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The C.mmp/Hydra Project:

An Architectural Overview

Henry H. Mashburn

Summary This article describes the C.mmp/Hydra project at Carnegie-

Mellon University. Included are detailed descriptions of the PMS
structure of C.mmp (a multiprocessor built from minicomputers) and its

major components. An overview of its operating system. Hydra, is

provided with emphasis on those sections most concerned with and

influenced by the architecture. The project is also discussed in terms of

performance, reliability, programming methodologies, and problems

encountered.

In 1971 the Computer Science Department at Carnegie-Mellon

University (CMU) undertook a project to construct C.mmp
(Computer, multi-mini-processor), a relatively large-scale multi-

processor, from minicomputers. A number of project goals and

criteria influenced the design:

• Minicomputers would be used as the processing elements

of a multiprocessor that would support a general-purpose,
time-shared environment.

• The machine would be symmetric: there would be no

master-slave relation among the processors.

• A large address space would be provided.

• As much commercially available hardware as possible

would be used.

To provide the necessary programming environment, a novel

operating system was proposed, its principal component being its

kernel, Hydra [Wulf, Cohen, Corwin, Jones, Levin, Pierson, and

Pollack, 1974; WuLf, Levin, and Pierson, 1975]. The following

criteria were used in designing the operating system:

• Separation of policy and mechanism: a kernel of mecha-

nisms of "universal applicability" would be created from

which varying policies could be implemented.

• A capability-based protection system and an object-

oriented virtual memory would provide support for data

abstraction; it would be extensible to user-defined data-

types.

• The software would exploit the existence of multiple copies
of many hardware elements for reliability.

• The structure of the system would be nonhierarchical.

• The system would be able to run for extended periods with

no human operator.

The resulting C.mmp/Hydra-system has been completed and has

met these goals. It has been running as a general departmental

resource since mid-1975, supporting a time-shared user commu-

nity as well as large-scale computing tasks, such as speech:

understanding systems.

Table 1 summarizes the basic hardware and performance of

C.mmp.

The Hardware: C.mmp

C.mmp is an asynchronous, multiple-instruction stream, multi-

ple-data stream (MIMD) multiprocessor. To achieve the goal of

symmetry, the processors and primary memory (Mp) are connect-

Table 1 C.mmp Hardware Summary

Structure

Processors

Shared memory

Secondary storage

Performance

Fig. 1. The C.mmp multiprocessor.

Symmetric, central cross-point-connected
MIMD multiprocessor allowing up to 16 Re's

and 16 memories.

PDP-11 models 11/20 or 11 MO, inany mix. A
16-Pc configuration of 11/20's and 11/40's

was built. Eleven 11/40 models are currently

in use.

32-Mbyte total shared address space. 2.7

Mbyte implemented using both core and

MOS.
700 Mbyte total moving-head disks. 6 Mbyte
total fixed-head paging disks.

4.3 MIPS for 11/40 configuration, 3.0 MIPS
for current 11/40 configuration. 26.3 x 10*

references/s total memory bandwidth.
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ed by a central cross-point switch. Before detailed design began,

this structure was extensively studied by simulation and analytic

models [Bhandarkar, 1972; Strecker, 1971], and it was deter-

mined that a 16 X 16 cross-point switch could be optimal, given

the available technology. The TTL and Schottky TTL logic

families were used for the switch and the relocation hardware

because only they oflfered a fair range of MSI components. MSI

components in the faster ECL logic were not available at the time.

Essentially all of C.mmp is built with 1971-1972 technology,

although some of the more recent additions use MOS LSI.

The Digital Equipment Corporation PDP-11 was chosen for the

processors (Pc's) primarily because of its Unibus architecture. The

Unibus allowed easy interfacing to the shared memory and kept

the Pc modifications minimal. A further advantage of the Unibus

was that it allowed DMA transfers to use relative, rather than

physical, addresses because all addresses on the Unibus can be

mapped in a uniform way by the relocation scheme, which will

be described in detail. Therefore, the peripheral devices would

need no modification to access the 25-bit shared memory address,

even though they generate only the standard 18-bit Unibus

address.

The following descriptions are primarily architectural, although

some internal algorithms are described. For implementation

detail, consult Fuller and Harbison [1978].

1.1 The PMS Structure

Figure 2 shows the PMS structure as of early 1979.' There are 16

processor ports and 16 memory ports in the cross-point switch

(Smultiport, or Smp). The Pc's are slightly modified PDP-11/20

and PDP-11/40 processors, each connected to all the memories by

Smp via the relocation unit (Dmap). The Pc's are further

interconnected by an interprocessor bus (IP-bus), which provides

basic control functions such as start, halt, and three levels of

interprocessor interrupt (IPI), as well as the broadcasting of a

60-bit nonrepeating clock value used for interval timing and

unique name generation. Note that this clock does not synchro-

nize the internal operation of the processors.

C.mmp was constructed in several major stages; four prototype

switches (1 X 1, 1 X 2, 2 X 2, 4 X 4), the full 16 x 16 switch with

five 11/20's as processors, and finally the 16 x 16 Smp with a full

processor complement of sixteen Pes: five 11/20's and eleven

11/40's. The 16 memory ports were initially configured with the

1.4 Mbyte of core memory, and a similar amount ofMOS memory
was added'later.

In early 1977 the Pc modifications for the 11/40 were complet-

ed, and by June 1977, C.mmp itself was completed by adding

'Although shown in Fig. 2 to indicate its place in the architecture, only a

prototype of Mcache was implemented.

eleven 11/40's to the existing five 11/20's. Any mix ofthese two Pc

models is possible. The desire to exploit a writable control store

included in the 11/40 modifications, and performance measure-

ments indicating that symmetry in processor speed is desirable,^

led to exclusion of the 11/20's in early 1978, leaving the eleven

11/40's as the total Pc complement.
In the original PMS design [Wulf and Bell, 1972], a second

cross-point switch was included to connect peripheral devices to

any Pc's Unibus. For reasons of economy, this switch was never

built and peripherals were assigned to specific Unibuses. I/O

requests are mapped from requesting processors to the processor

controlling the device via an IPI and a simple per-Pc queuing

system in the operating-system kernel. The lack of the second

cross-point switch has not been detrimental to the system.

1.2 Shared Memory Access

Access to shared primary memory (Mp) is performed in two

stages: relocation of the IS-bit processor-generated address into a

25-bit address space, and resolution ofcontention in accessing that

memory location. These jobs are performed by the relocation unit

Dmap and the cross-point switch Smp, respectively.

