
Chapter 23

Pluribus—An Operational

Fault-Tolerant Multiprocessor^

David Katsuki / Eric S. Elsam / William F. Mann
Eric S. Roberts / John G. Robinson

F. Stanley Skowronski / Eric W. Wolf

Summary The authors describe the Pluribus multiprocessor system,

outline several techniques used to achieve fault-tolerance, describe their

field experience to date, and mention some potential applications. The

Pluribus system places the major responsibility for recovery from failures

on the software. Failing hardware modules are removed from the system,

spare modules are substituted where available, and appropriate initializa-

tion is performed. In applications where the goal is maximum availability

rather than totally fault-free operation, this approach represents a

considerable savings in complexity and cost over traditional implementa-

tions. The software-based reliability approach has been extended to

provide error-handling and recovery mechanisms for the system software

structures as well. A number of Pluribus systems have been built and are

currently in operation. Experience with these systems has given us

confidence in their performance and mantainability, and leads us to

suggest other applications that might benefit from this approach.

I. Introduction

The multiprocessor discussed in this paper had its beginnings in

1972 when the need for a second-generation interface message

processor (IMP) [Heart et al., 1970] for the ARPA network

(ARPANET) [Roberts and Wessler, 1970; Heart, 1975; Wolf, 1973]

became apparent. At that time, the IMF's Bolt Beranek and

Newman (BBN) had already installed at more than thirty-five

ARPANET sites were Honeywell 316 and 516 minicomputers. The
network was growing rapidly in several dimensions: number of

nodes, hosts, and terminals; volume of traffic; and geographic

coverage (including plans, now realized, for satellite extensions to

Europe and Hawaii). A goal was established to design a modular

machine which, at its lower end, would be smaller and less

expensive than the 316's and 516's while being expandable in

capacity to provide ten times the bandwidth of, and capable of

servicing five times as many input-output (I/O) devices as, the 516

[Heart et al., 1973]. Related goals included greater memory
addressing capability and increased reliabifity.

We decided on a multiprocessor approach because of its

promising potential for modularity, for cost per performance

^Proc. IEEE, vol. 66, no. 10, October 1978, pp. 1,146-1,159.

advantages, for reliability, and because the IMP algorithm was

clearly suitable for parallel processing by independent processors.

The imp's communicate with host computers and with asyn-

chronous terminals (IMF's with terminals attached are called

tip's [Omstein et al., 1972]). Hosts use the network of IMF's and

lines to communicate data messages of up to about 8000 bits; the

imp's divide these messages into packets up to about 1000 bits

long. The functions performed by the IMP are those of a

communications processor; they include storing and forwarding

packets, generating headers, routing, retransmission, error check-

ing, packet and message acknowledgment, message assembly and

sequencing, flow control, line error detection, host and line status

monitoring, and related housekeeping functions. The IMF's also

send status and performance data to a network control center

(NCC) which monitors and controls network operations [McKen-
zie et al., 1972; Omstein and Walden, 1975]. The ARPANET
imp's operate 24 hours a day, often in unattended locations.

In applications of this sort, reliability requirements difiFer from

those commonly found in other real-time systems. The IMP
network forms only a part of a larger system; even a perfectly

operating network is not sufficient to guarantee perfect overall

system performance. Failures in the host, or in the interface

between the host and IMF, may still introduce errors. What this

means is that some sort of host-process to host-process error

control is required for critical applications; the best that the IMF
network can provide is a good environment for host-level error

recovery processes. These processes need a network which rarely

makes errors and which, when such errors do occur, can

effectively process host-to-host retransmissions. In other words,
occasional dropped messages and brief outages are acceptable;

outages of more than a few minutes are undesirable even if

scheduled in advance.

Once we realized that what was needed was not so much

reliability as the ability to recover gracefoUy from failures, we

began to see ways to provide a much more robust network by

coding this type of fault-tolerance into our operating system and

application algorithms, and by including special modular hard-

ware designs. The machine that emerged [Heart et al., 1973;

Omstein and Walden, 1975; Bressler, Kraley, and Michel, 1975;

Omstein et al., 1975; Heart et al., 1976] we call the Pluribus

(Fig. 1 shows a typical Pluribus installation). It provides simple

checking procedures such as parity, amputation features which

allow failing equipment to be isolated and, optionally, redundant

components. The software uses these features to detect, report,

and isolate hardware failures. Since the symptoms of many subtle

software failures are similar to those of intermittent hardware

errors, fault-tolerant procedures which adequately recover from

one can also recover from the other.

There is a spectmm of fault-tolerant approaches which are

appropriate in various applications [Avizienis, 1976; Avizienis,

1975]; our approach opts for a relatively inexpensive system which

371



372 Part 2
I
Regions of Computer Space Section 4

I Multiple-Processor Systems

Fig. 1. The Plurlbus front-end processor at Bolt Beranek and

Newman's Research Computer Center.

can quickly reinitialize itself, omitting troublesome components.
This approach is especially suitable for applications in which brief

outages can be tolerated and where overall correctness can be

ensured by other techniques.

II. Pluribus System Architecture

The Pluribus may be characterized as a symmetric, tighlty

coupled multiprocessor, designed to be flexible and highly

modular. Modules are physically isolated to protect against

common failures, and a form of distributed switch is employed for

intermodule communications. In this section, we discuss these

characteristics and describe the hardware architecture of the

Pluribus.

A. Major Design Decisions

In order to make the basic operation of the Pluribus clearer, it is

useful to examine some of the major design decisions that have

directed its development, and to consider those decisions in the

context of other options for multiprocessor system design. We
have identified three areas which we believe are key aspects ofthe

Pluribus approach to multiprocessing, each ofwhich is considered

in greater detail below.

Processor Symmetry One dimension of multiprocessing in-

volves the degree of inter-processor symmetry within the system

[Enslow, 1974, p. 83]. In this dimension, one extreme might be a

typical general purpose computer system, including a central

processor, a front-end processor, and perhaps one or more
channel processors. Such an asymmetric system is relatively

inflexible in power since increasing its central processing capacity

requires the introduction of a more powerful central processor.

Building redundancy into an asymmetric system can be expen-

sive, since replication of all critical resources involves duplicating

virtually the whole machine.

At the other extreme are systems like the Pluribus in which all

processors are identical. In such systems, the advantages of

redundancy and flexibility are much easier to achieve since they
include only one type of processing unit. Even without explicit

redundancy, a symmetric system can provide graceful degrada-
tion of throughput when a processing element fails. Pluribus

systems which are sized for fiiUy redundant operation include just

one extra processing module; thus the degradation which results

from failure of any processing module consists only of a loss of

excess throughput capacity.

Processor Coupling Another multiprocessing dimension is the

level at which processors cooperate to accomplish overall system

requirements. At one extreme the processors might run totally

separate programs under the direction of a supervisor program,

communicating only at arm's length. Such processors may be

described as "loosely coupled" [Enslow, 1974, p. 15]. At the other

extreme, which is characterized by array processors such as

ILLIAC IV [Barnes et al., 1968], the processors run in lockstep,

with a single program operating simultaneously on a number of

data streams. The Pluribus lies between these extremes. Its

processors are tightly coupled in the sense that all processors can

access all system resources and perform all parts ofthe operational

program; they operate independently except for necessary soft-

ware interlocks on specific I/O devices and data structures.

