
Chapter 26

NOVA: a list-oriented computer
1

Joseph E. Wirsching

Since the advent of the internally-stored program computer, those

of us concerned with problems involving massive amounts of com-

putation have taken a one-operation, one-operand approach. But

there is a very large class of problems involving massive amounts

of computation that may be thought of as one-operation, many-

operand in nature. Some familiar examples are numerical integra-

tion, matrix operations, and payroll computation.

This article proposes a computer, called NOVA, designed to

take advantage of the one-operation, many-operand concept.

NOVA would use rotating memory instead of high-cost random

access memory, reduce the number of program steps, and reduce

the number of memory accesses to program steps. In addition it

is shown that NOVA could execute typical problems of the one-

operation, many-operand type in times comparable to that of

modern high-speed random access computers.

Rotating memories were used in early computers because of

low cost, reliability, and ease of fabrication. These machines have

been replaced by machines with more costly random access

memories primarily to increase computing speed as the result of

a decrease in access time to both operands and instructions.

The NOVA approach

Let us take two simple examples and use them to compare con-

ventional computing techniques with those proposed for NOVA.

Example 1. Consider two lists (as and fo's) of which the corre-

sponding pairs are to be added. With a conventional computer
this is done with a program that adds the first a to the first b,

the second a to the second b, etc., and counts the operations. The

working part of such a program might consist of the following

instructions:

Fetch a

Addfc

Store (a + b)

Count, Branch, and Index

^Datamation, vol. 12, no. 12, pp. 41-43, December, 1966.

In general, the four or more instructions must be brought from

the memory to the instruction register once for each pair in the

lists. This seems to be a great waste when only one arithmetic

operation is involved. Indeed it is, when one considers that the

majority of computing work consists of the performance of highly

repetitive operations that are merely combinations of the simple

example given. Attempts have been made to alleviate this waste

by incorporating "instruction stacks" and "repeat" commands into

the instruction execution units of more recent computers.

Example 2. Consider three lists (a's, fo's and c's), where we wish

to compute (a + b) X c for each trio. There are two distinct

methods by which this can be accomplished: first, by forming

(a + b) X c for each trio of numbers in the list, or second, by

forming a new list consisting of (a + b) for each a and b, and then

multiplying each c by the corresponding member of the new list.

Clearly the second method is wasteful of memory space and

wasteful of programming steps.

Next, let us take a look at the memory requirements for these

two examples. First, the instructions are kept in a high-speed

random access memory, and while the bulk of the variables need

not be kept in a random access memory, they must be brought
to one before the algorithm can be performed. This extra transfer

may entail more instructions to perform the logistics. Thus the

simplicity of the overall program is directly related to the size

of the memory. The variables (a's, b's, etc.) are usually stored in

consecutive memory locations. Except for indexing this ordering

of the data is not exploited.

In NOVA, lists of variables are kept on tracks of a rotating bulk

memory. When called for, the lists of variables are streamed

through an arithmetic unit and the results immediately replaced

on another track for future use. This process takes maximum ad-

vantage of the sequential ordering of the variables. Instructions

need only be brought to the instruction execution unit once for

each pair of lists rather than once for each operand; thus the

instructions need not be stored in a random access memory but

may also be stored on the rotating bulk memory. This departure

from the requirement for random access memory significantly

316

Chapter 26 NOVA: a list-oriented computer 317

reduces the cost of the computer, without sacrificing speed of

problem solution.

Solution of a network problem

Before going further into the structure of NOVA, let us consider

a significant example, which shows that NOVA is well suited to

the solution of differential equations using difference methods over

a rectangular network.

Let Fig. 1 represent an artificial network used as a model for

some physical process. Generally speaking, the method of advanc-

ing the variables at a mesh point (/', k) from one time step to the

next involves only information from the neighboring mesh points.

A typical hydrodynamics problem will require a list of 10 to 20

variables (physical quantities) at each mesh point. The traditional

computer solution involves listing these variables to each point

in a contiguous fashion and in a regular sequence with respect

to the rows and columns of the array. If the total array does not

fit into the fast memory, three adjacent columns (or rows) are

brought to the fast memory; as a new column is calculated, the

next column in sequence is brought in from bulk memory and the

oldest of the three is written to bulk memory. In this fashion one

proceeds across the array. This process is then repeated until some

significant physical occurrence happens and the problem is ended.