1.2.1 The Relocation Mechanism: Dmap Dmap resides on the

Unibus of each Pc and generally appears as a peripheral device,

intercepting and mapping most addresses as they are placed on

the Unibus. The planned, but not implemented, 2 Kbyte proces-

sor cache memory (Mcache) would interface to the Pc through

Dmap.

Dmap divides the 32-Mbyte address space into thirty-two

8-Kbyte directly addressable pages that may be physically placed

anywhere in shared memory. There are four address spaces,

specified by 2 bits in the processor status word (PS). Therefore,

four sets of eight address-mapping registers are provided in each

relocation unit. To allow communication between address spaces

without explicit addressing changes, the stack page is common to

all four spaces.

The four address spaces are the heart of the memory protection

mechanism: in only one space (1,1 in the PS space bits) are the

relocation registers and the PS directly addressable. Since this

page is used exclusivejy by the Hydra kernel [Wulf, Cohen,

Corwin, Jones, Levin, Pierson, and Pollack, 1974], protecting the

PS from indirect changes (see Sec. 1.5 of this chapter) guarantees

'Many parallel decompositions of algorithms require that all processes

synchronize between steps of computation. If some processes are running

on slower Pes, the processes executing on faster Pes waste time waiting

for the slower Pes processes to report completion. The effect is like a

convoy: all ships move at the speed of the slowest. See Sec. 3.1.2 of this

chapter and Fig. 7 for a measurement of this effect.
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Fig. 2. The PMS structure of C.mmp.

that no addressability changes may be made without the approval

of the operating system. All entries to the kernel, whether by

interrupt or user request, force the assertion of both space bits.

To allow direct addressability, two of the relocation registers in

(1,1) space are disabled, one each for the MIocal page and the

peripheral device control-register page. With these registers

disabled, addresses that would normally be mapped are passed

along the Unibus unchanged to be received by the addressed
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memory or register location. Since the registers of Dmap are

given addresses in the control-register page, they are always
addressable by Hydra.

As illustrated in Fig. 3, the Dmap intercepts the 18-bit

UNIBUS addresses (16-bit words plus the two space bits) and

converts them in the following manner; the three high-order bits

of the 16-bit word select a register from the bank specified by the

space bits. The contents of the register provide a 12-bit page-
frame number; the remaining 13 bits from the address word are

the displacement within that page. The two are concatenated to

form the 25-bit shared memory address. The 13-bit displacement

gives an 8-Kbyte page size. This transparent mapping is per-
formed for all shared memory accesses. In addition to the 12

page-frame bits, there are 4 bits in each relocation register used

for control. The first three are designated no page loaded,

write-protected, and written-into, and the fourth bit controls

whether values from the page may be stored in Mcache.

After the 25-bit address is generated, Mcache is checked to see

if the data are already available. If the access is a read cycle and

the datum is in Mcache, the datum is immediately returned,

bypassing shared memory. Although Mcache is a write-through

design, only read-only data are cached, because the cache/Pc

PMS structure allows multiple, and possibly diiferent, copies of a

datum. However, since approximately 70 percent of the memory
accesses are to code rather than data, the read-only requirement is

expected to produce a high "hit" rate for pure code programs
[Fuller and Harbison, 1978].

Pc Status word 16-bit PC address work
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The centralized and symmetric design ofSmp makes the cost of

memory access equal for all Pc's. Including address translation,

switch overhead (no contention), and round-trip cable delay, the

cost is about 1 ^ls. Although high by today's standards, more than

equal to the access time of the memory, it has not proved

prohibitive, or even annoying. The memory connected to Smp
permits a maximum total bandwidth of 26.3 X 10* memory
references per second, a value well matched to the speed of the

1971-vintage processors (see Table 2).

Smp was designed to allow partitioning of the system into

smaller units. Each of the 256 cross-points has a switch that may
be used to manually enable or disable it. These switches, plus a

global cross-point set switch, set the flip-flops that control the

individual cross-points. Now disconnected for reliability and

software security, there was a program interface that allowed

setting of the cross-point configuration from Pc 0.

The ability to partition the system was originally intended to

allow multiple versions of the operating system to coexist.

However, funds were not available to provide sufficient primary

and secondary store to allow simultaneous execution of multiple

copies of Hydra. Currently, the principal use of the manual

cross-point enable switches is to disconnect faulty hardware

elements. A Pc and a single memory port are sometimes

partitioned out of the system to allow maintenance to proceed

concurrently with normal operations.

1.3 Primary Memory

The current complement of primary memory is 2.7 megabytes of

mixed technology: eleven ports containing 1.4 megabytes of core

memory and five ports with 1.3 megabytes of MOS memory.

Technologies are not mixed within a memory port.

The memory port control of Smp permits each port to be

interleaved in as many ways as there are independently driven

memory modules. Interleaving is specified by the page number,
bits 13 to 20 of the 25-bit address (see Fig. 2). C.mmp's core

memories are 16-Kbyte modules, and there are eight indepen-

dently driven modules per port, allowing eight-way interleaving.

Table 2 Shared Memory Characteristics

Core memory 250-ns access, 650-ns cycle time

16-Kbyte module size, 8 modules per port

8-way interleaved within a port

1.71 X 10* references/s per port maximum
bandwidth

MOS memory 330-ns access, 450-ns cycle time

65-Kbyte module size, 4 modules per port

No interleaving

1.49 X 10*references/s per port maximum
bandwidth

I'

Fig. 4. The crosspoint switch, (a) The crosspoint display panel with

the system partitioned into two disjoint 8x8 machines, [b) A detail

of the display panel. Three Pc's are selectively permitted access to

ports 2, 3, and 4 as shown by the crosspoint enable (CPE) lights.

TWo of the Pc's are actively accessing memory (ACT lights).

The MOS memory has four 65-Kbyte modules per port. However,

they are not independent, having only one refresh control board.



Chapter 22
j

The C.mmp/Hydra Project: An Architectural Overview 355

and so are not interleaved. Ports can have up to 256 pages, or 2

megabytes, of memory. Table 2 provides specifications and

measurements of the memories.

Each Pc also has 8 Kbyte of local (nonshared) core memory
(Mlocal).