Flexibility Although one of the goals in the creation of the

Pluribus was to develop a machine with high throughput, this goal

was complemented by the need for a smaller, cheaper machine

with relatively low throughput. Similarly, although the Pluribus

was conceived as having at least two of every resource to permit

recovery after failures, it was also clear that not all apphcations

required or could aflbrd a fully redundant system. Thus it was

desirable for the architecture to be flexible in at least two ways:

The size-flexibility goal was to smooth large incremental steps in

the cost-performance curve by utilizing a highly modular design,

which could provide processing capacity well beyond our antici-

pated needs. Flexibility in the area of fault-tolerance and &ult-

recovery was a related goal, since the need for fault-tolerance

involves primarily economic considerations and we wanted to

allow our customers to select fault-tolerance features independent
of their throughput requirements. Also implied in each of these

goals was the requirement for easy expansion to meet changing

requirements.



Chapter 23
|

Plurlbus—An Operational Fault-Tolerant Multiprocessor 373

B. System Overview

A central requirement in any multiprocessor is that processing
elements be able to communicate both among themselves and
with shared resources such as memories and I/O equipment. Ease
ofcommunication is always desirable and is vital in tightly coupled
systems, since any delays or unwieldiness would immediately

impact system operation and reduce programmability. These

considerations, together with a natural desire for symmetry and

simplicity, led us to adopt a unified addressing structure in which
all common memory and I/O devices share the same address

space. The Pluribus development was strongly influenced by
previous unified-bus architectures in which processing, memory,
and I/O units share not only a common address structure but also a

single, time-multiplexed bus (the DEC PDP-11 is perhaps the

most familiar example of this). Although multiprocessors based on
the unified bus are both easily extensible and conceptually simple
structures, they are vulnerable to single failures anywhere along
the bus. In addition, the maximum throughput of such multipro-
cessors is limited both by the design bandwidth of the bus as well

as by contention for common resources. To avoid these problems
we used a unified bus to create the functional modules which
make up the system, but not to form the main connection

structure. We defined three basic functional modules which share

a common address space but have separate intermodule commu-
nications paths: processor buses, memory buses, and I/O buses. A
simplified system diagram is shown in Fig. 2.

(In the following sections we will often use the term bus to

mean a logical and physical module, as in "processor bus," rather

Fig. 2. A simplified view of the functional modules in a typical Plur-
ibus system showing their Interconnectivity. No physical relation-

ships are implied.

than just an interconnection system. All such usages will be
italicized for clarity.)

The system for interconnecting these modules had several

major requirements. It had to be easily extensible to support as

many as eight memory or I/O buses (common buses) and eight or
more processor buses. It had to permit the operating software to

remove malfiinctioning modules from the system and incorporate

newly acquired or repaired modules. In addition, it had to impose
minimal cost penalties for smaller systems, while scaling up
smoothly to produce large systems. Finally, it had to have no
common point of failure which could lead to total system failure.

The approach we finally adopted is similar in function to a

central crossbar switch although it differs greatly in implementa-
tion. The crossbar switch approach allows an extremely high-
bandwidth interconnection scheme and has been used to advan-

tage in several multiprocessors [Wulf and Bell, 1972]. However,
the usual implementation techniques are vulnerable to single-

point failures. To avoid these problems, we distributed the

components of the switch among the various system modules in

such a way that no single failure points remain. Switch elements
are called bus couplers and consist oftwo circuit boards connected

by a cable.

The bus couplers function by recognizing a range of addresses
on processor or I/O buses, and initiating an access request on the

appropriate common bus as a result. Since memory and I/O buses

share a 20-bit address space, bus couplers must map 16-bit

processor addresses into 20-bit system addresses under program
control (see Fig. 3). In addition to handling inter-fous communica-

tions, bus couplers perform several other functions which will be
described later.

Modularity Since the basic Pluribus was modular at several

levels, an unusual degree of flexibility was available when we set

out to define standard structures within the system. The three

basic system modules described above have clear logical functions

within the system, but their actual implementation depended on
various tradeoffs between cost, throughput, and available physical

components.
It was decided early that the goals of flexibiUty and symmetry

could be achieved by segmenting the operational tasks into strips
of code (task distribution routines, task-oriented application

routines, timers, etc.) which could be run by any available

processor. The concept was that the code should be both
reentrant and accessible to all processors at all times. The primary
function of the common memory modules is to provide space for

data buffers, program work areas, and inter-processor communi-
cations areas. Code storage is divided into two parts: lightly used
code is stored on common memory buses and is shared between

processors; heavily used code is replicated in local memory on
each processor bus. This strategy minimizes contention for access

to common memory while holding down costs, especially since, in



374 Part 2
I
Regions of Computer Space Section 4

I Multiple-Processor Systems

1MByte COMMON
ADDRESS SPACE

LOCAL -

RESERVED—

ADDRESS SPACE
OF PROCESSOR ON

REMOTE BUS

-BBC WINDOW

Fig. 3. Plurlbus system address space, showing the mapping of

processor "local" address space into the system space. "Back-

wards bus coupling" path from one processor bus through an I/O

bus to another processor bus is shown on the right.

most applications, only a small part of the code is heavily used.

The I/O modules were intended to support both polled low-speed
I/O devices and high-speed interfaces capable of direct memory
transfers. Couplers provide direct paths both from processor

buses to I/O buses for control and polling, and from I/O buses to

memory buses for direct memory transfers.

All normal processor-to-processor communication occurs

through locations in common memory. However, to initialize the

system, it must be possible for one processor to access the local

memory and control registers of a processor on a different bus. To

allow this, the bus couplers provide a limited reverse path

through any common I/O bus.

In the following sections, we describe the physical implementa-
tion of these system modules and detail several support functions

required by the architecture.

C. Physical System Structure

As mentioned in previous papers [Heart et al. , 1973; Omstein and

Walden, 1975], we chose the Lockheed SUE minicomputer as the

point of departure for our system. It is a 16-bit machine, generally

similar to the DEC PDP-11, which incorporates a unified address

structure and an asynchronous, time-multiplexed bus. It also

permits the attachment of a flexible combination of processors,

memory, and I/O units. In contrast to the PDP-11, the SUE has

its bus arbitration logic physically separated from the processor.

This feature permits a bus to have one or several processors, or

none at all. The Pluribus uses the bus, arbitration logic, proces-

sors, memories, and several minor I/O units of the SUE.

The basic Pluribus building block is the bus module. This

module contains a modified SUE bus and card cage for up to

twenty-four cards, together with completely self-contained

cooling fans and power supply. Two bus modules can be connect-

ed to form an extended bus. A Pluribus system rack contains up to

five bus modules, and each rack is typically supplied with a

separate source of ac power. Systems sized to be fiilly redundant

allow any bus module or any rack to be powered down for

maintenance without affecting system availability (see Fig. 4).

Bus Structure (See Fig. 5) A processor bus contains one or two

processors and their associated local memory, a bus arbiter, and

one bus coupler per logical path. Our current applications require

8 to 12K words of local memory for each processor. The flexibility

Fig. 4. Physical organization of bus modules. Modules are indepen-

dently supplied with power and cooling.



