, disks, drums, and remote terminals. But the four basic

components of a conventional computer (control unit (CU),

arithmetic-and-logic unit (ALU), memory, and I/O) were all

present in one form or another.

The turning away from the conventional organization came in

'Subsetted from Proc. IEEE, April 1972, pp. 369-388.

Chapter 20
|

The lilac IV System 307

Before operations could be overlapped, control sequenc-
es between the components had to be decoupled. Certainly
the CU could at least be fetching the next instruction while

the ALU was executing the present one.

2 Replication: One of the four major components (or subcom-

ponents within a major component) could be duplicated

many times. (Ten black boxes can produce the result of one

black box in one-tenth of the time if the conditions are

right.) The replication of I/O devices, for example, was a

step taken very early in the evolution of digital

computers—large installations had more than one tape

drive, more than one card reader, more than one printer.

Since the above two philosophies do not mutually exclude each

other, a third approach exists which consists of both of them in a

continuously variable range of proportions.

The overlapping philosophy was implemented largely through

the buffer and pipeline mechanisms. The pipeline mechanism (see

Fig. 2) breaks down an operation into suboperations, or stages,

and decouples these stages from each other. After the stages are

decoupled they can be performed simultaneously or, equivalent-

ly, in parallel. The buffer mechanism allows an operation to be

decoupled into parallel operation by providing a place to store

information.

The replication philosophy is exemplified by the general

multiprocessor which replicates three of the four major compo-
nents (all but the I/O) many times. The cost of a general

multiprocessor is, however, very high and further design options

were considered which would decrease the cost without seriously

degrading the power or efficiency of the system. The options

consist merely of recentralizing one of the three major compo-
nents which had been previously replicated in the general

multiprocessor
—the memory, the ALU, or the CU. Centralizing

the CU gives rise to the basic organization of a vector or array

processor such as lUiac IV. This particular option was chosen for

two main reasons.

1 Cost: A very high percentage of the cost within a digital

computer is associated with CU circuitry. Replication of

this component is particularly expensive, and therefore

centralizing the CU saves more money than can be saved

by centralizing either of the other two components.

2 Structure: There is a large class of both scientific and

business problems that can be solved by a computer with

one CU (one instruction stream) and many ALUs. The same

algorithm is performed repetitively on many sets of differ-

ent data: the data are structured as a vector, and the vector

processor of lUiac IV operates on the vector data. All of the

components of data structured as a vector are processed

simultaneously or in parallel.

The Illiac IV project was started in the Computer Science

Department at the University of Illinois with the objective of

developing a digital system employing the principle of parallel

operation to achieve a computational rate of 10' instructions/s. In

order to achieve this rate, the system was to employ 256

Timing
Cycle

308 Part 2
I Regions of Computer Space Section 3

|
Concurrency: Single-Processor System

processors operating simultaneously under a central control

divided into four subassembly quadrants of 64 processors each.

Due primarily to subcontractor problems several basic technologi-

cal changes were necessitated during the course of the program,

principally, reduction in individual logic-circuit complexity and

memory technology. These resulted in cost escalation and sched-

ule delays, ultimately limiting the system to one quadrant with an

overall speed of approximately 200 million instructions/s. It is this

one-quadrant system that will be discussed for the remainder of

this paper.

The approach taken in lUiac IV surmounts fiindamental limita-

tions in ultimate computer speed by allowing
—at least in

principle
—an unlimited number of computational events to take

place simultaneously. The logical design of Illiac IV is patterned
after that of the Solomon [Slotnick, Borck, and McReynolds, 1962;

Slotnick, 1967] computers, prototypes of which were built by the

Westinghouse Electric Corporation in the early 1960's. In this

design a single master CU sends instructions to a sizable number
of independent processing elements (PEs) and transmits address-

es to individual memory units associated with these PEs ("PE

memories," PEMs). Thus, while a single sequence of instructions

(the program) still does the controlling, it controls a number of

PEs that execute the same instruction simultaneously on data that

can be, and usually are, diflFerent in the memory of each PE.