1.4 The Interprocessor Bus

The IP-bus provides a common clock as well as interprocessor

control. These two logicalK and functionally separate features use

separate data paths, although they share a common control

[ Kinterbus). Each processor has an interbus interface (Kibi) that

defines the processor's bus address and makes available the bus

functions to the software.

The first function is to continuously broadcast the 60-bit,

250-KHz Kclock. This is done by multiplexing the clock value

onto a 16-bit-wide data path in four time periods, low-order bits

first. Any Kibi requesting a Kclock read waits for the initial time

period and then buffers the four transmissions in four local holding

registers available to the software. Clock values are often used for

unique names [Wulf, Cohen, Corwin, Jones, Levin, Pierson, and

Pollack, 1974; Wulf, Levin, and Pierson, 1975], and so the

otherwise unused high-order four bits of the fourth local register

are set to the reader's Pc number to ensure uniqueness when any
number of Kibi's read the bus simultaneously.

Each Kibi has a countdown register for interval timing. It may
be initialized to a nonzero value by the program, and it is

decremented by 1 every 16
jjls (timing supplied by Kclock). The

Pc is interrupted when the register reaches zero.

The second bus ftmction is the interprocessor interrupt and

control mechanism. Each Pc may interrupt, halt, continue, or

start any other Pc, including itself Each Kibi has a 16-bit register

for each of the control operations. The operations are invoked by

setting the bit(s) corresponding to the processor(s) to be controlled

in the appropriate register. Setting the tth bit invokes the

operation on Pc(i). A second 16-bit-wide data path is eight-way-

time-multiplexed, each control operation being assigned a time

period. As the appropriate period arrives, each Kibi ORs its

control operation register onto the bus and clears the register.

Synchronization of bus access, as well as operation specification, is

accomplished by the multiplexed time periods. The Kibi also

inspects the bus to see if the specified operation is being invoked

on its processor; if so, the requested action is performed.

Although eight time periods are available, only six are used: three

priority levels of IPI, halt, continue, and start; the remaining two

are ignored.

Each Kibi provides a manual switch register that defines the set

of Pc's that the host Pc may interrupt or control. As with the

control operation registers, setting switch i permits the Pc to

invoke IP-bus ftinctions on Pc(!). These registers, one per

processor, are used with the manual cross-point enable switches

Fig. 5. A typical C.mmp processor with its Kibi.

to partition the system. A 16-bit LED display register is also

provided to selectively display the four words of Kclock or the

interval-timing counter and its control register.

1.3 Pc Modifications

The PDP-ll's used on C.mmp were slightly modified to provide
software protection and make the Pc's compatible with a multipro-

gramming environment. Also, a writable microstore was added to

the 11/40's. The actual modifications were similar for both PDP-11

models; however, their implementations were quite different

because of the differing internal implementations of the two

models. In neither case were the changes extensive. Certain

instructions were made privileged to ensure the integrity of the

system software. In particular, HALT, WAIT, and RESET were

prohibited from user programs. Since the processor status word

(PS) controls the relocation address space of the executing

program (and hence memory protection), two instructions which

may modify it from user space were also prohibited: RTI (return

from interrupt) and RTT (return from trap). Both of these

instructions load the PS from the stack. Since they are sometimes

used in subroutine calling sequences, they are trapped and

emulated by the kernel for user executions—after an appropriate

checking of the new PS to be loaded.

Because the operating system must leave some context informa-

tion on the stack during protected procedure calls [Cohen and

Jefferson, 1975; Wulf, Cohen, Corwin, Jones, Levin, Pierson, and

Pollack, 1974], address bounds cheeking was added to the stack
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pointer register, R6. Stack overflow protection existed, but it was

necessary to augment it with underflowing checking. The stack

underflow register (SUR) prohibits all accesses to the stack, page
at addresses higher than its contents.

' This protection extends to

all accesses, whether by stack operations or direct addressing,

thus protecting the previous context information. Additionally, R6

is constrained so that its contents always lie in the stack page (page

0) of Dmap.
Because of the difficulty of modifying a processor, the stack

underflow register and the comparison circuitry were physically

placed on one of the relocation unit boards. This remote

placement compounded the timing difiiculties of adding stack-

limit checking to the processors. Having to protect the PS by

disallowing user execution of RTI and RTT increased the pertur-

bation of stack-operation timing. Unfortunately both of these

modifications were necessary to ensure safe operation of a

multiprocessing, multiuser operating system.

1.6 Writable Microstore

The PDP-11/40 is implemented via a horizontal microprocessor

[DEC, 1972] with provision for extended control store to imple-
ment various instruction-set options. At CMU, a writable control

store was developed in place of the standard extensions [Fuller,

Almes, Broadley, Forgy, Karlton, Lesser, and Teter, 1976]. The

writable store contains 1,024 eighty-bit words, a general mask-

shift unit used for field extraction and data manipulation at the

microprogram level, and a microprogram subroutine facility.

No such extension was possible for the 11/20, since it is not a

microprogrammed processor. This asymmetry in the configura-

tion was a major reason for the removal of the 11/20's.

1. 7 Peripheral Devices

Peripheral devices on C.mmp are standard PDP-11 Unibus-

interface devices; no modifications are required. Two of the device

types are unique: the zero-latency paging disks and the graphic

displays. The paging disks have 8 Kbyte per track, which exactly

matches C.mmp's page size. Their controllers achieve zero

latency by continuously monitoring the position of the disk under

the fixed heads and, for full track transfers, can start the transfer at

any 16-word sector boundary, calculating the proper displacement
into the page. As the disk turns, the memory address is "wrapped
around" when the start of track is reached.

The graphic displays are a CMU-designed and -built vector

display [Rubin, Guggenheim, and Bihary, 1978]. The two on

C.mmp are equipped with a transparent touch screen in front of

the CRT display for specialized man-machine interaction studies

'In the PDP-11 instruction set, stacks grow from higher to lower

addresses.

in the ZOG data base management project [Robertson and

Ramakrishna, 1977].

Table 3 summarizes the major devices and is an indication of the

capabilities of the machine.

2. The Software: Hydra

A discussion of C.mmp would not be complete without an

introduction to its unique operating system. Hydra. Hydra

provides two basic mechanisms: (1) process creation and schedul-

ing and (2) a capability-protected, object-oriented virtual memory
system for date abstraction. In this section, emphasis will be

placed on those features of the Hydra kernel most related to the

multiprocessor architecture.