Chapter 23
|

Plurlbus—An Operational Fault-Tolerant Multiprocessor 375



376 Part 2
{
Regions of Computer Space Section 4

{
Multiple-Processor Systems

 BUS COUPLER
lA) EM)

> BUS
EXTENDER

' BUS
ARBITER

0.CENTTWL
ffl

PROCESSOR
[^

. PSEUDO
INTERRUPT
DEVICE

 BUS COUPLER.
PROCESSOR END

BUS COUPLER,
MEMORY END

COMMUNICATION
INTERFACE

• REAL TIME
CLOCK

MEM -MEMORY

POWER
SUPPLY

PROCESSOR BUSSES (3)

POWER
SUPPLY

SK
MEM

8K
MEM

POWER
SUPPLY

SK
MEM

8K
MEM

POWER



Chapter 23
|

Plurlbus—An Operational Fault-Tolerant Multiprocessor 377

ones" failures. For writes to common memory, parity is computed
at the processor or I/O end of the bus coupler and stored in the

memory cell with the data. When the memory cell is read, the

stored parity is checked at the processor or I/O ^nd of the bus

coupler. For accesses from processors to units on the I/O buses we
use "feedback" parity; for writes to I/O the parity is computed by a

special card on the I/O bus. The parity ,is then sent back up the

coupler to the processor bus where it is compared with parity

computed on that bus. For reads from I/O the special I/O parity

card computes parity and compares it with recomputed parity on

the processor bus.

Pseudo-Interrupt Device Real-time systems or, more generally,

systems requiring fast response, employ priority interrupt mecha-
nisms to direct the attention of the processor to the most urgent
tasks. Reliability and load sharing requirements make it desirable

that any processor be able to service any I/O device, but also raise

such questions as which processor to interrupt for servicing. We
have opted for a simple yet flexible method: each "interrupt
event" (DMA completion, RTC tick, software events, etc. ), instead

of actually interrupting a processor, writes a value associated with

its priority to a hardware queuing device called the PID. The
software is designed to allow each processor to put aside the

context of its present computation periodically and check the PID.
The PID, upon being read, will produce the highest value that has

been stored in it and simultaneously delete that value from its

internal queue. The processor can then use that value as an index

to a table of tasks to be performed. The software uses the PID in a

similar manner; each time a "strip" of code completes, it writes

the number of the next strip in that task to the PID. When that

becomes the highest number in the PID, the next available

processor will execute the associated strip.

Our system does have two traditional interrupts, however. One
is a 60-Hz clock interrupt. Each bus has its own 60-Hz clock, but

conceptually this is an interrupt going to all processors; its main
fiinction is to time out locked data structures. The other classical

interrupt is the power-fail/power-restore interrupt; each processor
handles a power-fail interrupt from its own bus in the traditional

way. Furthermore, bus couplers connected to processor buses will

pass on any power-fail interrupt detected at their memory or I/O

ends. A restoration of power causes first a bus master-reset and
then a processor interrupt. We have adapted this interrupt
mechanism to serve also as a bus activity watchdog timer. If any
bus fails to show access activity for one second, a hardware timer

fires, causing an artificial power-restore reset and interrupt. 'This

provides recovery from some illegal hardware and software states.

include at least one extra bus of each type so that a failure of any
one resource, or the bus holding that resource, will not result in

system failure. This approach also permits the system to survive

many combinations of multiple failures. Thus if a system requires
four processors to fiinction at minimum acceptable throughput, six

processors would be provided for reliability since the failure ofany
processor bus would disable two processors. Similarly, if a

machine required at least 60K of memory to fiinction, we would

provide two buses each containing 60K of memory, or three buses

each containing 30K of memory. It is important to note that

redundant resources configured into a given machine are not idly

standing by since they are used by the running machine to

produce performance greater than the acceptable minimum.
I/O ports pose a special problem, since the devices and lines to

which they are connected are frequently not doubled. For

reliability, I/O interfaces can be doubled on separate I/O buses,

but both interfaces must usually drive a single cable leaving the

machine. We allow this by constructing all of our I/O port drivers

with circuits that present a high impedance while unpowered. In

addition, each I/O interface has a watchdog timer which, if not

held offby repeated processor accesses, will disconnect the driver

circuits within a second. Thus the likelihood that malftinctioning
or unpowered I/O interfaces will interfere with the signals put on
the external cable by the backup I/O interface is kept to a

minimum.

III. The Pluribus Operating System'

Unlike most conventional systems, the principal responsibility for

maintaining reliability in the Pluribus is placed on the system
software rather than in the hardware structure. The Pluribus

hardware was designed to provide an appropriate vehicle for

software reliability mechanisms. Besides normal error checking
and reporting in the hardware itself programmed tests, using
known data patterns are run at intervals. When hardware errors

are detected, system software exploits the redundancy of the

hardware by forming a new logical system configuration which
excludes the failing resource, using redundant counterparts in its

place.

Pluribus systems also check the validity of their software

structures. Redundant information is intentionally introduced into

the data structures at various points and checked by processes

operating upon those structures. An example of this technique

applied to buflFer structures is described in Sec. IV. In addition,

periodic background processes are used to recompute certain

D. Redundancy

To assure that a particular machine has enough redundant
resources to allow survival in the face of component &ilures, we

'Portions of Sees. IV, V, and VII of this paper have appeared in "Software

Fault-Tolerance in the Pluribus," J. G. Robinson and E. S. Roberts, AFIPS

Conference Proceedings, vol. 47, copyright AFIPS Press, Montvale, NJ.

Reproduced with permission.



378 Part 2
I
Regions of Computer Space Section 4

I
Multiple-Processor Systems

variables which are maintained by the operational system. If the

recomputation uncovers a discrepancy, the variables are fixed

directly or a more drastic recovery procedure is initiated.

In many cases, a failure is not detected at the exact time of

occurrence but later when the software encounters some failure-

induced discrepancy. By this time, the effects of the failure may
be more widespread and the actual cause of the failure may be

difficult to determine. In such cases, the system is not able to

perform instantaneous recovery and seeks instead to restore

normal operation as quickly as possible.

The remainder of this section discusses the organization of the

Pluribus operating system and some of the techniques used for

achieving coordination of multiple processors. These techniques

are fiirther explored below where two examples of Pluribus

fault-tolerant software strategies are presented. One of these

examines the Pluribus IMP buffer system in detail, and the other

covers strategies for understanding failures when they occur and

effecting necessary repairs.

A. General Responsibility of the Operating System

The software reliability mechanisms for a Pluribus system are

coordinated by a small operating system (called STAGE) which

performs the management of the system configuration and the

recovery functions. The overall goal of the operating system is to

maintain a reliable, current map of the available hardware and

software resources. The map must include accurate information

not only about the hardware structure of the machine, but also

about variables and data structures associated with the processes

that use that hardware. Moreover, the operating system must

fijnction correctly even after parts of the system hardware have

ceased to be operational. New resources, as they are discovered

(e.g., because hardware has been added or repaired), should be

incorporated as part of the ongoing operation of the application

system.

Since any component of the system may fail at any time, the

operating system must monitor its own behavior as well as that of

the application system. It may not assume that any element of

hardware or software is working properly—each must be tested

before it is used and retested periodically to ensure that it

continues to function correctly. The operating system must be

skeptical of its current picture of the system configuration and

continually check to see if the environment has changed.
Based on these considerations, the Pluribus operating system

builds the map of its environment step by step. Each step tests

and certifies the proper operation of some aspect of the environ-

ment, relying on those resources certified by previous steps as

primitives. Early steps examine the operation of the local

processor and its associated private resources. Subsequent steps

look outward and begin to discover and test more global resources

of the system, giving the checking process a layered appearance.