Each of the 64 PEs of Illiac IV is a powerful computing unit in

its own right. It can perform a wide range of arithmetical

operations on numbers that are 64 binary digits long. These

numbers can be in any of the six possible formats: the number can

be processed as a single number 64 bits long in either a fixed or a

"floating" point representation, or the 64 bits can be broken up
into smaller numbers of equal length. Each of the memory units

has a capacity of 2048 64-bit numbers. The time required to

extract a number from memory (the access time) is 188 ns, but

because additional logic circuitry is needed to resolve conflicts

when two or more sections of Illiac IV call on the memory
simultaneously, the minimum time between successive opera-
tions of memory is increased to 350 ns.

Each PE has more than 100,000 distinct electronic components
assembled into some 12,000 switching circuits. A PE together
with its memory unit and associated logic is called a processing
unit (PU). In a system containing more than six million compo-
nents one can expect a component or a connection to fail once

every few hours. For this reason much attention has been devoted

to testing and diagnostic procedures. Each of the 64 processing
units will be subjected regularly to an extensive library of

automatic tests. If a unit should fail one of these tests, it can be

quickly unplugged and replaced by a spare, with only a brief loss

of operating time. When the defective unit has been taken out of

service, the precise cause of the failure will be determined by a

separate diagnostic computer. Once the fault has been found and

repaired, the unit will be returned to the inventory of spares.

Illiac IV could not have been designed at all without much help
from other computers. Two medium-sized Burroughs 5500 com-

puters worked almost full time for two years preparing the

artwork for the system's printed circuit boards and developing

diagnostic and testing programs for the system's logic and

hardware. These formidable design, programming, and operating
efibrts were under the direction of Arthur B. Carroll, who, during
this period, was the project's deputy principal investigator.

The Illiac IV system is scheduled for completion by the end of

this calendar year; the fabrication phase is essentially complete
with some final assembly and considerable debugging yet to be

completed.
'

Hardware Structure

Illiac rV in Brief

As stated in the Introduction, the original design of Illiac FV

contained four CUs, each of which controlled a 64-ALU array

processor. The version being built by the Burroughs Corporation
will have only one CU which drives 64 ALUs as shown in Fig. 3. It

is for this reason that Illiac IV is sometimes referred to as a

quadrant (one-fourth of the original machine) and it is this

abbreviated version of Illiac IV that will be discussed for the

remainder of this paper. For a more complete description of the

Illiac IV architecture see Slotnick [1971]; Denenberg [1971]; and

Barnes et al. [1968].

One difierence between Illiac IV and a general array processor
is that the CU has been decoupled from the rest of the array

processor so that certain instructions can be executed completely

'All of this work was sponsored under a Grant (Contract USAF
30(602)4144) from the Advanced Research Projects Agency.

Chapter 20
|

The lilac IV System 309

within the resources of the CU at the same time that the ALU is

performing its vector operations. In this way another degree of

paralleUsm is exploited in addition to the inherent parallehsm of

64 ALUs being driven simultaneously. What we have is 2

computers inside lUiac IV: one that operates on scalars, and one

that operates on vectors. All of the instructions, however,

emanate from the computer that operates on scalars—the CU.

Each element of the ALU array is not called by its generic name

(ALU) but is called a PE. There are 64 PEs, and they are

numbered from to 63. Each PE responds to appropriate

instructions if the PE is in an active Tuode. (There exist instruc-

tions in the repertoire which can activate or deactivate a PE.)

Each PE performs the same operation under command from the

CU in the lock-stepped manner of an array processor. That is,

since there is only one CU, there is only one instruction stream

and all of the ALUs respond together or are lock-stepped to the

current instruction. If the current instruction is ADD for example,

then all the ALUs will add—there can be no instruction which will

cause some ofthe ALUs to be adding while others are multiplying.

Every ALU in the array performs the instruction operation in this

lock-stepped fashion, but the operands are vectors whose compo-
nents can be, and usually are, different.