2. 1 Processes, Scheduling, and Control

The features of Hydra most directly influenced by the architecture

are process scheduling and control. The heart of Hydra's multi-

process, multiprocessor scheduler is the Kernel Multipro-

gramming System (KMPS). This system also implements several

of the process control fimctions, including the synchronization

primitives.

2.1.1 Processes and Scheduling: KMPS In Hydra, the unit of

scheduling is the process. Process scheduling is done in two

phases: long-term (job selection) and short-term (context-swap

frequency). Perhaps nowhere else in the kernel is the notion of

policy-mechanism separation so clearly employed as in this

two-level scheduler [Levin, Cohen, Corwin, Pollack, and Wulf,

1975].

KMPS provides the basic process creation and scheduling

mechanisms as a parameterized short-term scheduler. It is driven,

in turn, by one or more long-term schedulers. These schedulers,

known as policy modules (PMs), are implemented as user-level

programs and provide independent scheduling policies for diflFer-

ent job streams, such as timesharing and batch.

Table 3 Major Devices on C.mmp

Quantity Device type

3 200-Mbyte moving-head disks, 3330-type
2 40-Mbyte moving-head disks, 2314-type
2 20-Mbyte moving-head disl<s, 2314-type
6 1-Mbyte fixed-head, zero-latency paging disks

2 Vector graphic display terminal with touch screens

1 600 l/min line printer

1 9-track magnetic tape drive

1 Interface to ARPANET
n Assorted local terminal interfaces
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On account of the symmetry of the architecture, processes

usually need not be bound to specific processors. KMPS sched-

ules among processors as though the Pc's were merely a resource

pool. The PMs need not be concerned with the multiprocessor

aspects of scheduling. A PM simply supplies KMPS with a stream

of processes to be run; KMPS will make the necessary multipro-
cessor scheduling considerations.

KMPS schedules according to four basic parameters supplied

by the PMs for each process:

Process priority The process's relative priority

among the set of processes con-

trolled by KMPS
Time quantum Maximum execution duration, com-

posed of a time-slice length and
number of slices

Processor mask A bit mask of permissible Pc's for the

process; normally set to indicate any
Pc

Maximum page set size The maximum number of pages that

the process may have resident in Mp
at any given time

When a process is started, the four parameters are set and KMPS
places it on the feasible list, a list of runnable processes. When
selected from this list, a process may execute until it blocks,

completes its time quantum, or is preempted by a higher-priority

process. If preempted, the process is returned to the feasible list

and waits until resources are again available at its priority. KMPS
reconsiders its scheduling at the end of each time slice on any Pc;

all Pes execute KMPS asynchronously. When a process consumes
its time quantum, it is returned to its controlling PM for

reconsideration of long-term scheduling.

The basic KMPS mechanisms for scheduling and multiplexing
the processes onto Pc's are quite straightforward: First, the

highest-priority is chosen from the feasible list. Then, according
to the process's processor mask, the highest-priority Pc is chosen,
and the process is enqueued for that Pc. The Pc is then sent an IPI

instructing it to reconsider its scheduhng. If the incoming process
is of higher priority than the one currently running, a context

swap to the new process takes place and the previous process is

returned to the feasible list. If the incoming process is not of

higher priority, it is returned to the feasible list and no reschedul-

ing takes place. Allowing the selected processor to make the

scheduling decision at a time of its choice (controlled by Pc

interrupt priority) helps to eliminate race conditions that would

otherwise be rampant because of the asynchronous nature of

C.mmp.
The scheduling mechanisms are quite efficient, since only half

the mechanism need be invoked for most operations. Usually
either the process or the Pc is known. For example, at the end of a

time slice the Pc is known to be free and all that is needed is to

identify the highest-priority process that it may execute. Similar-

ly, a blocked process that is awakened only requires that a

processor be assigned. The fijU mechanism is needed only when a

new process is introduced into KMPS control. An additional

mechanism allows Pc's with heavy DMA or interrupt trafiRc to be

shielded from computational burdens by assigning them a lower

priority. High-priority Pc's that have become idle can "steal"

processes from lower-priority Pc's, freeing them for I/O duties.

This mechanism is important in reducing overrun errors (see

3.3.1).

With these mechanisms, KMPS is capable of controlling a large

number of processes; the system routinely runs with more than

100 processes without inordinate overhead.

2.1.2 Synchronization One of the most crucial ftinctions of an

asynchronous multiprocessor is its ability to synchronize indepen-
dent instruction streams when required. Hydra uses, and pro-
vides at user level, a number of synchronization mechanisms.

Most basic of these is the spin lock, implemented by continuous

polling of a shared memory location. Because of the memory
contention generated, spin locks are generally undesirable and

are avoided within the kernel. However, because the fast

mechanisms of the kernel are not available at user level,

spin locks are sometimes useful for brief critical sections

in user programs.
The most important synchronization mechanisms are the KMPS

lock and the two forms ofsemaphore [Dijkstra, 1968a] implement-
ed by Hydra. Another mechanism, based on message passing, is

discussed in the next section. While these mechanisms are

semantically equivalent, they differ widely in implementation and

timing characteristics. The choice of mechanisms is dictated by
both synchronization context and performance considerations.

The KMPS lock is a low-level, mutual-exclusion primitive

operating below the process level. It is the logical equivalent of a

spin lock, but its implementation uses interprocessor interrupts to

avoid the memory contention inherent in continuous polling. The
use ofKMPS locks is restricted to places where context swap is not

allowed, such as in interrupt routines.

A KMPS lock is implemented with two counters and a bit mask
of waiting Pc's. When a lock request is made, the lock counter is

indivisibly decremented (from 1) and tested. If the result is 0, the

requesting Pc has control of the critical section. Otherwise, the Pc

must wait. In this case, the Pc places its bit in the waiting

processor mask and executes a WAIT FOR INTERRUPT instruc-

tion, idling the Pc. When a Pc unlocks a lock, it increments the

lock counter, sets the second counter (sublock) to 1, and sends the

highest-level IPI to all Pc's in the wait mask.

The blocked Pc's, upon receipt of the interrupt, resume

execution and contend for the sublock. One, randomly deter-

mined, will see that its decrement of the sublock field has resulted

in and will remove its bit from the mask and assume control of
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the critical section. The others resume waiting. By allowing the

sublock to be reset on each unlock operation, the lock counter

contains the number of processors blocked (negated) while the

lock is locked. This information is used in consistency checks that

detect either incorrect lock addresses or damaged locks.

