
Chapter 24

The Interface Message Processor

for the ARPA Computer Network^

F. E. Heart / R. E. Kahn / S. M. Omstein /

W. R. Crowther / D. C. Walden

Introduction

For many years, small groups of computers have been intercon-

nected in various ways. Only recently, however, has the interac-

tion ofcomputers and communications become an important topic

in its own right.
^ In 1968, after considerable preliminary investiga-

tion and discussion, the Advanced Research Projects Agency of

the Department of Defense (ARPA) embarked on the implementa-
tion of a new kind of nationwide computer interconnection known

as the ARPA Network. This network will initially interconnect

many dissimilar computers at ten ARPA-supported research

centers with 50-kilobit common-carrier circuits. The network may
be extended to include many other locations and circuits ofhigher

bandwidth.

The primary goal of the ARPA project is to permit persons and

programs at one research center to access data and use interac-

tively programs that exist and run in other computers of the

network. This goal may represent a major step down the path

taken by computer time-sharing in the sense that the computer
resources of the various research centers are thus pooled and

directly accessible to the entire community of network partici-

pants.

Study of the technology and tariffs of available communications

facilities showed that use of conventional line switching facilities

would be economically and technically inefficient. The traditional

method of routing information through the common-carrier

switched network establishes a dedicated path for each conversa-

tion. With present technology, the time required for this task is on

the order of seconds. For voice communication, that overhead

time is negligible, but in the case of many short transmissions,

such as may occur between computers, that time is excessive.

Therefore, ARPA decided to build a new kind of digital communi-

cation system employing wideband leased lines and message

switching, wherein a path is not established in advance and each

'Proc. AFIPS SJCC, 1970, pp. 551-567.

*A bibliography of relevant references is included at the end of this paper;

a more extensive list may be found in Cuadra [1968].

message carries an address. In this domain the project portends a

possible major change in the character of data communication

services in the United States.

In a nationwide computer network, economic considerations

also mitigate against a wideband leased line configuration that is

topologically fully connected. In a non-fiilly connected network,

messages must normally traverse several network nodes in going

from source to destination. The ARPA Network is designed on this

principle and, at each node, a copy of the message is stored until it

is safely received at the following node. The network is thus a

store and forward system and as such must deal with problems of

routing, buffering, synchronization, error control, reliability, and

other related issues. To insulate the computer centers from these

problems, and to insulate the network from the problems of the

computer centers, ARPA decided to place identical small proces-

sors at each network node, to interconnect these small processors

with leased common-carrier circuits to form a subnet, and to

connect each research computer center into the net via the local

small processor. In this arrangement the research computer
centers are called Hosts and the small processors are called

Interface Message Processors, or /MPs. (See Fig. 1.) This

approach divides the genesis of the ARPA Network into two parts:

(1) design and implementation of the IMP subnet, and (2) design

HOST

HOST



Chapter 24 The Interface Message Processor for the ARPA Computer Network 403

and implementation of protocols and techniques for the sensible

utilization of the network by the Hosts.

Implementation of the subnet involves two major technical

activities: providing 50-kilobit common-carrier circuits and the

associated modems; and providing IMPs, along with software and

interfaces to modems and Host computers. For reasons of

economic and political convenience, ARPA obtained common-
carrier circuits directly through government purchasing channels;

AT&T (Long Lines) is the central coordinator, although the

General Telephone Company is participating at some sites and
other common carriers may eventually become involved. In

January 1969, Bolt Beranek and Newman Inc. (BEN) began work
on the design and implementation of IMPs; a four-node test

network was scheduled for completion by the end of 1969 and

plans were formulated to include a total often sites by mid-1970.

This paper discusses the design of the subnet and describes the

hardware, the software, and the predicted performance of the

IMP. The issues of Host-to-Host protocol and network utilization

are barely touched upon; these problems are currently being
considered by the participating Hosts and may be expected to be a

subject of technical interest for many years to come.

At this time, in late 1969, the test network has become an

operating reality. IMPs have already been installed at four sites,

and implementation of IMPs for six additional sites is proceeding.
The common carriers have installed 50-kilobit leased service

connecting the first four sites and are preparing to install circuits

at six additional sites.

The design of the network allows for the connection of

additional Host sites. A map of a projected eleven-node network is

shown in Fig, 2. The connections between the first four sites are

indicated by solid lines. Dotted lines indicate planned connec-

tions.

Fig. 2. Network map (from the ARPANET Directory).

Network Design

The design of the network is discussed in two parts. The first part
concerns the relations between the Hosts and the subnet, and the

second part concerns the design of the subnet itself

Host-Subnet Considerations

The basic notion of a subnet leads directly to a series of questions
about the relationship between the Hosts and the subnet: What
tasks shall be performed by each? What constraints shall each

place on the other? What dependence shall the subnet have on
the Hosts? In considering these questions, we were guided by the

following principles: (1) The subnet should function as a communi-
cations system whose essential task is to transfer bits reliably from
a source location to a specified destination. Bit transmission

should be sufficiently reliable and error free to obviate the need
for special precautions (such as storage for retransmission) on the

part of the Hosts; (2) The average transit time through the subnet

should be under a half second to provide for convenient interac-

tive use of remote computers; (3) The subnet operation should be

completely autonomous. Since the subnet must function as a store

and forward system, an IMP must not be dependent upon its local

Host. The IMP must continue to operate whether the Host is

functioning properly or not and must not depend upon a Host for

buffer storage or other logical assistance such as program reload-

ing. The Host computer must not in any way be able to change the

logical characteristics of the subnet; this restriction avoids the

mischievous or inadvertent modification of the communication

system by an individual Host user; (4) Establishment of Host-to-

Host protocol and the enormous problem of planning to commu-
nicate between different computers should be an issue separated
from the subnet design.