In the Pluribus operating system, each processor begins by

checking its own operation and by finding a clock for use as a time

base. Once these resources have been verified, the processor can

begin to coordinate with the other active processors to develop an

accurate picture of the system.

At the same time, the system must balance the need for reliable

primitives with the need to accomplish normal operation efficient-

ly. When all the environment has been certified, the system

should spend most of its processing power on advancing the

operational algorithms and return only occasionally to the task of

reverifying its primitives. When failures of the environment have

been detected, however, the power of the system must be

brought to bear on the task of reconfiguring to isolate the failure.

B. Hierarchical Structure of the STAGE System

The Pluribus operating system is organized as a sequence of stages

which are polled by a central dispatcher. A processor starts with

only the first stage enabled. As each stage succeeds in establishing

a proper map of its segment ofthe system state, it enables the next

stage to run. Each stage may use information guaranteed by
earlier stages and thus may run only if the previous stage has

successfully completed its checks. Once enabled, a stage will be

polled periodically to verffy that the conditions for successful

completion of that stage continue to apply. The system apphes
most of its processing power to the last stage that is enabled but

returns periodically to poll each earlier stage. The application

system is the final stage in the sequence and may run only after

the earlier stages have verified all the configuration information of

the application and the validity of the data structures.

Table 1 lists each stage of the Pluribus operating system,

together with the aspects of the environment it guarantees. Many
of the functions listed will not be discussed further but are

provided to illustrate the layering of stages.

Since processors continue to perform each of the stages

periodically, changes in the environment will eventually be

noted. Any stage detecting a discrepancy in the configuration map
will disable all later stages until the discrepancy is repaired. Then,

all the later stages, which might depend on data verified by the

disabling stage, will be forced to run all their checks, guaranteeing

that they will make any further modifications to the configuration

map necessitated by the first change. A serious failure, such as a

nonexistent-memory interrupt, disables all but the first stage. In

these cases, some reconfiguration might be needed, and all stages

should perform all their checks before the application system is

resumed.

C. Establishing Communication

So far, we have described the progress of one processor through
the staged checking procedures of the operating system. All

processors in the Pluribus perform the same checks, since it is



Chapter 23 Pluribus—An Operational Fault-Tolerant Multiprocessor 379

Table 1 Pluribus Operating System Stages

Stage Function

Checl<sum local memory code (for stages 0, 1, 2).

Initialize local interrupt vectors, and enable interrupts.

Discover Processor bus I/O. Find some real-time clock

for system timing.

Discover all usable common memory pages. Establish

page for communication betw/een processors.
Find and checksum cotnmon memory code (for stages 3,

4, 5). Checksum whole page ("reliability page").
Discover all common busses

, PIDS, and real-time clocks.

Discover all

10

processor bus couplers and processors.

Verify checksum (from stage 2) of reliability page code

(for rest of stages plus perhaps some application

routines). External reloading of missing code pages is

possible once this stage is running.
Checksum all of local code.

Checksum common memory code. Maintain page alloca-

tion map.
Discover common I/O interfaces.

Poll application-dependent reliability and initialization

routines. Periodically trigger restarts of halted

processors.

Application system.

important that they agree about .the state of the system resources.

Coordination of multiple processors with potentially different

views ofthe hardware configuration requires two mechanisms: the

processors must agree on an area of common memory in which to

record the machine configuration map, and they must cooperate
in their decisions to modify the map.
The first step in coordinating the multiple processors of a

Pluribus is to agree on a page of memory through which to

communicate. The procedure for initially establishing the page for

communication is clearly delicate. Prior to establishing the page,

the processors have no way to communicate about where it will

be. The procedure must operate correctly in the fece of failures

which might leave some of the processors seeing a different set of

common memory pages from the rest. Processors which are

unable to see the communication area will attempt to use another

memory page and must be prevented from interfering with the

unaffected processors.

Any processor that is first starting up (or restarting after some

massive failure) can assume nothing about the location of the

communication page. Any page may be used, and therefore a

small area for communication control variables is reserved on each

page of common memory. Part of this area is used for a brief

memory test, which must succeed before the page may be used at

all. Every processor attempts to establish the lowest numbered

(lowest address in memory space) page that it sees as the page

through which to communicate. To be valid, any page must have a

pointer to the current communication page, and the communica-

tion page must point to itself.

Each processor looks at the pointer on the lowest numbered

page it can see. There are three possible states for the pointer.

First, if it points to the page itself, the processor has found the

communication page and may now proceed to interact with other

processors about the common environment. If it points to a higher

numbered page, the processor may just fix the pointer, as the

requirement that the communication page be lowest makes this

case inconsistent. If it points to a lower numbered page, the

processor must attempt to check if the indicated communication

page is active. It must assume that the data might simply be old or

invalid and must time it out using a dedicated entry in a special

array of timers which is allocated on each page. The processor

increments the timer and, if it ever reaches a certain threshold,

unilaterally fixes the communication pointer and starts to use this

page for communication. The processor is prevented from doing
this by any other processor which is successfully using the lower

numbered communication page; all such processors periodically

zero all the timers on all memory pages in the system.

Consider what happens during various possible hardware

failures. If the memory bus containing the communication page is

lost, all processors will attempt to establish a new communication

page on the other bus. Using their timers on the new lowest page

(which initially points to the old one after the failure), they await

the threshold. No one is holding the timers to zero, so the new

page becomes the communication page when some processor's

timer first runs out.

A processor blinded to the communication page by a bus or

coupler failure will try to establish a higher numbered page for

communication. From the point of view of the failing processor,

this case is indistinguishable from the previous case, where the

common bus failed. Since the rest of the processors are satisfied

with the communication pointer, they will hold all timers to zero,

and the failed processor will never be able to change the

communication page pointer. If the processor sees a set of pages

disjoint from the rest of the system, it behaves as if no other

processors are running, but there is no memory where it may
interfere and now we have two systems operating independently.
In this case it is likely that the two systems will interfere over

other resources; since multiple failures are required for this

situation to occur in a Pluribus, we choose not to attempt recovery
here.

D. The Consensus Mechanism

When configuration data must be updated, it is crucial to

coordinate the Pluribus processors before making the modifica-

tion. The mechanism to accomplish this goal we call consensus.

Each stage has a consensus which is maintained as part of its



380 Part 2
{
Regions of Computer Space Section 4

I
Multiple-Processor Systems

environment. The first step in forming a consensus is to determine

the set of processors that is executing the corresponding stage.

This set has certified the primitives necessary to maintain

successfully this stage's portion of the configuration map. In order

for the system to respond to failures, the consensus must be kept

current—new processors must be able to join it rapidly and

processors that may have halted or ceased to run the stage must be

erased from the set.

Each processor, based on its hardware address in the Pluribus,

is assigned a bit in three consensus arrays, called "next,"

"smoothed," and "fix-it." As part of running the corresponding

stage, every processor periodically sets its bit in the next

consensus array to show that it wishes to participate in the

consensus. After enough time has clasped for each properly

running processor to set its bit, this array is copied into the

smoothed consensus and cleared. The set of processors in the

smoothed array will then be used as a basis for decisions to

reconfigure some portion of the resource map.

Any processor which wishes to modify some configuration

information sets its bit in the appropriate fix-it array. Processors

that agree with the configuration map clear their bits, and bits

corresponding to processors not in the smoothed array are also

cleared.