The advantages of this apparently complex system are twofold:

it is extremely cheap in the nonblocking case (most frequent), smd

there are no memory cycles consumed in blocking, although the

Pc is unavailable. The performance of this mechanism is excellent

and will be discussed in a following section.

Semaphores differ from locks in two ways: their counters may
have large values, and since they are process-level primitives,

blocked processes are rescheduled. Each semaphore maintains a

queue of blocked processes that will be rescheduled in the order

that they have blocked.

Two forms are supported: one internal to Hydra (kernel

semaphore) and one for user-level programs (PM semaphore).

The difference is (conceptually) in their behavior when blocking.

If a process must block on a kernel semaphore, a token for the

process is appended to a queue within the semaphore and the Pc

selects a new process from the KMPS feasible list. In particular,

the pages of the blocked process remain core-resident.

Blocking on a PM semaphore is more complex. Not only is a

token for the process enqueued, but a scheduling decision to swap

the pages of the process must also be made. This decision is

delayed for a period (currently 500 ms, a parameter controlled by
the PM), so that if the critical section is freed during this time, the

process may possibly continue. In this case, the behavior is much

like the faster kernel semaphore and averts considerable paging

overhead. If during the delay the process cannot continue, it is

returned to the PM for the duration of its blocked period and its

pages become eligible for swapping. Although this mechanism

pays a penalty of potential paging overhead, it ensures that a

deadlock in user code does not result in a kernel deadlock. Upon

receipt of the signal that the process may enter the critical section,

the PM will again consider it for long-term scheduling and order it

restarted by KMPS.

2.1.3 Interprocess Communication A variety of hardware and

software communication mechanisms are available within

C.mmp/Hydra. The hardware provides two: First, and most

basic, is sharing memory, used extensively by both kernel and

user-level programs. Second is the IP-bus control functions,

which are used strictly within the kernel. The three IPI levels are

used for scheduling, interprocessor I/O request queuing, and

synchronization. The IP bus halt and start fiinctions are used

during system initialization and by a monitoring Pc to regain

control of a Pc lost through serious error.

Hydra provides two software mechanisms: an interprocess

interrupt (analogous to the IP bus interrupt for Pc's) and a

message facility. The KMPS control function allows one process to

interrupt another. Control interrupt entries are made at specified

points associated with each process. Each process also has a

control mask associated with it; the process sending a control

function supplies a similar mask. A nonzero intersection of the

masks causes the interrupt to be taken.
^

Depending on the

interrupt, additional data may be available in certain predefined

stack addresses [Newcomer, Cohen, Jefferson, Lane, Levin,

Pollack, and Wulf, 1976]. A similar fiinction, desynch, can be used

to free a process blocked on a PM semaphore or while waiting for

a message. In this case, an exception return is made from the

blocking kernel call.

The Hydra Port System provides a general message facility that

can be used for user-level interprocess communications and

synchronization [Newcomer, Cohen, Jefferson, Lane, Levin,

Pollack, and Wulf, 1976]. Messages are sent to and received by

ports,^ which may be interconnected via unidirectional links

between an output channel of one port and an input channel of

another. The messages are typed and may contain both data and a

single capability (discussed in the next section). The basic port

operations are SEND, RECEIVE, and an RSVP function that

requests a reply to the message sent. Because the memory
protection system provides protection only on a per-page basis,

messages, which are always smaller than a page, must be created

within the kernel and therefore are not directly addressable by
user programs. Additional mechanisms, necessary only because of

the memory protection limitations, are provided for creation of

messages and copying of their contents.

The RECEIVE operation may block until a message is received

by a port. Since ports, not processes, are connected, blocking

provides a way to synchronize a dynamically changing set of

cooperating processes in a producer-consumer relationship. No

process requires knowledge of the number, role, or memory of :

the other processes: it knows only of its connection to a shared

port and the operation it is to perform.

The Port System also provides a uniform user-level interface to

the I/O system. Devices appear as ports, and requests are entered

by sending an appropriately formatted message to the device. The

fact that devices are physically connected to specific Pc's is

completely obscured, and the common interface allows easy

interchange of similar devices.

2.2 Protection and Data Abstraction

Although the protection and data abstraction mechanisms of

Hydra are not dependent upon the architecture, the following

'Interrupting a user program must be simulated by Hydra to protect the

PS. Exception interrupts, such as attempting to access nonexistent

memory, have entry points associated with each process similar to the

entry for control interrupts. When entry is made, the stack is loaded by

Hydra with the (PC, PS) pair to simulate an interrupt to the entry point.

'Not to be confused with Smp memory ports.
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brief introduction to these mechanisms is presented, since they

were among the principal design criteria for the operating system.

Detailed discussions may be found in the Hydra monograph

Wulf, Levin, and Harbison, 1980] and also in Cohen and Jefferson

[1975], Wulf, Cohen, Corwin, Jones, Levin, Pierson, and Pollack

[1974], and Newcomer, Cohen, Jefferson, Lane, Levin, Pollack,

and Wulf [1976],

In Hydra, all data are encapsulated in objects, which may only

be accessed via capabilities. The set of all objects is known as the

Global Symbol Table (GST, pronounced ghost). Capabilities have

a varying set of access and operation rights that are automatically

checked whenever a capability is used to name an object. If a

capability has insufficient rights for the requested access or

operation, a signal is returned to the caller pointing out the

protection violation. Hydra provides a set of 16 generic rights that

are interpreted uniformly for all object types. An additional eight

rights, the auxiliary rights, are available for each object type, and

their interpretation is dependent on their type. Sharing of objects

is permitted by copying capabilities for the object, possibly with

the access rights restricted to limit authority.

Objects have a unique name (generated from the 60-bit clock), a

type, and optionally a data part and list ofcapabilities (C-list). The

data part allows storage of a limited amount of data (4,000 bytes).

The C-list allows an object to contain up to 250 references to other

objects. General graph structures may be built via these capability

references. The protection mechanism is not hierarchical and may
be used to protect structures with arbitrary interconnections.

Objects may be referenced via a path of capabilities in the C-lists

of other objects (if all capabilities along the path have sufficient

rights).

The representations of both capabilities and objects are never

directly manipulated by user-level programs; all representation

knowledge is the domain of the kernel.

Nearly everything is represented as an object: processes, pages,

semaphores, I/O devices, ports, and a great variety ofother types.