Messages, Links, and RFNMs In principle, a single transmis-

sion from one Host to another may range from a few bits, as with a

single teletype character, up to arbitrarily many bits, as in a very

long file. Because of buffering limitations in the subnet, an upper
limit was placed on the size of an individual Host transmission;

8095 bits was chosen for the maximum transmission size. This

Host unit of transmission is called a message. The subnet does not

impose any pattern restrictions on messages; binary text may be

transmitted. Messages may be of variable length; thus, a source

Host must indicate the end of a message to the subnet.

A major hazard in a message switched network is congestion,
which can arise either due to system failures or to peak traffic flow.

Congestion typically occurs when a destination IMP becomes
flooded with incoming messages for its Host. If the flow of

messages to this destination is not regulated, the congestion will

back up into the network, affecting other IMPs and degrading or



404 Part 2
I Regions of Computer Space Section 5 ' Networics

even completely clogging the communication service. To solve

this problem we developed a quenching scheme that limits the

flow of messages to a given destination when congestion begins to

occur or, more generally, when messages are simply not getting

through.

The subnet transmits messages over unidirectional logical paths

between Hosts known as links. (A link is a conceptual path that

has no physical reality; the term merely identifies a message

sequence.) The subnet accepts only one message at a time on a

given link. Ensuing messages on that link will be blocked from

entering the subnet until the source IMP learns that the previous

message has arrived at the destination Host. When a Unk becomes

unblocked, the subnet notifies the source Host by sending it a

special control message known as Ready for Next Message (or

RFNM), which identifies the newly unblocked link. The source

Host may utilize its connection into the subnet to transmit

messages over other links, while waiting to send messages on the

blocked links. Up to 63 separate outgoing links may exist at any
Host site. When giving the subnet a message, the Host specifies

the destination Host and a link number in the first 32 bits of the

message (known as the leader). The IMPs then attend to route

selection, delivery, and notification of receipt. This use of links

and RFNMs also provides for IMP-to-Host delivery of sequences
of messages in proper order. Because the subnet allows only one

message at a time on a given link, Hosts never receive messages
out of sequence.

Host-IMF Interfacing Each IMP will initially service a single

Host. However, we have made provision (both in the hardware

and software) for the IMP to service up to four Hosts, with a

corresponding reduction in the number of permitted phone line

connections. Connecting an IMP to a wide variety of difierent

Hosts requires a hardware interface, some part of which must be

custom tailored to each Host. We decided, therefore, to partition

the interface such that a standard portion would be built into the

IMP, and would be identical for all Hosts, while a special portion

of the interface would be unique to each Host. The interface is

designed to allow messages to flow in both directions at once. A
bit serial interface was designed partly because it required fewer

lines for electrical interfacing and was, therefore, less expensive,
and partly to accommodate conveniently the variety of word

lengths in the difierent Host computers. The bit rate requirement
on the Host line is suSiciently low that parallel transfers are not

necessary.

The Host interfece operates asynchronously, each data bit being

passed across the interface via a Ready For Next Bit/There's Your

Bit handshake procedure. This technique permits the bit rate to

adjust to the rate of the slower member of the pair and allows

necessary interruptions, when words must be stored into or

retrieved from memory. The IMP introduces between bits a

(manually) adjustable delay that Hmits the maximum data rate; at

present, this delay is set to 10 ^.sec. Any delay introduced by the

Host in the handshake procedure further slows the rate.

System Failure Considerable attention has been given to the

possible efiects on a Host of system failures in the subnet. Minor

system failures (e.g., temporary line failures) will appear to the

Hosts only in the form of reduced rate of service. Catastrophic

failures may, however, result in the loss of messages or even in the

loss of subnet communication. IMPs inform a Host of all relevant

system failures. Additionally, should a Host computer go down,
the information is propagated throughout the subnet to all IMPS

so they may notify their local Host if it attempts to send a message
to that Host.

Specific Subnet Design

The overriding consideration that guided the subnet design was

reliability. Each IMP must operate unattended and reliably over

long periods with minimal down time for maintenance and repair.

We were convinced that it was important for each IMP in the

subnet to operate autonomously, not only independently of Hosts,

but insofar as possible from other IMPs as well; any dependency
between one IMP and another would merely broaden the area

jeopardized by one IMF's failure. The need for reliability and

autonomy bears directly upon the form of subnet communication.

This section describes the process of message communication

within the subnet.

Message Handling Hosts communicate with each other via a

sequence of messages. An IMP takes in a message from its Host

computer in segments, forms these segments into packets (whose

maximum size is approximately 1000 bits), and ships the packets

separately into the network. The destination IMP reassembles the

packets and delivers them in sequence to the receiving Host, who
obtains them as a single unit. This segmentation of a message

during transmission is completely invisible to the Host comput-
ers. Figures 3, 4, and 5 illustrate aspects of message handling.

The transmitting Host attaches an identifying leader to the

beginning of each message. The IMP forms a header by adding

further information for network use and attaches this header to

each packet of the message.

Each packet is individually routed from IMP-to-IMP through
the network toward the destination. At each IMP along the way,
the transmitting hardware generates initial and terminal framing

characters and parity check digits that are shipped with the packet

and are used for error detection by the receiving hardware of the

next IMP.