In effect, the bits in the fix-it array represent the votes of the

individual processors in favor of a potential modification. In most

cases, it is desirable that all processors agree before making the

change. All processors wait until the fix-it array matches the

smoothed array before implementing the fix. Other modifications

might require only majority or two-thirds agreement. The choice

of policy often depends on some tradeofF between resources (e.g.,

should we use more memory or more processors?). The Pluribus

approach allows us to make this choice independently at each

stage.

Since each processor in the Pluribus performs each stage of the

checking code, the consensus mechanism provides the coordina-

tion needed to change the configuration map gracefully. When a

stage detects a failure, the processor sets the appropriate fix-it bit

and disables the following stages. When enough processors detect

the failure they implement the fix to the configuration map. Now
these processors can complete the later stages, devoting their

attention to any further changes required by the failure. A
processor which sees a different picture of the resources and

cannot reach agreement with the rest of the system hangs forever

at the point of detecting the discrepancy. This technique effec-

tively prevents the processor from damaging the system.

E. Application-Dependent Checking

In general, it is desirable for the application system to perform its

own checks before initiating or resuming normal operation. The

last stage provides a mechanism which polls application-oriented

processes to perform consensus-driven checks and repairs of their

own data structures. This stage uses the results of the hardware

(application-independent) discovery stages to certify its own data

structures. For example, it could allocate or deallocate device

parameter blocks as the I/O devices are discovered or disappear
and initialize spare memory pages for use as data buffers as they
become available. User-written reliability checks can be per-

formed on any of the application data structures, and the

appropriate reinitialization invoked to remedy failures.

Occasionally, it is possible for a processor checking application

data structures to implement minor repairs to the data structures

unilaterally. For major reconfigurations of the data structures,

such as complete application system reinitialization, the checking
routines must signal to the stage dispatcher that consensus is

needed. The last concurring processor is then permitted to

perform the reinitialization routine. Just as the early stages

guarantee the hardware map, the application-dependent routines

have the consensus mechanism at their disposal to validate the

system data structures before entering the system. In addition,

the application system data structures are rechecked periodically

during normal system operation.

IV. An Example of Application Reliability

We use two general techniques to ensure the validity of data

structures in the Pluribus. First, redundant information, where it

exists, is checked for discrepancies, and appropriate action taken if

they exist. Second, since detailed examination of all data for

inconsistency is deemed impossible for any system of nontrivial

complexity, we use watchdog timers to ensure the correct

operation of the application system at various levels. As an

example, we will discuss the buffer management strategy for the

Pluribus IMP system.

Buffers in the Pluribus IMP circulate through the system from

queue to queue; in some cases, they may be shared between two

or more processes. Since a compromised queue structure may, in

general, rapidly degrade the performance of the system, elaborate

checking methods are built into the IMP program at various

levels. In particular, we must be able to detect queues that are

crossed or looped and buffers that have been lost (are on no queue
at all).

Associated with each buffer in the system is a set of use bits

corresponding to various processes that consume buffers. Any
process that enqueues a buffer for some other process first sets the

use bit for that process. When a process dequeues a buffer, the

appropriate use bit must be on or the buffer will not be processed.
As a special case, buffers on the system free list must have all their

bits turned off. The buffer-freeing routine only returns a buffer to



Chapter 23
|

Pluribus—An Operational FauK-Tolerant Multiprocessor 381

the free list if the last remaining use bit is that of the freeing

process.

This technique intentionally generates redundant information

and continually vaUdates it as a buflFer circulates through the

system. In other words, the existence of a buffer on a queue
informs the system that some processing is desired for that buffer.

In principle, the use bit signals the same thing. Each buffer-

processing routine could scan all the buffers in the system for

those with its use bit set, but such a strategy would clearly be

inefficient. The redundancy check gives preference to neither the

queue nor the use bit as an indication of need for service, but

rather requires agreement between the two indicators. When

they disagree, the system assumes that a failure has indeed

occurred and attempts to correct it by forcing the queue to be

empty, so that the effects of the failure can be contained as much
as possible.

The use bits allow the prompt detection of looped and crossed

queues. In addition, an improper buffer pointer will often lead to

a failure of the use bit check.

We must also consider the case of a buffer which has been lost

from all queues. This condition could arise due to a program bug
or as a result of a queue being emptied after a use bit failure. We
could employ a classical garbage-collection scheme for this

purpose; unfortunately, the demand for buffers is often great in a

high-speed communication system, and the requisite locking of

the buffer resources during such a garbage collection would likely

result in lost inputs.

The recovery scheme we have chosen is a watchdog timer

mechanism. Each buffer has associated with it a flag set by normal

activity of the buffer which, in this case, is defined to be the

periodic appearance of that buffer on the free list. Whenever a

buffer is freed, its flag is set. In addition, flags for all the buffers on

the free Ust are set periodically. In the high-speed communica-

tions environment, where data passes through a network node

very rapidly, each buffer must appear on the free list at least once

every two minutes. Therefore, each buffer flag is checked every
two minutes to be sure it is set, and then cleared. A zero flag

indicates that the buffer has dropped out of normal activity, and

the buffer is unilaterally freed and its use bits cleared. In this way,

any lost buffer is detected within at most four minutes and

returned to normal usage.

V. Advantages of the Pluribus

Approach to Fault-Tolerance

Two fectors help to make our approach a cost-effective one. First,

fault-tolerance is implemented primarily in software. This not

only allows us to use unspecialized off-the-shelf hardware for

much of our system, but also gives us considerable flexibility by

allowing us to try new ideas as the product develops. When the

time comes to upgrade machines in the field, a new software

release is infinitely preferable to hardware modification. Imple-

menting most fault detection in software also allows more

complete error reporting than is characteristic of static-

redundancy approaches.

The second factor is the modular nature of the Pluribus.

Initially, the modular approach was chosen to permit easy

expansion of the capabilities of a system to fit an application

without being hampered by system-size boundaries. Our system

expands by adding the same hardware modules as those which are

duplicated to create a dynamic fault-tolerant system. Thus any

system with more than the minimum number of processors for a

given application both performs well and is fault-tolerant. A

processor failure in such a system merely causes it to run a little

slower. Since individual processors are relatively inexpensive, the

percentage increase in system cost for processor redundancy is

usually small, especially in large systems.

Sometimes the system requirements justify only limited fault-

tolerance. An example is the large front-end processor which

services the BBN Research Computer Center [Mann, Omstein,

and Kraley, 1976]. Here the bulk of the machine is fully

redundant, but several of the host interfaces are used only

occasionally for experimental systems, and their users can tolerate

an occasional outage. Therefore, these interfaces are not duplicat-

ed, with a resultant savings in cost.

An additional factor contributing to cost-effectiveness is the

relatively low percentage of processing power spent in explicit

error detection (about 1 percent for current systems). We depend
to a large extent on checks embedded in the operating program

(such as code checksums) to detect errors, since the program is

able to recover from failures whose effects are detected well after

the fact. It is common practice for large software systems to

include checks for some "impossible" software states and bad data

structures. We have expanded these checks to be comprehensive,

including checks which catch many types of hardware errors as

well as lingering software problems.

One interesting effect of our approach is to make even a

minimal, nonredundant machine significantly more resilient to

transient failures caused by either hardware or software. All of the

fault-tolerant mechanisms which run in the large systems run also

in the small ones, and there are many transient failures which

cause only momentary confiision which is usually solved by some

level of reset or reinitialization. Obviously, a solid failure of some

critical component or destruction of the program cannot be

resolved without redundant resources, but these are by no means

the only possible failures.