Every executing program has a basic list of capabilities known as

its Local Name Space (LNS). The LNS and all objects reachable by

paths rooted in the LNS are the instantaneous protection domain

of the program. To prevent forgeries, objects may be referenced

only by such paths; they are never directly referenced by name.

An LNS typically contains capabilities for its code and data pages

plus capabilities for any other objects that the program must

manipulate.

Protected procedure calls switch protection domains. All

programs are represented by procedure objects, which have

C-lists containing capabilities for code pages, data pages, and

parameter templates, as well as any other objects required. A

procedure may have capability parameters in the same sense that

a subroutine has address reference parameters. When called, the

procedure's C-list and the actual parameters are merged into an

LNS for the new protection domain. Procedure calls stack LNS's,

so that calls may be nested or recursive. The templates specify the

parameter's position in the LNS and the necessary check rights

and type of the actual capability. Ifthe check rights or type doesn't

match, a protection violation is signaled and the call aborted. A

parameter template may also specify rights amplification to add

certain rights to a parameter capability. The amplified capabilities

exist only in the LNS of the called procedure and are rarely, if

ever, returned to the caller.

Two other forms of template are used. Creation templates,

which specify the initial form and type of an object, are used by a

common object creation routine to create an instance of a

particular type. Amplification templates provide rights amplifica-

tion outside the procedure call mechanism. These are not made

generally available.

The kernel provides a small number of basic object types and a

mechanism for creation of user-defined types. A new type is

represented by a TYPE object that embodies the abstractions of a

class of objects. The TYPE object specifies the representation of

data in the new class and also the operations that may be

performed on the object. Auxiliary rights may be defined to

protect these operations. The code defining the representation

manipulations of an operation is encapsulated as a procedure

object and is stored in the C-list of the TYPE object. Generally,

only these procedures may use rights amplification, either by

template or in the procedure call, to gain sufficient rights to

directly access the representation of the new type. To allow use of

the new type, a creation template, made from the TYPE object, is

made available as needed.

To invoke an operation on an instance of the new object type.

Hydra provides a typecall mechanism similar to the protected

procedure call. Performing a typecall on an object of the new type

actually specifies a call on one ofthe procedures in the C-list ofthe

TYPE object. A capability for an object of the specific type is

passed, possibly with rights amplification, to the procedure

implementing the desired operation. A different typecall is

provided for each operation on an abstract data-type, and the

index of the procedure in the type object is typically hidden in a

macro or routine in the source language.

The typecall mechanism is used to implement all user-level

subsystems in the Hydra operating system. Ear example, PMs
create PM process objects to encapsulate PM scheduling data. For

a detailed example of how typecall was used to create an

extensible file system, see Almes and Robertson [1978].

3. The Hardware-Software Interaction: Performance,

Programming IVIetliods, Problems, and Reliability

Developing the operating system and implementing several large

application programs has resulted in a considerable body of

knowledge about how the architecture has interacted with the
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software. Some expected problems, such as multiprocessor

scheduling and synchronization, have been solved efiRciently and

efiectively. Others, mostly unanticipated, have been difiBcult to

solve or minimize, although in one case—reliability
—the software

methods developed are considered one of the project's major

successes [Wulf and Harbison, 1978].

3.1 System Performance

The following sections present an overview of the performance of

the C.mmp/Hydra system. Again, the emphasis is on the architec-

ture and its effects. The data presented have been collected over a

period of years and represent a number of different system

configurations, since measurements were taken in parallel with

hardware development. The concurrent measurement and con-

struction unfortunately prevented simultaneous measurement of

more than a subset of the potential 16 Pc's. To offset this,

modeling results extending the measured data are presented

where available.

To measure the system, a number of specialized tools were

created. Two software tools were created to measure the system

behavior in parallel execution. A software tracer, partially

implemented in microcode, was built to selectively trace events

such as kernel calls and object accesses on the entire set of

executing Pc's. A script driver [McGehearty, 1980] provided a

mechanism to impose a variable and repeatable synthetic load on

the system and make timing measurements at the user level. A

special hardware monitor [Swan, 1976] with its owti host comput-
er was developed to measure performance at the memory-access
and instruction level on individual Pc's. The monitor's high-

impedance probes, which were attached to the measured Pc's

Unibus, allowed fine-grained measurements to be taken with

insignificant perturbation of the Pc. Memory traffic in Smp was

measured with an access counter that integrated accesses to all 16

memory ports.

3.1.1 An Application Example An artificial intelligence applica-

tion, the Harpy Speech Understanding System [Lowerre, 1976],

was implemented on C.mmp, among other machines. The system

was extensively studied as an indicator of the performance and

problems associated with large, complex tasks in the C.mmp/
Hydra environment.

The following brief description of Harpy and its implementation
on C.mmp is presented to aid understanding of the application

and its measurements. The system recognizes speech from many
speakers, although the recognizable utterances are restricted to a

finite, task-constrained vocabulary. Knowledge about the task,

grammar, and vocabulary is represented in a finite-state graph

structure, one word of the vocabulary per node. Paths along

interconnections between nodes represent acceptable sentences

- in the grammar. When an utterance is to be processed, the word

nodes are replaced by networks containing representations of the

phonemes (units of speech) for all pronunciations of the words.

After digitization, an utterance is examined by a probability-

based heuristic search that compares each phoneme of the

utterance to those in the nodes of the knowledge graph. As the

search proceeds, a recognition tree of the most probable transi-

tions in the graph is built. At the end, the utterance is identified

by backtracking along the path of highest probability in the

recognition tree.

The search was implemented in two phases, each executed by a

set of cooperating processes. In the first phase, the possible

transitions in the knowledge graph were calculated for the current

phoneme of the utterance. The second phase performed a

probability calculation for each transition identified in the first

phase and discarded those of low probability. Steps of high

probability were retained as the next level of the recognition tree.

The processes were synchronized so that all performed the first

phase, then all performed the second phase. This sequence was

iterated until all phonemes of the utterance were processed. No ,

process was allowed to continue to the next phase until all I

processes had completed the current phase.

To ensure that the measurements were indicative of the

architecture, the number of processes was limited to the number

of Pc's available at the time ofmeasurement and the code and data

were always resident in Mp. These precautions eliminated the

effects of scheduling and paging. The measurements in Fig. 6a

[Oleinick, 1979] were made with a 1,000-word vocabulary,

representing a large search space and heavy compute load. The

same 15 utterances were processed for each measurement.