Errors in transmission can afiect a packet by destroying the

framing and/or by modifying the data content. If the framing is

disturbed in any way, the packet either will not be recognized or

will be rejected by the receiver. In addition, the check digits



Chapter 24
'

The Interface Message Processor for the ARPA Computer Network 405



406 Part 2
I Regions of Computer Space Section 5 Networks

table by combining its neighbors' estimates with its own estimates

of the delay to that neighbor. The estimated delay to each

neighbor is based upon both queue lengths and the recent

performance of the connecting communication circuit. For each

destination, the table is then made to specify that selected output
line for which the sum of the estimated delay to the neighbor plus

the neighbor's delay to the destination is smallest.

The routing table is consistently and dynamically updated to

adjust for changing conditions in the network. The system is

adaptive to the ups and downs of lines, IMPs, and congestion; it

does not require the IMP to know the topology of the network. In

particular, an IMP need not even know the identity of its

immediate neighbors. Thus, the leased circuits could be reconfi-

gured to a new topology without requiring any changes to the

IMPs.

Subnet Failures The network is designed to be largely invulner-

able to circuit or IMP failure as well as to outages for maintenance.

Special status and test messages are employed to help cope with

various failures. In the absence of regular packets for transmission

over a line, the IMP program transmits special hello packets at

half-second intervals. The acknowledgment for a hello packet is an

/ heard you packet.

A dead line is defined by the sustained absence (approximately
2.5 seconds) on that line of either received regular packets or

acknowledgments; no regular packets will be routed into a dead

line, and any packets awaiting transmission will be rerouted.

Routing tables in the network are adjusted automatically to reflect

the loss. We require acknowledgment of thirty consecutive hello

packets (an event which consumes at least 15 seconds), before a

dead line is defined to be alive once again.

A dead line may reflect trouble either in the communication

facilities or in the neighboring IMP itself. Normal line errors

caused by dropouts, impulse noise, or other conditions should not

result in a dead line, because such errors typically last only a few

miliseconds, and only occasionally as long as a few tenths of a

second. Therefore, we expect that a line will be defined as dead

only when serious trouble conditions occur. If dead lines elimi-

nate all routes between two IMPs, the IMPs are said to be

disconnected and each of these IMPs will discard messages
destined for the other. Disconnected IMPs cannot be rapidly

detected from the delay estimates that arrive from neighboring
IMPs. Consequently, additional information is transmitted be-

tween neighboring IMPs to help detect this condition. Each IMP
transmits to its neighbors the length of the shortest existing path

(i.e., number of IMPs) from itself to each destination. To the

smallest such received number per destination, the IMP adds

one. This incremented number is the length of the shortest path
from that IMP to the destination. If the length ever exceeds the

number of network nodes, the destination IMP is assumed to be

unreachable and therefore disconnected.

Messages intended for dead Hosts (which are not the same as

dead IMPs) cannot be delivered; therefore, these messages

require special handling to avoid indefinite circulation in the

network and spurious arrival at a later time. Such messages are

purged from the network either at the source IMP or at the

destination IMP. Dead Host information is regularly transmitted

with the routing information. A Host computer is notified about

another dead Host only when attempting to send a message to that

Host.

An IMP may detect a major failure in one of three ways: (1) A

packet expected for reassembly of a multiple packet message does

not arrive. If a message is not fully reassembled in 15 minutes, the

system presumes a failure. The message is discarded by the

destination IMP and both the source IMP and the source Host are

notified via a special RFNM. (2) The Host does not take a message
from its IMP. If the Host has not taken a message after 15

minutes, the system presumes that it will never take the message.

Therefore, as in the previous case, the message is discarded and a

special RFNM is returned to the source Host. (3) A link is never

unblocked. If a Unk remains blocked for longer than 20 minutes,

the system again presumes a failure; the link is then unblocked

and an error message is sent to the source Host. (This last time

interval is slightly longer than the others so that the failure

mechanisms for the first two situations will have a chance to

operate and unblock the link.)

Reliability and Recovery Procedures For higher system re-

liability, special attention was placed on intrinsic reliability,

hardware test capabilities, hardware/software failure recovery

techniques, and proper administrative mechanisms for &ilure

management.
To improve intrinsic reliability, we decided to ruggedize the

IMP hardware, thus incurring an approximately ten percent

hardware cost penalty. For ease in maintenance, debugging,

program revision, and analysis of performance, all IMPs are as

similar as possible; the operational program and the hardware are

nearly identical in all IMPs.

To improve hardware test capabilities, we built special cross-

patching features into the IMP's interface hardware; these

features allow program-controlled connection of output lines to

corresponding input lines. These crosspatching features have

been invaluable in testing IMPs before and during field installa-

tion, and they should continue to be very useful when troubles

occur in the operating network. These hardware test features are

employed by a special hardware test program and may also be

employed by the operational program when a line difiBculty

occurs.

The IMP includes a 512-word block of protected memory that

secures special recovery programs. An IMP can recover from an

IMP failure in two ways: (1) In the event of power failure, a

power-fail interrupt permits the IMP to reach a clean stop before



Chapter 24
|

The Interface Message Processor for the ARPA Computer Network 407

the program is destroyed. When power returns, a special

automatic restart feature turns the IMP back on and restarts the

program. (We considered several possibilities for handling the

packets found in an IMP during a power failure and concluded

that no plan to salvage the packets was both practical and

foolproof For example, we cannot know whether the packet in

transmission at the time of failure successfully left the machine

before the power failed. Therefore, we decided simply to discard

all the packets and restart the program.) (2) The second recovery

mechanism is a "watchdog timer," which transfers control to

protected memory whenever the program neglects this timer for

about one minute. In the event of such transfer, the program in

unprotected memory is presumed to be destroyed (either through
a hardware transient or a software failure). The program in

protected memory sends a reload request down a phone line

selected at random. The neighboring IMP responds by sending a

copy of its whole program back on the phone line. A normal IMP
would discard this message because it is too long, but the

recovering IMP can use it to reload its program.