Each PE has a fiiU complement of arithmetic and logical

circuitry, and under command from the CU will perform an

instruction "at-a-crack" as an array processor. Each PE has its own

2048 word 64-bit memory called a PE memory (PEM) which can

be accessed in no longer than 350 ns. Special routing instructions

can be used to move data from PEM to PEM. Additionally,

operands can be sent to the PEs from the CU via a full-word

(64-bit) one-way communication line, and the CU has eight-word

one-way communication with the PEM array (for instruction and

data fetching).

An lUiac IV word is 64 bits, and data numbers can be

represented in either 64-bit floating point, 64-bit logical, 48-bit

fixed point, 32-bit floating point, 24-bit fixed point, or 8-bit fixed

point (character) mode. By utilizing the 64-bit, 32-bit, and 8-bit

data formats, the 64 PEs can hold a vector of operands with either

64, 128, or 512 components. Since Illiac IV can add 512 operands

in the 8-bit integer mode in about 66 ns, it is capable of

performing almost 10'" of these "short" additions/s. Illiac IV can

perform approximately 150 million 64-bit rounded normalized

floating-point additions/s.

The I/O is handled by a B6500 computer system. The operating

system, including the assemblers and compilers, also resides in

the B6500.

The Illiac FV System

The Illiac IV system can be organized as in Fig. 4. The Illiac IV

system consists of the Illiac IV array plus the Illiac IV I/O system.

The Illiac IV array consists of the array processor and the CU. In

ILLIAC m SYSTEM

ILLIAC a
ARRAY

ILLIAC IZ
I/O SYSTEM

ARRAY CONTROL
PROCESSOR UNIT (CUl

PEt PEMi

I/O SUBSYSTEM DISK FILE
SYSTEM IDFS)

eeSOO COMPUTERn
B6500

PERIPHERALS

CONTROL DESCRIPTOR
CONTROLLER (CDC)

BUFFER INPUT/OUTPUT
MEMORY (BIOM)

INPUT/OUTPUT SWITCH
(IPS)

Fig. 4. Illiac IV system organization.

turn, the array processor is made up of 64 PEs and their 64

associated memories—PEMs. The Illiac IV I/O system comprises

the I/O subsystem, the disk file system (DPS), and the B6500

control computer. The I/O subsystem is broken down further to

the CDC, BIOM, and lOS. The B6500 is actually a medium-scale

computer system by itself.

The Illiac IV array will be discussed first, in a general manner,

followed by two illustrative problems which indicate some of the

similarities and differences in approach to problem solving using

sequential and parallel computers. The problems also serve to

illustrate how the hardware components are tied together.

Finally, the Illiac IV I/O system is discussed briefly.

The Illiac IV Array. Fig. 5 represents the Illiac IV array
—^the

CU plus the array processor.

CU. The CU is not just the CU that we are used to thinking of

on a conventional computer, but can be viewed as a small

unsophisticated computer in its own right. Not only does it cause

the 64 PEs to respond to instructions, but there is a repertoire of

instructions that can be completely executed within the resources

of the CU, and the execution of these instructions is overlapped

with the execution of the instructions which drive the PE array.

Again, it is worthwhile to view Illiac IV as being two computers,

one which operates on scalars and one which operates on vectors.

The CU contains 64 integrated-circuit registers called the

ADVAST data buffer (ADB), which can be used as a high-speed

scratch-pad memory. ADVAST is an acronym for advanced station

and is one of the five functional sections of the CU. Each register

of the ADB (DO through D63) is 64 bits long. The CU also has 4

310 Part 2
I Regions of Computer Space Section 3

|
Concurrency: Single-Processor System

Chapter 20
|

The lilac IV System 311

a J7 M 59 60 «1 62 «>

<Mt>

S) (?°) <l)
"

»5 (56

Fig. 6. PE routing connections.

4 Mode-bit line: The mode-bit line consists of one line

coming from the RGD of each PE in the array. The
mode-bit Hne can transmit one of the eight mode bits of

each RGD in the array up to an AGAR in the GU. If this bit

is the bit which indicates whether or not a PE is on or off,

we can transmit a "mode pattern" to an AGAR. This mode

pattern reflects the status or on-ofihess of each PE in the

array; then there are instructions which are executed

completely within the GU that can test this mode pattern
and branch on a zero or nonzero condition. In this way
branching in the instruction stream can occur based on the

mode pattern of the entire 64-PE array.