Since versions of Harpy also exist for the PDP-10 (the KLIO

model, a medium- to large-scale uniprocessor with 1.8 MIPS, and

also an older KAIO model with 0.4 MIPS) and an 11/40 Unix

system, some performance comparisons can be made with these

systems. As Fig. 6a shows, C.mmp achieved better performance
than KLIO with four Pc's on the 1,000-word vocabulary task. In

comparison with the single 11/40 Unix system, shown in Fig. 6b, a

single process on C.mmp required only slightly greater time to

execute the task than did the uniprocessor, indicating that

overhead is low in the parallel environment [Wuff and Harbison,

1978]. For the Unix and KAIO measurements, a small (37-word)

vocabulary was used. For reference, measurements of the KLlO's

performance on the 37-word vocabulary task are also included in

Fig. 6b.

The speedup gained by adding a Pc to Harpy was less than

linear on account of underutilization of the processes [Oleinick,

1979]. Because of unequal allocation of work, the processes lost

time waiting for the working processes to complete a phase of the

search so that the next phase could begin. Considerable effort was

invested in optimizing the allocation of work, and process

utilization reached 64 percent, limited by the overhead necessary

in partitioning the heuristic search. The partitioning overhead is
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Fig. 6. Comparative performance of C.mmp v»ith other machines on

the Harpy Speech Understanding System, (a) C.mmp versus KL10

with a 1000-word vocabulary task.

also responsible for the fact that C.mmp required seven Pc's to

match KLIO performance on the 37-word vocabulary task but only

four on the more computation-intensive 1,000-word task. Al-

though this problem is seen to be in the decomposition of Harpy
rather than specific to C.mmp/Hydra, it demonstrates a problem
with multiprocessors and parallel decompositions: if a Pc must

wait for all other processors to complete their task before

proceeding to the next computational step, then speedup will be

limited by the balance of work among the Pc's. This is similar to

the problem of unequal execution speeds mentioned in 3.1.2.

3.1.2. Synchronization and Its Effects Studies of the synchroni-

zation mechanisms in Hydra indicated that the mechanisms

themselves did not cause much overhead, although the methodol-

og> of use was critical. In a study of the KM PS lock, several

benchmark programs each created 16 cooperating processes



362 Part 2
I
Regions of Computer Space Section 4

I Multipie-Processor Systems

specific instance ofa data structure. In Hydra, nearly every shared

data structure has its own locking primitive. For example, each of

the tens of thousands of objects in the GST has a KMPS
semaphore for mutual exclusion. Also, some highly shared

structures, e.g., the KMPS feasible list, are segmented to allow

multiple locks and a higher degree of parallel access without

contention.

Another advantage of associating the synchronization with data

structures is that both the primitives and data structures may be

dynamically created and destroyed as the load or growth of the

system may dictate. The code remains unchanged during the

lifetimes of the dynamically created data structures. Binding locks

to code results in static structures that require programmer
intervention for alteration.

The importance of choosing the appropriate primitive was

shown by a study of a parallel root-finding algorithm [Oleinick and

Fuller, 1978]. Figure 7 illustrates the difference between spin

locks and PM semaphores. Because the average blocking time is

short compared with the overhead of PM semaphores (at least 5

ms), the spin lock produced better performance by a factor of 2.

For the PM semaphore curves, the e parameter is the delay time

in milleseconds before a blocked process was returned to the PM.
Note that zero delay (e=0, in PMO, an early PM) causes poor

performance due to paging overhead (see Sec. 2.1.2). The

degradation of performance caused by adding the ninth Pc is not

due to the synchronization primitives, but is caused by the system

configuration: eight 11/40's and three 11/20's. As soon as one 11/20

was used, the entire task force of processes slowed down, since all

were forced to wait for the slowest to report completion.
The choice of primitive is equally important in Hydra. If the

estimated average blocked period was greater than context-swap

time, a KMPS semaphore was used; otherwise a KMPS lock was

best. Measurements indicate that the average KMPS semaphore
blocked period ran as high as 300 ms [Jain, 1978] because

semaphores were used for signaling I/O event completion.

Clearly, if locks, which do not release the Pc, had been used, the

impact on performance would have been severe.

3.1.3 Scheduling The script driver was used to measure the

combined performance of KMPS and the PM as it would be

perceived by a terminal user, especially with respect to variation

in response time [McGehearty, 1980]. The load placed on the

system was controlled by both the number ofjobs (terminal users)

and the compute time required by each job. To minimize effects

other than scheduling, several restrictions were placed on the

synthetic job stream:

• All jobs were independent.

• All jobs executed at the same KMPS priority.

• Jobs made no accesses to the GST (which might cause I/O or

contention for an object).

- 500
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Fig. 7. Effect of different synchronization primitives on the root-

finder program.

• All codes and data simultaneously fitted into Mp.

Timings were measured by the script process using the global

time base, Kclock. For this experiment, a configuration of ten

11/40's was used. Nine Pes executed the synthetic job stream and

the tenth ran the script driver process (which was locked onto that

Pc to prevent interference with the measurements).
To create a synthetic user load, the script driver jobs were

assigned compute times in exponential distributions with mean
times of 1, 5, and 10 corresponding to light, medium, and heavy
loads. Each job waited 10 s between compute requests to simulate

user response time. A total of 400 compute/wait cycles were

executed for each set ofjobs. Because of the varying compute time

requests, the variation in response time was normalized for all

processes by calculating a stretch factor, the response time

divided by the requested compute time.

The variation of the stretch factor measures equality of service

and, to the user, the predictability of response time for a request.

The measurements indicate that the scheduling system was able

to maintain reasonably equal service even when the machine was

saturated. As shown in Fig. 8a, b, and c, only one job in 20

experienced a stretch factor as much as twice the mean. The

greatest variation occurred in the lightest load (Fig. 8a), where
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Fig. 8. Variation in normaiized response times for job streams of

varying computational requirements, (a) Low computing load,

mean = 1 s compute time per interaction, (b) Medium computing

load, mean = 5 s compute time per Interaction, (c) Heavy comput-

ing load, mean == 10 s compute time per interaction.

the eflFects of scheduling were least dominated by computation.

The sharp rise in Fig. 8fo and c indicates the load at which the

machine was saturated. The mean stretch factor dips below 1 in

Fig. 8a and h because of statistical variations caused by slight

dtfiferences in relative Pc and memory speeds.