Everything unique to a particular IMP must thus reside in its

protected memory. Only one register (containing the IMP

number) currently diflFers from IMP-to-IMP. The process of

reloading, which requires a few seconds, can be tried repeatedly

until successful; however, if after several minutes the program has

not resumed operation, a later phase of the watchdog timer shuts

ofiFall power to the IMP.

In addition to providing recovery mechanisms for both network

and IMP failures, we have incorporated into the subnet a control

center that monitors network status and handles trouble reports.

The control center, located at a network node, initiates and

follows up any corrective actions necessary for proper subnet

functioning. Furthermore, this center controls and schedules any
modifications to the subnet.

Introspection Because the network is experimental in nature,

considerable effort has been allocated to developing tools whereby
the network can supply measures of its own performance. The

operational IMP program is capable of taking statistics on its own

performance on a regular basis; this function may be turned on

and off remotely. The various kinds of resulting statistics, which

are sent via the network to a selected Host for analysis, include

"snapshots," ten-second summaries and packet arrival times.

Snapshots are summaries of the internal status of queue lengths

and routing information. A synchronization procedure allows

these snapshots, which are taken every half second, to occur at

roughly the same time in all network IMPs; a Host receiving such

snapshot messages could presumably build up an instantaneous

picture of overall network status. Ten-second summaries include

such IMP-generated statistics as the number of processed messag-
es of each kind, the number of retransmissions, the traffic to and

from the local Host, and so forth; this statistical data is sent to a

selected Host every ten seconds. In addition, a record of actual

packet arrival times on modem lines allows for the modeling of

line traffic. (As part of its research activity, the group at UCLA is

acting as a network measurement center; thus, statistics for

analysis will normally be routed to the UCLA Host.)

Perhaps the most powerful capability for network introspection

is tracing. Any Host message sent into the network may have a

"trace bit" set in the leader. Whenever it processes a packet from

such a message, the IMP keeps special records ofwhat happens to

that packet
—

e.g. ,
how long the packet is on various queues, when

it comes in and leaves, etc. Each IMP that handles the traced

packet generates special trace report messages that are sent to a

specified Host; thus, a complete analysis of what has happened to

that message can be made. When used in an orderly way, this

tracing facility will aid in understanding at a very detailed level

the behavior of routing algorithms and the behavior of the

network under changing load conditions.

Flexibility Flexibility for modifications in IMP usage has been

provided by several built-in arrangements: (1) provision within

the existing cabinet for an additional 4K core bank; (2) modularity
of the hardware interfaces; (3) provision for operation with data

circuits of widely different rates; (4) a program organization

involving many nearly self-contained subprograms in the IMP
program structure.

This last aspect of flexibility presents a somewhat controversial

design choice. There are many advantages to keeping all IMP
software nearly identical. Because of the experimental nature of

the network, however, we do not yet know whether this luxury of

identical programs will be an optimal arrangement. Several

potential applications of "Host-unique" IMP software have been

considered—e.g., using ASCII conversion routines in each IMP
to establish a "Network ASCII" and possibly to simplify the

protocol problems of each Host. As of now, the operational IMP

program includes a structure that permits unique software plug-in

packages at each Host site, but no plug-ins have yet been

constructed.

The Hardware

We selected a Honeywell DDP-516 for the IMP processor

because we wanted a machine that could easily handle currently

anticipated maximum traffic and that had already been proven in

the field. We considered only economic machines with fast cycle

times and good instruction sets. Furthermore, we needed a

machine with a particularly good I/O capability and that was

available in a ruggedized version. The geographical proximity of

the supplier to BBN was also a consideration.

The basic machine has a 16-bit word length and a 0.96-jjisec

memory cycle. The IMP version is packaged in a single cabinet.



408 Part 2
I Regions of Computer Space Section S Networlcs

and includes a 12K memory, a set of 16 multiplexed channels

(which implement a 4-cycle data break), a set of 16 priority

interrupts, a 100-^Jlsec clock, and a set of programmable status

lights. Also packaged within this cabinet are special modular

interfaces for connecting the IMP to phone line modems and to

Host computers; these interfaces use the same kind of 1 MHz and

5 MHz DTL packs from which the main machine is constructed.

In addition, a number of features that have been incorporated

make the IMP somewhat resilient to a variety of failures.

Teletypes and high-speed paper tape readers which are at-

tached to the IMPs are used only for maintenance, debugging,

and system modification; in normal operation, the IMP runs

without any moving parts except fans. Within the cabinet, space

has been reserved for an additional 4K memory. Figure 6 is a

picture of an IMP, and Figure 7 shows its configuration.

Ruggedization of computer hardware for use in friendly envi-

ronments is somewhat unusual; however, we felt that the consid-

erable difficulty that IMP failures can cause the network justified

this step. Although the ruggedized unit is not fully "qualified" to

MIL specs, it does have greater resistance to temperature

variance, mechanical shock and vibration, radio frequency inter-



Chapter 24
]

The Interface Message Processor for the ARPA Computer Network 409

sync pattern that keeps them in character sync. Bit sync is

maintained by the modems themselves, which provide both

transmit and receive clocking signals to the interfaces. When the

program initiates transmission, the hardware first transmits a pair

of initial framing characters (DLE, STX). Next, the text of the

packet is taken word by word from the memory and shifted

serially onto the phone line. At the end of the data, the hardware

generates a pair of terminal framing characters (DLE, ETX) and

shifts them onto the phone line. After the terminal framing

characters, the hardware generates and transmits 24 check bits.