In NOVA, the variables are organized into separate lists rather

than by mesh point. From a computational standpoint this is

possible since the main memory of NOVA may be essentially

unlimited in size, at least exceeding the size of the largest present

network problems. One then proceeds to execute operations on

Original Lists

318 Part 4 The instruction-set processor level: special-function processors Section 2 Processors for array data

Further observation shows not only that it is possible to obtain

the nearest neighbors easily by shifting the columns of variables

with respect to one another, but that any neighbor relationship

can be obtained. In general, for an operation with a neighbor ±n
rows away and ±m columns away, the lists are offset by
±n ± m- K, where K is the number of rows in the array.

Many problems (for example, payroll and inventory records)

are essentially list-structured but do not require offsetting of vari-

ables. Clearly the NOVA structure is well suited for the solutions

of these problems also.

Structure

The most difficult problem to be solved in the proposed computer
is to synchronize movement of the columns of data that require

offset. Buffers of various types could be used to solve this problem;

they could range all the way from rotating memory devices or

delay lines to core memories. The former are simple, direct, and

low in cost but are limited in their general capabilities. On the

other hand, a number of small random access buffer memories

could be used for offsetting lists of variables and for facilitating

special functions such as boundary calculations but at a higher

equipment cost.

Figure 3 shows a block diagram of the organization of NOVA.
The rotating memory, which might be a disc or drum, would be

Chapter 26 NOVA: a list-oriented computer 319

These buffers should be equivalent in length to the number of

words on a track of the rotating memory.

The loading and unloading of the buffers to and from the rotat-

ing memory is dependent on the timing of the rotating memory,

whereas the loading and unloading of the buffers to and from the

arithmetic unit is guided solely by the rate at which the arithmetic

can be performed. Here again it may also be possible to take

advantage of the streaming nature of the operands by designing

an "assembly-line" arithmetic unit in which more than one pair

of operands could be in process at the same time. With this kind

of unit it may be possible to execute additions at a rate equal to

the word-transfer rate from the rotating memory; however, a

multiplication or division of two lists may require several revolu-

tions of the memory. The timing diagram of Fig. 5 shows several

typical instructions being carried out. A certain amount of look-

ahead is required, but there is ample time for this, since instruc-

tions are prepared for execution at an average rate of less than

one per revolution of the rotating memory.
While a detailed cost estimate has not been made for a simple

prototype NOVA, a quick estimate would be $50,000 for a head-

per-track disc and $50,000 for the arithmetic and control section,

making a total of $100,000. For a buffering scheme such as the

one shown in Fig. 4 the cost would be considerably higher but

would be offset by increased versatility.

Conclusions

In the previous paragraphs we have demonstrated that NOVA is

capable of handling network problems at a significantly lower cost

than contemporary computers, and at a comparable speed. The

availability of such a machine as NOVA would stimulate further

1-

A2

61

B2

CI (El)

C2 (E2)

Dl

02

ARITHMETIC

UNIT

REVOLUTIONS OF ROTATING MEMORY

h

I- h

H>

i h -i

H -U

.AH-ei-DI, .A2-B2-D2,

Fig. 5. Timing diagram of buffers, rotating memory, and arithmetic unit.

Dotted line shows movement of data into a device; solid line shows

movement out.

interest in the one-operation, many-operand approach to compu-
tation and no doubt would uncover many other problems to which

it could be applied.

Because NOVA makes it possible to easily establish neighbor-

relationships between mesh points that are further away than

nearest neighbors, it may be possible to develop new differencing

techniques for the solution of coupled sets of differential equations.

This may increase the accuracy or shorten the time required for

their solution.

The memory, arithmetic, and other units needed for NOVA are

commercially available now. No new technology would be required

to fabricate a prototype model. In view of the potential advantages

of such a machine, it seems clear that construction of a model

would justify the minimal development costs.