One result of our modular approach is that in contrast to the

usual state of affairs, we expect larger systems to be more reliable

than smaller ones, since more resources are available to be

redistributed in case of trouble.



382 Part 2 Regions of Computer Space Section 4 Muitiple-Processor Systems

VI. Recent Field Experience

During the past year, we have had the opportunity to observe

eight Pluribus IMP systems both under general operational

conditions and in controlled field tests; the availability of these

machines has been above 99.7 percent (by availability we mean

uptime divided by scheduled uptime, excluding power and

air-conditioning failures). Almost all the downtime was caused by

program bugs which have been corrected since. Most recently,

availability has been above 99.9 percent and we expect it to

improve further as the machines reach maturity.

In evaluating this experience in terms of fault-tolerant perform-

ance, we feel that it is important to go beyond overall availability

numbers and discuss the kinds of faults that the Pluribus system

can report, the kinds we observed in the field, and the effects

these faults had on system behavior.

The concepts of availability and fault-tolerance are complex
when applied to a Pluribus since failure of a component generally

results in a reduction in, rather than a complete loss of,

performance. In many applications this is an advantage since extra

capacity is useful during periods of peak load and reduced service

is tolerable while repairing faults. For example, if an I/O interface

or an entire I/O bus fails, the machine automatically substitutes a

spare element with only a momentary (often unnoticeable)

interruption of service and with no loss in performance. In the

case of processors and memory, however, all resources are

normally in use (none are in a standby mode) and the loss of any

one (or several) of them forces a reduction in performance, but

does not keep the system from running.

When used as an IMP, the principal measure of Pluribus

performance is throughput. In the tests described below, the

presence of program bugs (since corrected) resulted in somewhat

lower availability than we had expected, but the three machines

easily exceeded their contractual requirements and were able to

deliver better than 92 percent of their rated throughput capacity

99.76 percent of the time and better than 50 percent of capacity

99.83 percent of the time.

Under normal operating conditions, it is possible to observe an

IMP only by means of its reports to the NCC or by the reports of

its neighbors in the network. Since IMP's often operate unattend-

ed, emphasis has been placed on the ability of each Pluribus to

evaluate and report its internal hardware and software health.

Three varieties of trouble-report messages are sent to the NCC.
Since the Pluribus continually evaluates the state of its hard-

ware (see the discussion of the STAGE system), one type reports

trouble in the hardware area. Examples of this are I/O errors,

memory parity errors, power failures, and changes in configura-

tion. The second type reflects the results of numerous interlocks

and consistency checks which are made regarding tables, queues,

variables, and other software entities. The third category concerns

the Pluribus' role as part of the network. These reports monitor

normal throughput statistics and temporary discontinuities in

IMP-IMP message handling protocols, and are normally not

directly pertinent to the fault-tolerance of the Pluribus itself. In a

few cases the reports are received some time after a fault has been

detected and dealt with by the Pluribus, but most fault messages

appear within a few seconds.

In the normal course ofbuilding and operating Pluribus systems

during the past year, we observed a number of unexpected
hardware and software faults, but to verify our ideas and

procedures we also wanted to observe a number of failure modes

which would be expected to occur infrequently under normal

operating conditions. To this end, we conducted an extensive

series of tests over a three-month period using three four-

processor Pluribus imp's with redundant I/O interfaces, intercon-

nected by high-speed terrestrial and satellite links. These tests

demonstrated how the Pluribus handles many of the possible

faults that might be encountered during the life ofthe equipment.

We believe that the combination of the unexpected and planned

faults we experienced constitutes a valid sample of the wide

variety of intermittent failures in either hardware or software

which such systems are likely to encounter. Examples ofthe types

of fault recovery which were provoked or observed during these

tests are discussed in the following.

1 Failures on the processor bus. We powered off various

combinations of processor buses to demonstrate that the

system would continue with traffic processing. We also

tried placing bad instructions in various processors' local

memories. In power failure situations, the remaining

processors continued to operate without reinitialization.

Data handled by the failed processor(s) was recovered by
network protocols and a number of trouble-reports indicat-

ed this fact. Data structures which were "locked" by the

failed processors were "unlocked
"

by a software watchdog
timer. When power was restored, the processors were

smoothly readmitted to the system. Processors with bad

local memory either halted or looped, and were quickly
reloaded by other processors and brought back into

operation automatically.

2 Errors in or loss ofcommon memory. We created situations

whereby the system suddenly saw common memory
disappear. In some cases we powered off the memory bus;

in others we "removed
"

memory from usability tables. We
also observed some spontaneous parity errors. Since

common memory pages are assigned specific roles at

initialization time, loss of one or more pages caused a

variety of reactions, depending on the role of the lost

memory and the amount remaining. At one extreme, loss of

all common memory prevented the system from continu-

ing. At the other, loss of one of several pages of message
buffers caused only a brief adjustment of memory assign-

ments by the Stage program. Most Pluribus systems are

organized for fully redundant operation and have spare



Chapter 23
j

Plurlbus—An Operational Fault-Tolerant Multiprocessor 383

code and variable pages. Loss of a primary code or variables

area caused a short transient in operations while the spare
was initialized. As an example, loss of one-half of physical
common memory (several pages of code, variables, and

buffers) caused a reconfiguration lasting 15 s or less. During
this period, all processors agreed on the reallocation of the

remaining memory and reevaluated its usability. As a

further test, we destroyed the integrity of various pages of

common memory by storing random data in the check-

summed areas. The system reacted by restoring the

contents of the affected page from the backup copy. This

process required about 10-12 s. We also created test

conditions in which the system found that all copies of

critical programs in common memory were unusable (their

checksum was bad). At this time the system automatically

requested that it be reloaded (from another of the Pluribus

imp's or the NCC). It should also be emphasized that the

integrity of message buffers is also protected by software

checksums; data harmed in any way is reported to the

NCC, and the originator is notified so that retransmission

can take place.

3 Loss of I/O device. We both created and observed several

situations wherein I/O devices were either removed or

experienced errors. In these cases, the I/O device was
eliminated from usability tables by all processors and a

backup device substituted. The system continued to ope-
rate, although in some cases, depending on the configura-
tion being used, reinitialization was required. Loss of an

entire I/O bus was handled in much the same way.

4 Loss of critical hardware. We observed that redundantly

configured Pluribus systems would survive the loss of the

RTC and the PID by swapping to the backup. Very httle

time was lost before the system continued. Errors in PID
and RTC operation also are checked for and reported.

5 Internal software errors. As previously mentioned, the

STAGE system and the IMP code are designed to check on
the internal consistency of various software structures. In

addition, the system ensures that none of the asynchronous

processes is allowed to remain in a waiting state or in a

loop. On a very infrequent basis, we observed that a

Pluribus will report that such a condition was detected and
corrected. We also forced many of these situations to occur

by destroying key data structures or by causing queues to

be looped or crossed. The system detected these, reported
the problem, and continued normally, reinitializing if

necessary.

6 Artificial pathological conditions. We did not attempt to

cause pathological behavior of Pluribus hardware compo-
nents which would, for example, write zeros to portions of

memory or amputate buses at random, although we
simulated these conditions with the software. Our observa-

tions of pathological behavior in the field, although infre-

quent, convince us that many of these cases can be
withstood by the fault-tolerant software. For example.

during field tests we observed that some extraneous data

appear occasionally in certain critical tables causing the

Pluribus to reinitialize quickly or to suspend activity on a

communications link briefly. The problem was traced to a

special reloading device which was being improperly
activated. This situation was eliminated by a minor pro-

gram change.
We have now gained enough experience with the

Pluribus fault-tolerant mechanisms to have confidence in

their ability to detect and cope with failures. In the field,

spontaneous failures have been of a relatively minor nature

and have been successfully dealt with. Under test condi-

tions, all the major and minor failures which occurred or

which we created were well tolerated and the systems
continued to function within their rated capacities.