Finally, the interface returns to idle (sync) mode.

The hardware doubles any DLE characters within the binary

data train (that is, transmits them twice), thereby permitting the

receiving interface hardware to distinguish them from the termi-

nal framing characters and to remove the duplicate. Transmitted

packets are of a known maximum size; therefore, any overflow of

input bufier length is evidence of erroneous transmission. Format

errors in the framing also register as errors. Check bits are

computed from the received data and compared with the received

check bits to detect errors in the text. Any of these errors set a flag

and cause a program interrupt. Before processing a packet, the

program checks the error flag to determine whether the packet

was received correctly.

IMP Software

Implementation of the IMPs required the development of a

sophisticated operational computer program and the development
of several auxiliary programs for hardware tests, program con-

struction, and debugging. This section discusses in detail the

design of the operational program and briefly describes the

auxiliary software.

Operational Program

The principal function of the operational program is the process-

ing of packets. This processing includes segmentation of Host

messages into packets for routing and transmission, building of

headers, receiving, routing and transmitting of store and forward

packets, retransmitting of unacknowledged packets, reassembling

received packets into messages for transmission to the Host, and

generating of RFNMs and acknowledgments. The program also

monitors network status, gathers statistics, and performs on-line

testing. This real-time program is an efficient, interrupt-driven,

involute machine language program that occupies about 6000

words of memory. It was designed, constructed, and debugged
over a period of about a year by three programmers.
The entire program is composed of twelve iunctionally distinct

pieces; each piece occupies no more than one or two pages of core

(512 words per page). These programs communicate primarily

through common registers that reside in page zero of the machine

and that are directly addressable from all pages of memory. A map
of core storage is shown in Fig. 8. Seven of the twelve programs
are directly involved in the flow of packets through the IMP: the

task program performs the major portion of the packet processing,

including the reassembly of Host messages; the modem programs

(IMP-to-Modem and Modem-to-IMP) handle interrupts and

resetting of bufiers for the modem channels; the Host programs

(IMP-to-Host and Host-to-IMP) handle interrupts and resetting of

bufiers for the Host channels, build packet headers during input,

and construct RFNMs that are returned to the source Host during

output; the time-out program maintains a software clock, times out

unacknowledged packets for retransmission,^ and attends to

infrequent events; the link program assigns and verifies message
numbers and keeps track of links. A background loop contains the

remaining five programs and deals with initialization, debugging.

RESTART^

COMMON STORAGE

INITIALIZATION BACKGROUND

TASK

MODEM TO IMP

IMP TO MODEM

HOST TO IMP

IMP TO HOST

TIMEOUT

LINK (with table)

TABLES

DEBUG

24 PAGES

1 PAGE = 512 WORDS

I

BUFFER SPACE

PROTECTED PAGE

Fig. 8. Map of core storage.



410 Part 2
I Regions of Computer Space Section 5 Networl(s

testing, statistics gathering and tracing. After a brief description of

data structures, we will discuss packet processing in some detail.

Buffer Allocation, Queues, and Tables The major system data

structures (see Table 1) consist of bufiFers and tables. The

buffer-storage space is partitioned into about 70 fixed length

buffers, each of which is used for storing a single packet. An
unused buffer is chained onto a free buffer list and is removed
from this list when it is needed to store an incoming packet. A
packet, once stored in a buffer, is never moved. After a packet has

been successfiilly passed along to its Host or to another IMP, its

buffer is returned to the free list. The buffer space is partitioned in

such a way that each process (store and forward traffic. Host

traffic, etc.) is always guaranteed some buffers. For the sake of

program speed and simplicity, no attempt is made to retrieve the

space wasted by partially filled buffers.

In handling store and forward traffic, all processing is on a per

packet basis. Further, although traffic to and from Hosts is

composed ol messages, the IMP rapidly converts to dealing with

packets; the Host transmits a message as a single unit but the IMP
takes it one buffer at a time. As each buffer is filled, the program
selects another buffer for input until the entire message has been

provided for. These successive buffers will, in general, be
scattered throughout the memory. An equivalent inverse process
occurs on output to the Host after all packets of the message have
arrived at the destination IMP. No attempt is ever made to collect

the packets of a message into a contiguous portion of the memory.
Buffers currently in use are either dedicated to an incoming or

an outgoing packet, chained on a queue awaiting processing by
the program, or being processed. Occasionally, a buffer may be

simultaneously found on two queues; this situation can occur

when a packet is waiting on one queue to be forwarded and on
another to be acknowledged.
There are four principal types of queues:

Task: Packets received on Host channels are placed on the Host
task queue. All received acknowledgments, dead Host and

routing information, / heard you and hello packets are placed
on the system task queue; all other packets from the modems
are placed on the modem task queue. The program services
the system task queue first, then the Host task queue, and

finally the modem task queue.

Table 1 Program Data Structures

5000 words—message buffer storage
120 words—queue pointers
300 words—trace blocks

100 words—reassembly blocks

150 words—routing tables

400 words— lini< tables

300 words—statistics tables

Output: A separate output queue is constructed for each
modem channel and each Host channel. Each modem output
queue is subdivided into an acknowledgment queue, a priority

queue, a RFNM queue, and a regular message queue, which
are serviced in that order. Each Host output queue is

subdivided into a control message queue, a priority queue, and
a regular message queue, which are also serviced in the

indicated order.

Sent: A separate queue for each modem channel contains

packets that have already been transmitted on that line but for

which no acknowledgment has yet been received.