Some Illustrative Problems

Adding two aligned arrays. Let us first consider the problem of

adding two arrays of numbers together. The Fortran statements

for a conventional computer might look like:

DO 10 Z = 1, N

10 A{1) = B(7) 4- C(I).

The two Fortran instructions are compiled to a set of machine-

language instructions which include initialization of the loop,

looping instructions, and the addition of each element of the B

array to the proper element in the C array, and storage to the A
array. Except for the initialization instructions, the set of

machine-language instructions is executed N times. Therefore, if

it takes M jjls to pass once through the loop, it will take about N
times M

\x,s to perform the above Fortran code.

Now suppose the same operations are to be performed on lUiac

IV. Arrangement of the data in memory becomes a primary
consideration—the data must be arranged to exploit the parallel-

ism of operation of the PEs as effectively as possible. The worst

way to use the PEs would be to allocate storage for the A, B, and C
arrays in just one PEM. Then instructions would have to be

written just as they were in a conventional machine to loop

through an instruction set N times.

Let us consider the problem as consisting of three cases: N =

64, N <64, and N>64, and then see what each case entails in

terms of programming for lUiac IV.

1 N=64: To reflect the case where iV=64, we have arranged
the data as shown in Fig. 7. In order to execute the two
lines of Fortran code, only the three basic Illiac IV

machine-language instructions are necessary: 1) load all

PE Accumulators (RGA) from location a -H 2 in all PEMs.

2) ADD to the PE Accumulators (RGA) the contents of

location a -I- 1 in all PEMs. 3) store result of all PE
Accumulators to location a in all PEMs.

Since every PE will execute each instruction at the same
time or in parallel, accessing its own PEM when necessary,
the 64-loads, additions, and stores will be performed while

just three instructions are executed. This is a speedup of64

times for this case, in execution time.

312 Part 2 Regions of Computer Space Section 3 Concurrency: Single-Processor System

The three instructions to perform the 64 additions in

lUiac IV assembly language (Ask) would actually look like:

LDA
ADRN
STA

ALPHA + 2;

ALPHA + 1;

ALPHA;

(note that since each instruction operates on a vector; a

memory location can be considered a row of words rather

than a single word).

2 N<64: Since there are exactly 64 PEs to perform calcula-

tions, a proper question is: what happens if the upper limit

of the loop is not exactly equal to 64? If the upper limit is

less than 64, there is no problem other than that the total

PE array will not be utilized.

The tradeoff the potential user of lUiac IV must consider

here is how much (or how often) is Illiac IV underutilized?

If the under-utilization is "too much" then the problem
should be considered for running on a conventional

computer. However, the user should keep in mind that he

usually does not feel too guilty if he underutilizes the

resources of a conventional system—^he does not use every

tape drive, every bit of available core, every printer, and

every byte of disk space for most of his conventional

programs.

3 N>64: When the upper limit of the loop is greater than 64,

the programmer is faced with a storage allocation problem.
That is, he has various options for storing the A, B, and C
arrays, and the program he writes to perform the 2 Fortran

statements will vary considerably with the storage alloca-

tion scheme chosen. To illustrate this let us consider the

special case where N=66 with the A, B, and C arrays stored

as shown in Fig. 8.

To perform the 66 additions on the data stored as shown
in Fig. 8, six Illiac IV machine-language instructions are

now necessary:

LOAD RGA from location a + 4.

ADD to RGA contents of location a -(- 2.

STORE result to location a.

LOAD RGA from location a -(- 5.

ADD to RGA contents of location a -H 3.

STORE result to location a -(- I.

The addition of two more data items to the A, B, and C

arrays not only necessitates extra Illiac IV instructions but

complicates the data storage scheme. In this instance, the

programmer might as well dimension the A, B, and C
arrays to 128 as 66. Note that the particular storage scheme

shown in Fig. 8 wastes almost 3 rows of storage (186 words).