VII. Pluribus System Maintainability

Most fault-tolerant systems are designed to be repaired, sooner or

later, by humans. Maintainability thus becomes a significant

factor in long-term system performance. Since many systems are

designed to recover from any single failure, but not from all

multiple failures, the mean time to repair (MTTR) directly

influences on-line spares requirements and hence the system cost

for any given performance goal. To minimize MTTR, the system
must provide accurate and unambiguous information about the

nature of the detected fault and the automatic recovery process
initiated. The environment in which the system operates is also

important since the maintaining authority must be notified and

must initiate the repair process as soon as possible.

The actual repair process may be carried out at several levels

depending on the accuracy of the diagnostics and the obscurity of

the failure symptoms. At the lowest level, the repair is accurately

defined by the diagnostic and involves only the replacement of a

faulty component. At the highest level, the failure may be caused

by a design bug in either hardware or software. For the latter, the

system must provide sufficient tools to permit overriding the

operational recovery' procedures. They must permit the repair

personnel to reconfigure the system and run any required

diagnostic procedures. The more powerful repair tools must be

guarded to avoid operator-induced errors. Ideally this "fool-

tolerance" [Goldberg, 1975, p. 32] should extend into all phases of

repair. In practice we use only a two-level protection scheme that

relies on experienced personnel not to make catastrophic errors.

Although we tend to think of hardware malfunctions as separate

from software malfunctions, the symptoms of failure and the

recovery procedures are frequently similar. In the Pluribus, the

first detection of a fault is usually through failure of an embedded
check in the main program, and frequently that is all that is

required to initiate a correct recovery procedure. When the

diagnostic value of an embedded check is insufficient to define a

recovery procedure, various modular diagnostics may be run on



384 Part 2
I
Regions of Computer Space Section 4

I Multiple-Processor Systems

the system. Thus in the case of a memory whose checksum is

discovered to be wrong, the recovery action is to run a brief

memor>' diagnostic and, if the memory appears usable, to restore

the code from a spare copy.

Including a spare copy of some resource helps system recovery

only if that spare resource works. Although it is traditional to run

modular diagnostics on spare resources, our strategy has been to

force the system to rotate use of resources from time to time. In

some cases we use manual procedures, but the tendency has been
to include automatic rotation procedures in the operational system
software. This technique is clearly more appropriate to our

application than it would be to a more traditional fault-tolerant

requirement, since rotating faulty hardware into the operational

system could cause a transient malfunction. On the other hand, it

provides a better test of the hardware than modular diagnostics
would provide.

One advantage of our reliance on embedded checks for failure

detection is that we can detect that class of failure which is rarely

caught by diagnostics. It is axiomatic that the operational program
is the best program for certifying the hardware, but our operation-
al program has also become the most comprehensive diagnostic
for the hardware. In our experience, some of the most subtle

hardware failures occur during operation of the application

system, even though hardware diagnostic programs detect no
errors. By augmenting the operational system with diagnostic

capabilities, we have often been able to isolate even obscure or

intermittent failures without interrupting normal operation.

A. Reporting Facilities

In the Pluribus IMP, the mechanism for reporting errors,

recovery operations, and change-of-status information is the

system trap (i.e., a supervisor call). Traps are reported locally on

the system terminal and are also sent via trouble-reports to the

network log at the \CC, where they serve a variety of diagnostic

purposes. Understanding the nature of a failure in the running

system requires fairly accurate knowledge of the state of the

machine at the instant of the failure. The initial implementation of

the trap mechanism recorded only the code number of the trap,

which set of processors had encountered it, and a total occurrence

count. This proved inadequate for accurate diagnosis and we have

augmented the original trap mechanism to allow for saving a large

snapshot of the instantaneous state of the processor, including
such information as the contents of general registers, the global

system time, map register settings, the last value read from the

FID, and other important local data. These snapshots allow us to

examine diagnostic information about the failure after the recov-

ery code has taken effect and normal operation of the system has

resumed. In an operational IMP, the snapshot information is sent

to a data collection program at the NCC, where it is both stored

for future reference and printed out on a log terminal. The

snapshot facility is usually only enabled for that set of traps which
indicate system malfunctions of some kind, since there are many
normal traps which indicate such things as network topology

changes. The same data collection program also keeps track of the

current configuration of each machine and reports any changes on
the log terminal. Thus the reconfiguration resulting from some
module failure is immediately apparent. Correlating a reconfigur-
ation with preceding snapshot error messages is usually sufficient

to isolate solid failures.

B. Remote Diagnosis and Repair

Where the failure is intermittent, or error indications are

ambiguous, we can make further diagnosis from the NCC using
the remote connection capabilities of the network. This allows

personnel at the NCC to interact with a system at a remote site

exactly as if they were using the system control terminal at the

site. We have provided a command structure in the system which

allows us to make either "soft" or "firm" overrides of the

configuration control structure, loop communications links, and

run a variety of special diagnostics, monitors, and traffic genera-

tors. This enables us to diagnose many problems from the NCC
even before dispatching repair personnel to the site (this can be

especially appropriate for diagnosing program bugs). The current

software is best at diagnosing the solid failures typical of mature

hardware and treats most long-term intermittents as unrelated

transients. Although we plan to implement heuristics which can

deal with this type of problem, the diagnosis of long-term
intermittents currently requires human intervention. Fully re-

dundant Pluribus systems may be thought of as networks of paths
and buses, so by causing the system not to use a particular path or

bus and watching the trap log, we are usually able to locaUze the

source of a hardware intermittent. Partitioning the bus and using
some subset of the modules on the bus fiirther localizes an

intermittent traced to a particular bus, and repairs can then

proceed. The same tools for reconfiguration are, of course, also

available to maintenance personnel on site through the system
control terminal, and trap reports sent to the NCC are duplicated
also.

C Partitioning .•

In extreme cases, when all normal diagnostic approaches have

been exhausted, it is also possible to partition a fiiUy redundant

machine into two separate machines and run the operational

system in one half while running stand-alone diagnostics or

another copy of the system in the other half We originally

expected to use this approach quite frequently, but experience
has shown the technique to be less usefiil than we expected.



Chapter 23 Pluribus—An Operational Fault-Tolerant Multiprocessor 385

Splitting a system is a combination ofmany "firm" overrides of the

configuration control which are not currently protected against

operator error (i.e., deleting the last copy of a resource from the

use tables, or overlapping system resources across the partition).

There is also the problem of identifying fault-free components to

include in the operational system half. In general, being able to

identify a faulty module which is to be excluded from the

operational system implies that we can fix the fault by replacing

the module, which usually obviates the need for partitioning into

two machines. And finally, once a machine has been split, any
new failures are likely to cause fatal problems that the machine

might have been able to cope with had it not been split. Our
current feeling is that the risks of splitting an operational system

usually outweigh the advantages.