Reassembly: The reassembly queue contains those packets that

are being reassembled into messages for the Host.

Tables in core are allocated for the storage ofqueue pointers, for

trace blocks, for reassembly information, for statistics, and for

links. Most noteworthy of these is the link table, which is used at

the source IMP for assignment of message numbers and for

blocking and unblocking links, and at the destination IMP to

verify message numbers for sequence control.

Packet Flow and Program Structure Figure 9 is a schematic

drawing of packet processing; the processing programs are

described below.

The Host-to-IMP routine (H -^
I) handles messages being

transmitted from the local site. The routine uses the leader to

construct a header that is prefixed to each packet of the message.
It also creates a link for the message if necessary, blocks the link,

puts the packets of the message on the Host task queue for further

processing by the task routine, and triggers the programmable
task interrupt. The routine then acquires a free buffer and sets up
a new input. The routine tests a hardware trouble indicator,

10 <*f)S' / ~*"« \

rr-

^'-
^OtBuG«—

BAcTGrOuND

^''t*^"«r"

BilL—

. •cm INC

^^ OOtt HfB(-

I I

• OUIUl 1

J-
fOV

•'^' P kit

/ UuBAtlSNir

MHQDfM
OUrl-J ^ y»

Fig. 9. Internal packet flow.



Chapter 24 The Interface Message Processor for the ARPA Computer Network 411

verifies the message format, and checks whether or not the

destination is dead, the link table is full, or the link blocked. The

routine is serially reentrant and services all Hosts connected to

the IMP.

The Modem-to-IMP routine (M -^
I) handles inputs from the

modems. This routine consists of several identical routines, one

for each modem channel. (Such duplication is useful to obtain

higher speed.) This routine sets up an input buffer (normally

obtained from the free Ust), places the received packet on the

appropriate task queue, and triggers the programmable task

interrupt. Should no free bufiers be available for input, the buflFer

at the head of the modem task queue is preempted. If the modem
task queue is also empty, the received packet is discarded by

setting up its buffer for input. However, a sufficient number of

free buffers are specifically reserved to assure that received

acknowledgments, routing packets, and the like are rarely

discarded.

The task routine uses the header information to direct packets

to their proper destination. The task routine is driven by the task

interrupt, which is set whenever a packet is put on a task queue.

The task routine routes packets from the Host task queue onto an

output queue determined from the routing algorithm.

For each packet on the modem task queue, the task routine first

determines whether sufficient buffer space is available. If the IMP
has a shortage of store and forward buffers, the buffers on the

modem task queue are simply returned to the free list without

further processing. Normally, however, an acknowledgment

packet is constructed and put near the front of the appropriate

modem output queue. The destination of the packet is then

inspected. If the packet is not for the local site, the routing

algorithm selects a modem output queue for the packet. If a

packet for the local site is a RFNM, the corresponding link is

unblocked and the RFNM is put on a queue to the Host. If the

packet is not a RFNM, it is joined with others of the same message
on the reassembly queue. Whenver a message is completely

reassembled, the packets of the message are put on an output

queue to the Host for processing by the IMP-to-Host routine.

In processing the system task queue, the task routine returns to

the free list those buffers from the sent queue that have been

referenced by acknowledgments. Any packets skipped over by an

acknowledgment are designated for retransmission. Routing, 7

heard you, and hello packets are processed in a straightforward

fashion.

The IMP-to-Modem routine (I
—> M) transmits successful pack-

ets from the Modem output queue. After completing the output,

this routine places any packet requiring acknowledgment on the

sent queue.
The IMP-to-Host routine (I

—» H) sets up successive outputs of

packets on the Host output queues and constructs a RFNM for

each non-control message delivered to a Host. RFNM packets are

returned to the system via the Host task queue.

The time-out routine is started every 25.6 msec (called the

time-out period) by a clock interrupt. The routine has three

sections: the fast time-out routine, which "wakes up" any Host or

modem interrupt routine that has languished (for example, when
the Host input could not immediately start a new input because of

a shortage in buffer space); the middle time-out routine, which

retransmits any packets that have been too long on a modem sent

queue; and the slow time-out routine, which marks lines as alive

or dead, updates the routing tables and does long term garbage
collection of queues and other data structures. (For example, it

protects the system from the cumulative effect of such failures as a

lost packet ofa multiple packet message, where buffers are tied up
in message reassembly.) It also deletes links automatically alter 15

seconds of disuse, after 20 minutes of blocking, or when an IMP

goes down.

These three routines are executed in the following pattern:

FFFF FFFF FFFF FFFF FFFF FFFF . . .

M M M M M

and, although they run off a common interrupt, are constructed to

allow faster routines to interrupt slower ones should a slower

routine not complete execution before the next time-out period.

The link routine enters, examines, and deletes entries from the

link table. A table containing a separate message number entry for

many links to every possible Host would be prohibitively large.

Therefore, the table contains entries only for each of 63 total

outgoing links at any Host site. Hashing is used to speed accessing

of this table, but the link program is still quite costly; it uses about

ten percent of both speed and space in a conceptually trivial task.

Initialization and Background Loop The IMP program starts in

an initialization section that builds the initial data structures,

prepares for inputs from modem and Host channels, and resets all

program switches to their nominal state. The program then falls

into the background loop, which is an endlessly repeated series of

low-priority subroutines that are interrupted to handle normal

traffic.