The storage could have been packed much closer so that

B(l) followed A(66) in PE2 of row a -I- 1, but the program to

add the arrays together would have to do much more

Chapter 20
|

The lilac IV System 313

until the statement above it has computed A(2). Therefore, the 63

additions cannot be done in parallel ifwe literally try to apply the

2 Fortran statements as they stand. However, using mathematical

subscript notation:

Az = B2 + Ai

A3 = B3 + A2 = B3 + B2 + A,

A4 = B4 + A3 = B4 + B3 + B2 + Ai

A,v= B.v + B.v_r-B2 + Ai.

We see that the elements of the A array can be computed

independently using the formula

N
An = Ai + 1 Bi, for 2 < N < 64.

i=2

The Fortran code to perform the above formula would be:

S = Ail)

DO 10 N = 2,64

S = S + B{N)

10 AiN) = S.

The above Fortran code is equivalent to the original code (its end

results are the same) but now the computation of the A array has

been decoupled so that each value of A in the array can be

computed independently.

An arrangement of data to effect this program is shown in Fig. 9

and the program might be as follows.

1 Enable all PEs. (Turn ON all PEs.)

2 All PEs LOAD RGA from location a.

3 i<-0.

4 All PEs LOAD RGR from their RGA. [This instruction is

performed by all PEs, whether they are ON (enabled) or

OFF (disabled).]

5 All PEs ROUTE their RGR contents a distance of 2' to the

right. (This instruction is also performed by all PEs,

regardless of whether they are on or off.)

6 j«-2'-l.

7 Disable PEs number through j. (Turn them OFF.)

8 All enabled PEs add to RGA, the contents ofRGR. (Fig. 9

shows the state of RGR, RGA, and RGD (the mode

status)
—which PEs are ON and which are OFF—^after this

step has been executed when i
=

2.)

9 t<-t+l.

10 If i<6 go back to step 4, otherwise to step 11.

11 Enable all PEs.

12 All PEs STORE the contents of RGA to location a + 1.

314 Part 2
I
Regions of Computer Space Section 3 Concurrency: Singie-Processor System

Note that this same algorithm can be appUed to the solution of

problems where the recurrence is ofthe form: Fj = Cj * Fj., which

decouples to Fjv
=

(n C,)Fi. All that need be done is that step

8 be changed to multiply rather than add. Note also that if

Ci =
t (t

=
1,2,...,64) and Fi = 1 we have an algorithm for

computing N\ on lUiac IV; that is, when the algorithm is complete

PE^ will contain (N + 1)!

This example tries to illustrate that it is not always immediately

clear if an algorithm can be decoupled so that it can operate in

parallel, or is so dependent on what happened before that it can

only be executed sequentially. In this example, it appears that the

algorithm is sequential, but upon closer inspection, the parallel-

ism appears. Potential lUiac IV users will probably need much

practice in analyzing problems using a parallel viewpoint, espe-

cially if they have already been conditioned to viewing their

problems only in terms of solving them on a sequential conven-

tional computer. The tool, for better or for worse, shapes the uses

it is put to.

Uliac rV I/O System. The lUiac IV array is an extremely

powerful information processor, but it has of itself no I/O

capability. The I/O capability, along with the supervisory system

(including compilers and utilities), resides within the lUiac IV I/O

system. The Illiac IV I/O system (see Fig. 10) consists of the I/O

subsystem, a DFS, and a 86500 control computer (which in turn

supervises a large laser memory and the ARPA network link). The

total Illiac IV system consisting of the Ilhac IV I/O system and the

Illiac IV array is shown in Fig. 11. All system configurations shown

are transitory, and more than likely will have changed several

times in the next year or so.

I/O request to appear. The CDC can then interrupt the

B6500 control computer which can, in turn, try to honor
the request and place a response code back in that section

of the CU via the CDC. This response code indicates the

status of the I/O request to the program in the Illiac IV

array.

The CDC causes the B6500 to initiate the loading of the

PEM array with programs and data from the lUiac IV disk

(also called the DFS). After PEM has been loaded, the

CDC can then pass control to the CU to begin execution of

the Illiac IV program.