D. Reloading and Down-Line Loading

An important facility provided by the Pluribus hardware allows us

to load and start the machine with no onsite personnel. This is

accomplished by special-format messages which trigger a simple
reload device when received over the network. This device is

used to load a software package capable of dumping or reloading
the operating system and application code. The source of reload

code may be either some other Pluribus IMP on the network, or a

disk file at the network control center. These reloading facilities

are also used for distributing software updates to the machines in

the field. A Pluribus IMP which discovers all copies of some

application code page to be compromised will attempt to get a

down-line reload from a neighbor IMP. This request is reported
to the NCC where an operator then sets up the reload source for

the transfer. Its use enables an IMP without duplicated resources

to recover quickly from transient failures caused by hardware or

software.

E. Maintenance Experience

The prototype Pluribus systems performed their error recovery
functions well in many cases. Minor problems were often

bypassed so efiectively that the users and maintenance personnel
were never aware of the problem. Even following drastic failures,

such as the loss of a common memory bus, normal system

operation was restored within seconds. From our experience with

these early systems, however, certain deficiencies in our original

strategies have become clear.

In some failure cases, one repair would lead to another, until

eventually a fairly major reinitialization would be performed, with

obvious effects on the users of the system. Unfortunately, the

massive recovery often destroyed evidence of the original failure,

or masked evidence necessary for effective diagnosis. While the

goal of restoring the system to normal operation was achieved, we

were left without any idea ofwhy the reinitialization was required.

This was particularly frustrating when the frequency of occur-

rence was on the order of hours or days.

In other cases, normal operation seemed to continue while

some hardware failure occurred undetected. Either the failure

was covered by effective recovery at a fairly low level in the

system or it occurred in a redundant portion of the hardware

which was not being exercised. A second failure in conjunction
with the first would remove the last copy ofsome critical resource,

causing the system to fail.

These initial experiences led through several intermediate steps

to the current set of maintenance tools and diagnostics. In the

prototype systems, we were forced to remove the system software

and run stand-alone diagnostics when trouble arose. Develop-
ment of the original recovery algorithms into early versions of the

current STAGE system allowed diagnosis and repair while

running the operational system; however, system programmers
were required to interpret the traps and wrestle the system into

different configurations during repair. The usual repair team

during this period included a system programmer (usually at the

NCC) watching and interpreting the traps, with a maintenance

technician on site replacing components.
At present, the tools and diagnostics are well enough defined

and documented so that usually only maintenance personnel are

required for a repair. Hardware and software staff at the NCC may
offer suggestions when maintenance personnel are dispatched to a

site and may still direct occasional repair efforts if a difficult

problem or inexperienced personnel require it, but this is the

exception rather than the rule.

VIII. Other Applications and Extensions

Since the Pluribus has evolved from a communications application

where overall system availability rather than total fault-coverage is

the goal, our approach is most obviously suitable for similar

applications. We have opted for an approach which depends

heavily upon reconfiguration and reinitialization when faults are

detected, and which requires very little special hardware beyond
that needed to implement our multiprocessor architecture. Our

approach would not be suitable for applications where absolutely

no downtime can be tolerated, where total computational context

must be preserved over failures, or where overall correctness

must be ensured. In these cases, traditional approaches involving

some form of static redundancy or execution redundancy are

indicated [Avizienis, 1975; Avizienis, 1976]. Techniques some-

what similar to ours, but for a redundant uniprocessor, are in use

in the Bell System's latest Electronic Switching System [Myers et

al., 1977]. Although we have not closely investigated applications

outside thee communications area, we believe our approach is



386 Part 2
I
Regions of Computer Space Section 4

I
Multiple-Processor Systems

suitable for many other tasks, and we discuss several of these

briefly below.

A. Message Systems

We have made an extensive study of the possibility of using the

Pluribus computer as the basis for a message system. By message

system we mean not only traditional message-switching such as is

done in the Telex system, but also a system of mailboxes and files

by which users can exchange and file messages without recourse

to the U.S. Postal System, secretaries, or filing cabinets, and

which will permit complicated searches and sorts of message files.

Such a system must have high availability but could easily tolerate

brief outages after a failure.

B. Real-Time Signal Processing

We have already built one system which is the front-end and

control processor for a seismic data collection network, and which

performs some preprocessing of seismic data [Gudz, 1977]. We
believe this application can be extended to other areas of real-time

signal processing with requirements for high overall system

availability. Since many signal processing tasks can be broken into

parallel components, the multiprocessor architecture would be

especially appropriate.

C General-Purpose Timesharing Systems

It seems to us that explicit use of fault-tolerant techniques could

benefit general purpose timesharing systems and large operating

systems. These systems operate continuously and are subject to

minor hardware errors and subtle software bugs, but do not

require totally uninterrupted operation. Although most large

systems include some self-checking in the software, software

fault-tolerance, to be truly effective, must be well integrated into

the overall system design, and into the special hardware features

which are usually required.

One of the primary purposes of most large operating systems is

to provide disk and tape handling features. In this context,

reinitialization in response to faults is a much more serious

problem than, for example, in the IMP. Various checkpointing

procedures may be required to restore the overall system state to

a point where restart is possible [Yourden, 1972, pp. 340-353].

Large operating systems often support a variety of checkpointing

services since the best techniques to use under these circumstanc-

es depend in part on the applications being serviced; in cases

involving on-line database updates, the application programs

themselves must be designed around their fault-tolerance re-

quirements.

D. Reservations Systems

Airline, hotel, and car rental reservation systems provide good

examples of on-line database systems which could benefit from

well-designed software fault-tolerance systems. Once a reserva-

tion has been accepted, it must not be lost. Backup techniques

such as dual updating of two copies of the database, perhaps
located in different cities with independent central processors and

telecommunications systems, may be worthwhile. On the other

hand, minor problems (hardware or software) may be tolerated,

especially ff the problems can be resolved by reentering on-line

transactions which were affected by the fault. Even with dual

machines in remote locations, using a machine like the Pluribus

would increase the reliability of each site separately, and provide

substantial computing power in an expandable package. Further

research will be required to understand fully the implications to

the Pluribus of database integrity requirements for reservation

systems.

E. Process Control

Our approach is clearly more appropriate to some areas ofprocess

control than to others. We envision a typical application in the

area of overall supervisory systems coordinating a number of

subsidiary systems or controllers, and incorporating tasks such as

inventory control and job scheduling. Processes that could afford

to stop momentarily would be controlled directly. End-to-end

error correction and fault-masking hardware would be used in the

machine interface for applications needing overall fault-tolerance.

As with the previous applications, some form of checkpointing

would be built in to preserve context over restarts.

References

Avizienis [1975]; Avizienis [1976]; Barnes et al. [1968]; Bressler,

Kraley, and Michel [1975]; Enslow [1974]; Goldberg [1975]; Gudz

[1977]; Heart [1975b]; Heart, Kahn, Omstein, Crowther, and

Walden [1970]; Heart, Omstein, Crowther, and Barker [1973];

Heart, Omstein, Crowther, Barker, Kraley, Bressler, and Michel

[1976]; Mann, Omstein, and Kraley [1976]; McKenzie, Cosell,

McQuillan, and Thrope [1972]; Myers et al. [1977]; Omstein,

Crowther, Kraley, Bressler, Michel, and Heart [1975]; Omstein,

Heart, Crowther, Rusell, Rising and Michel [1972]; Omstein and

Walden [1975]; Roberts and Wessler [1970]; U.S. Pat. 4,035,766

[1977]; Wolf [1973]; Wuffand Bell [1972]; Yourden [1972].