The programs in the IMP background loop perform a variety of

functions: TTY is used to handle the IMP Teletype traffic;

DEBUG, to inspect or change IMP core memory; TRACE, to

transmit collected information about traced packets; STATISTICS,
to take and transmit network and IMP statistics; PARAMETER-
CHANGE, to alter the values of selected IMP parameters; and

DISCARD, to throw away packets. Selected Hosts and IMPs,

particularly the Network Measurement Center and the Network

Control Center, will find it necessary or useful to communicate

with one or more of these background loop programs. So that

these programs may send and receive messages from the network,

they are treated as "fake Hosts." Rather than duplicating portions

of the large IMP-to-Host and Host-to-IMP routines, the back-

ground loop programs are treated as ff they were Hosts, and they



412 Part 2
I
Regions of Computer Space Section 5 fletworlcs

can thereby utilize existing programs. The "For IMP" bit or the

"From IMP" bit in the leader indicates that a given message is for

or from a fake Host program in the IMP. Almost all of the

background loop is devoted to running these programs.

The TTY program assembles characters from the Teletype into

network messages and decodes network messages into characters

for the Teletype; TTY's normal message destination is the DEBUG
program at its own IMP; however, TTY can be made to

communicate with any other IMP Teletype, any other IMP
DEBUG program or any Host program with compatible format.

The DEBUG program permits the operational program to be

inspected and changed. Although its normal message source is the

TTY program at its own IMP, DEBUG will respond to a message
of the correct format from any source. This program is normally

inhibited from changing the operational IMP program; local

operator intervention is required to activate the program's full

power.
The STATISTICS program collects measurements about net-

work operation and periodically transmits them to the Network

Measurement Center. This program sends but does not receive

messages. STATISTICS has a mechanism for collecting measure-

ments over 10-second intervals and for taking half-second snap-

shots of IMP queue lengths and routing tables. It can also

generate artificial traffic to load the network. When turned on,

STATISTICS uses 10 to 20 percent of the machine capacity and

generates a noticeable amount of phone line traffic.

Other programs in the background loop drive local status lights

and operate the parameter change routine. A thirty-two word

parameter table controls the operation of the TRACE and

STATISTICS programs and includes spares for expansion; the

PARAMETER-CHANGE program accepts messages that change
these parameters.



Chapter 24
{

The Interface Message Processor for the ARPA Computer Network 413

to the TASK routine before the next packet arrives and can

always prepare for successive packet inputs on each Une.

This timing is critical because a slight delay here might

require retransmission of the entire packet. To achieve this

result, separate routines (one per phone line) interrupt
each other freely after new buffers have been set up.

4 The program will almost always deliver packets waiting to

be sent as fast as they can be accepted by the phone line.

5 Necessary periodic processes (in the time-out routine) are

always permitted to run, and do not interfere with input-

output processes.

Support-Software

Designing a real-time program for a small computer with many
high rate I/O channels is a specialized kind of software problem.
The operational program requires not only unusual techniques
but also extra software tools; often the importance of such extra

tools is not recognized. Further, even when these issues are

recognized, the effort needed to construct such tools may be

seriously underestimated. The development of the IMP system

required the following kinds of supporting software:

1 Programs to test the hardware.

2 Tools to help debug the system.

3 A Host simulator.

4 An efficient assembly process.

So far, three hardware test programs have been developed. The
first and largest is a complete program for testing all the special

hardware features in the IMP. This program permits running any
or all of the modem interfaces in a crosspatched mode; it even

permits operating together several IMPs in a test mode. The
second hardware test program runs a detailed phone line test that

provides statistics on phone line errors. The final program
simulates the modem interface check register whose complex
behavior is otherwise difficult to predict.

The software debugging tools exist in two forms. Initially we

designed a simple stand-alone debugging program with the

capability to do little more than examine and change individual

core registers from the console Teletype. Subsequently, we
embedded a version of the stand-alone debugging program into

the operational program. This operational debugging program not

only provides debugging assistance at a single location but also

may be used in network testing and network debugging.
The initial implementation of the IMP software took place

without connecting to a true Host. To permit checkout of the

Host-related portions of the operational program, we built a "Host

Simulator" that takes input from the console Teletype and feeds

the Host routines exactly as though the input had originated in a

real Host. Similarly, output messages for a destination Host are

received by the simulator and typed out on the console Teletype.

Without recourse to expensive additional peripherals, the

assembly facilities on the DDP-516 are inadequate for a large

program. (For example, a listing of the IMP program would

require approximately 20 hours ofTeletype output.) We therefore

used other locally available facilities to assist in the assembly

process. Specifically, we used a PDP-1 text editor to compose and

edit the programs, assembled on the DDP-516, and listed the

program on the SDS 940 line printer. Use of this assembly process

required minor modification of existing PDP-1 and SDS 940

support software.

Projected IMP Performance

At this writing, the subnet has not yet been subjected to realistic

load conditions; consequently, very little experimental data is

available. However, we have made some estimates of projected

performance of the IMP program and we describe these estimates

below.

Host Tra£Bc and Message Delays

In the subnet, the Host-to-Host transit time and the round-trip

time (for RFNM receipt) depend upon routing and message

length. Since only one message at a time may be present on a

given link, the reciprocal of the round-trip delay is the maximum

message rate on a link. The primary factors affecting subnet delays

• Propagation delay: Electrical propagation time in the Bell

system is estimated to be about 10 ^J^,sec per mile. Cross

country propagation delay is therefore about 30 msec.

• Modem transmission delay: Because bits enter and leave an

IMP at a predetermined modem bit rate, a packet requires
a modem transmission time proportional to its length (20

jtsec per bit on a 50-kilobit line).