BIOM: The B6500 control computer can transfer informa-

tion from its memory through its CPU at the rate of

80x 10^ bits/s. The Illiac IV DFS accepts information at the

rate of 500X 10* bits/s. This factor of over six in information

transfer rates between the two systems necessitates the

placing of a rate-smoothing buffer between them. The
BIOM is that buffer. A buffer is also necessary for the

conversion of 48-bit B6500 words to 64-bit Illiac FV words
which can come out of the BIOM two at a time via the

128-bit wide path to the DFS. The BIOM is actually four

PE memories providing 8192 words of 64-bit storage.

lOS: The lOS performs two functions. As its name implies,

it is a switch and is responsible for switching information

from either the DFS or from a port which can accept input
from a real-time device. All bulk data transfers to and from

the PEM array are via lOS. As a switch it must ensure that

only one input is sending to the array at a given time. In

addition, the lOS acts as a buffer between the DFS and the

array, since each channel from the Illiac IV disk to the lOS

is 256 bits wide and the bus from the lOS to the PEM array
is 1024 bits wide.

I/O subsystem. The I/O subsystem consists of the control

descriptor controller (CDC), the buffer I/O memory (BIOM), and

the I/O switch (lOS).

1 CDC: The CDC monitors a section of the CU waiting for an

Chapter 20
|

The lilac IV System 315

B6500 Peripherols Cord Reader, Card Punch,
Line Printer, 4 Magnetic Tape Units, 2 OisK Files,

Console Printer and Keyboord

ARPA NETWORK
LINK

B6500
Multiplsxor

-T~i'

B6500
Memory
~~J
—

B6500
CPU

128 eif»

W>d« ..,. ////A^\^^:^m'^V/77,

r^ p^

-•CSD-*-

f_I

fel

V

Fig. 11. Illiac IV system.

capable of solving certain classes of problems with extremely high

speed.

1 Laser memory: The B6500 supervises a iO'^-bit write-once

read-only laser memory developed by the Precision Instru-

ment Company. The beam from an argon laser records

binary data by burning microscopic holes in a thin film of

metal coated on a strip of polyester sheet, which is carried

by a rotating drum. Each data strip can store some 2.9

billion bits. A "strip file" provides storage for 400 data strips

containing more than a trillion bits. The time to locate data

stored on any one of the 400 strips is 5 s. Within the same

strip data can be located in 200 ms. The read and record

rate is four million bits per second on each of two channels.

A projected use of this memory will allow the user to

"dump" large quantities of programs and data into this

storage medium for leisurely review at a later time; hard

copy output can optionally be made from files within the

laser memory.

AfiPA netuMrk link: The ARPA network is a group of

computer installations separated geographically but con-

nected by high-speed (50 000 bits/s) data communication

316 Part 2
1
Regions of Computer Space Section 3 Concurrency: Single-Processor System

lines. On these lines, the members of the "net" can

transmit information—usually in the form of programs,

data, or messages. The link performs an information

switching fiinction and is handled by an interface message

processor (IMP) and a network control program stored

within each member installation's "host" computer. Each

IMP operates in a "store and forward mode," that is,

information in one IMP is not lost until the receiving IMP
has signalled complete reception and retention of the

message. The IMP interfaces with each member's comput-
er system and converts information into standard format for

transmission to the rest of the net. Conversely, the IMP

accepts information in a standard format and converts it to

the particular data format of the member installation. In

this way, the ARPA network is a form of a computer utility

with each contributing member ofiFering its unique re-

sources to all of the other members. The lUiac IV system
then is an ARPA network resource that will be shared by
the members ofthe ARPA network; even the host site ofthe

lUiac IV, Ames Research Center at Moffett Field, Calif. ,

will be constrained to access lUiac IV via the ARPA
network.

References

Bouknight, Denenberg, Mclntyre, Randall, Sameh, and Slotnick

[1972]; Barnes, Brown, Kato, Kuck, Slotnick, and Stokes [1968];

Denenberg [1971]; "Electronic Computers" [1969]; Slotnick

[1967]; Slotnick [1971]; Slotnick, Borck, and McReynolds [1962].