• Queueing delay: Time spent waiting in the IMP for

transmission of previous packets on a queue. Such waiting

may occur either at an intermediate IMP or in connection

with terminal IMP transmissions into the destination Host.

• IMP processing delay: The time required for the IMP
program to process a packet is about 0.35 msec for a

store-and-forward packet.

Because the queueing delay depends heavily upon the detailed

traffic load in the network, an estimate of queueing delay will not

be available until we gain considerable experience with network

operation. In Table 2, we show an estimate of the one-way and

round-trip transit times and the corresponding maximum message



414 Part 2
I
Regions of Computer Space Section 5 Networlcs

Table 2 Transit Times and Message Rates



Chapter 24 ! The Interface Message Processor for the ARPA Computer Network 415

of each computer that might need network connection is probably

economically inadvisable. Third, because of the desirability of

having several Host computers at a given site connect to the

network, it is both more convenient and more economic to

employ IMPs than to provide all the network functions in each of

the Host computers. The whole notion of a network node serving
a multiplexing function for complexes of local Hosts and terminals

lends further support to this conclusion. Finally, because we were
led to a design having some inter-IMP dependence, we fotind it

advantageous to have identical units at each node, rather than

computers of different manufacture.

Considering the multiplexing issue directly, it now seems clear

that individual network nodes will be connected to a wide variety

of computer and terminal complexes. Even the initial ten-node

ARPA Network includes one Host organization that has chosen to

submultiplex several computers via a single Host connection to

the IMP. We are now studying variants of the IMP design that

address this multiplexing issue, and we also expect to cooperate
with other groups (such as at the National Physical Laboratory in

England) that are studying such multiplexing techniques.
The increasing interest in computer networks will bring with it

an expanding interaction between computers and communication
circuits. From the outset, we viewed the ARPA Network as a

systems engineering problem, including the portion of the system

supplied by the common carriers. Although we found the carriers

to be properly concerned about circuit performance (the basic

circuit performance to date has been quite satisfactory), we found

it difficult to work with the carriers cooperatively on the technical

details, packaging, and implementation of the communication
circuit terminal equipment; as a result, the present physical
installations of circuit terminal equipment are at best inelegant
and inconvenient. In the longer run, for reasons of economy,
performance, and reliability, circuit terminal equipment probably
should be integrated more closely with computer input/output

equipment. If the carriers are unable to participate conveniently
in such integrations, we would expect further growth of a

competing circuit terminal equipment industry, and more preva-
lent common carrier provision of bare circuits.

Another aspect of network growth and development is the

requirement to connect different rate communication circuits to

IMP-like devices as a function of the particular application. In our

own IMP design, although there are limitations on total through-

put, the IMP can be connected to carrier circuits ofany bit rate up
to about 250 kilobits; similarly, the interface to a Host computer
can operate over a wide range of bit rates. We feel that this

flexibility is very important because the economics of carrier

offerings, as well as the user requirements, are subject to

surprisingly rapid change; even within the time period of the

present implementation, we have experienced such changes.
At this point, we would like to discuss certain aspects of the

implementation effort. This project required the design, develop-

ment, and installation of a very complex device in a rather short

time scale. The difficulty in producing a complex system is highly

dependent upon the number of people who are simultaneously
involved. Small groups can achieve complex optimizations of

timing, storage, and hardware/software interaction, whereas

larger groups can seldom achieve such optimizations on a

reasonable time scale. We chose to operate with a very small

group of highly talented people. For example, all software,

including software tools for assembly, editing, debugging, and

equipment testing as well as the main operational program,
involved effort by no more than four people at any time. Since so

many computer system projects involve much larger groups, we
feel it is worth calling attention to this approach.

Turning to the future, we plan to work with the ARPA Network

project along several technical directions: (1) the experimental

operation of the network and any modifications required to tune

its performance; (2) experimental operation of the network with

higher bandwidth circuits; e.g., 230.4 kilobits; (3) a review ofIMP
variants that might perform multiplexing ftinctions; (4) considera-

tion of techniques for designing more economical and/or more

powerful IMPs; and (5) participation with the Host organizations
in the very sizeable problem of developing techniques and

protocols for the effective utilization of the network.

On a more global level, we anticipate an explosive growth of

message switched computer networks, not just for the interactive

pooling of resources, but for the simple conveniences and
economies to be obtained for many classes of digital data

communication. We believe that the capabilities inherent in the

design of even the present subnet have broad application to other

data communication problems of government and private indus-

try.

References

Baran [1964]; Baran, Boehm, and Smith [1964]; Boehm and

Mobley [1966]; BBN Report No. 1763 [1969]; BBN Report No.
1822 [1969]; Brown, Miller, and Keenan [1967]; Carr, Crocker,
and Cerf [1970]; Cuadra [1968]; Davies [1968a]; Davies [1968b];

Davies, Bartlett, Scantlebury, and Wilkinson [1967]; EDUCOM
EIN Catalog; Everett, Zraket, and Benington [1957]; FCC
[1966a]; Ford and Fulkerson [1962]; Frank, Frisch, and Chou
[1970]; James [1966]; Kaplan [1968]; Kleinrock [1964]; Kleinrock

[1969]; Kleinrock [1970]; Marill [1966]; Marill and Roberts

[1966]; National Library of Medicine [1968]; NOC Symp. [1968];
NOC Symp. [1969]; Perry and Plugge [1961]; Roberts [1967];
Roberts [1968]; Roberts [1969]; Roberts and Wessler [1970];

Scantlebury, Wilkinson, and Bartlett [1968]; Steiglitz, Weiner,
and Kleitman [1969]; Sung and Woodford [1969]; Teitelman
and Kahn [1969].