3.1.4 Memory Contention Although a predictable result of not

having implemented Mcache, memory contention has been a

problem for high-performance multiprocess application programs

on C.mmp. If three Pc's access the same memory port, that port

becomes saturated. This limited access resulted in poor perform-

ance of multiprocess programs with shared code pages. The

solution was to distribute copies of the code pages in different

ports to each process. The critical code pages were few, and so the

copies did not make excessive demands on memory. Accesses to

data were less frequent and sufficiently evenly distributed

through the data base not to cause significant contention.

Although the code for the operating system is widely shared, its

execution is sufficiently asynchronous that memory contention has

not been a noticeable problem. Figure 9 illustrates the contention

due to shared code pages for the root-finder program.
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Fig. 9. An example of memory contention with shared code pages.

As illustrated in Fig. 10, detailed stand-alone (without Hydra)
measurements of memory contention taken with a synthetic job
stream indicate that the incremental value of a Pc is 99 percent for

the second Pc and decreases uniformly to 86 percent for the ninth

Pc, with a measurement error of about 3 percent [McGehearty,

1980]. The synthetic jobs executed 25 repetitions of a 100-

instruction sequence that was chosen as representative of typical

instruction mixes for PDP-ll's [Marathe, 1977; McGehearty,
1980]. Each processor executed the same instruction sequence,

although neither code nor data were shared. After each 25

executions of the 100-instruction sequence, different memory
ports for both code and data were independently chosen. The
choice of port was either uniform for the 16 ports or weighted by
the number of pages available in each port. The selection of

different memory ports was repeated 4,096 times, each time

including the 25 executions of the synthetic instruction sequence.
Since there was no sharing, the results are representative of the

0.86

3 Measured performance with each port

having equal probability of access

& Measured performance with each page

having equal probability of access

1 I I I I
I I

2 3 4 5 6 7

Number of Pes

10 11 12

Fig. 10. Processing power for each additional processor.

general-purpose, time-shared environment envisioned for the

machine.

3.2 The Effects of Using Minicomputers

While C.mmp has shown that small processors can be effectively

harnessed into a large-scale system, the decision to use minicom-

puters hcis not been without problems. Two characteristics of most

minicomputers available in 1971 and 1972 have had considerable

impact on the project: first, they were not designed for reliability;

second, the small word size affects both data representation and

addressing. The small address size has proved to be a serious

problem.

3.2.1 The Small-Address Problem The small-address problem

(SAP) [Wulf and Harbison, 1978] stems directly from the use of

minicomputers as the processing elements of C.mmp. The

PDP-11, being a 16-bit machine, can address only a 64-Kbyte

space. This is much too small for large-scale applications, although
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it is often sufficient for individual subsystems of the operating

system.

The problem typically appears in addressing an application's

data base. Large problems tend to have large data bases, and the

16-bit address allows access only through a 65-Kbyte window. The

problem hasn't been as severe for code, because the size of the

code has usually been relatively small. In cases where code size

was important (e.g., Hydra), subroutine-calling sequences were

developed that automatically made the called routine addressable

before entry and restored addressability of the caller upon return.

The real cost of SAP is the all-pervasive concern for the

addressability of the data during the design and coding of a

program. Demand paging was precluded by the 16-bit address

and limitations in the relation mechanism. Dmap does not retain

sufficient information to identify the address causing a nonexistent

memory fault [Levin, Cohen, Corwin, Pollack, and Wulf, 1975].

Therefore the Hydra paging system was forced to require that

working-set and addressability changes be written into the

program. While the mechanisms the paging system provides are

clean and efficient, the necessity of having to expUcitly juggle the

working set and its addressability results in design and coding
burdens. Performance problems, although secondary to program-

ming problems, stem from the frequency of addressing changes.

The cost of addressing changes is minimized by a microcoded

relocation-register loading function available to user-level pro-

grams, and by the fact that the relocation registers are always

addressable in the kernel.

In the Hydra kernel, the performance cost of SAP has been

measured at 5.5 percent, or an addressing change every 16

instructions [Marathe, 1977]. This is higher than the cost incurred

by moderately optimized user programs for two reasons. First is

size: Hydra is, by a considerable margin, the largest program

executing on C.mmp. It has nearly 50 code pages and from 10 to

100 data pages, depending on load. The order-of-magnitude

variation of the data space needed contributes to the frequency of

addressing changes by forcing nearly all data structures to be

dynamically addressed. Dynamic addressing, in turn, is made
more expensive in the kernel by the second reason: the necessity

of disabling two relocation registers in the (1,1) addressing space

(see Fig. 3). Perhaps if Dmap supported more relocation registers

and a smaller page size, the problem (performance, at least) would

be somewhat alleviated [Wulf and Harbison, 1978].

Figure 11 illustrates a case study of the effects of the SAP [Wulf
and Harbison, 1978]. The task is the Harpy speech understanding

system with the 37-word vocabulary. Two versions of the same

task are compared: one with dynamic mapping and one with static

mapping. In the dynamic mapping version. Harpy checks each

data access for addressability; in the static case, the program
assumes the data are addressable. Note that a factor of 3 in

performance was gained by simplifying the code even though in

7 8 9 10
Number of processes

Fig 1 1 . The effect of SAP on Harpy.

actuality no addressing changes were ever necessary
—the cost

was incurred by checking for addressabihty.

Another example is in the coding of the operating system's

Command Language (CL). The CL provides a small ALGOL-like

programming language (similar to BLISS-11, the implementation

language used for Hydra [Wulf, Russell, and Habermann, 1971]),

complete with variable declarations and macro facilities. Static

data structures were used to implement the CL, with the result

that although the code is simple, the size of the symbol table is

quite restricted. This has limited the utility of its macro processor
in tailoring the user's interactive environment.

3.2.2 The EJfect on the Capability Protection System Hydra

represents capabilities in 16 bytes, or 8 words. Eleven bytes are

required: 8 for the global name and 3 for the rights field. The

remaining 5 bytes are allocated to reliability checks and other

implementation details. Having to move 8 words per capability is

a significant source of overhead in the protected procedure call.



366 Part 2
I
Regions of Computer Space

Section 4 I Muttiple-Processor Systems

Recent measurements of typical Hydra typecalls, the most

frequently executed version of the protected procedure call,

indicate that an overhead of about 30 ms is to be expected.

Detailed software traces of the calls indicate at least 50 percent of

the time was spent in merging the capabilities into the new LNS.

While creating the new LNS is the major function of the call,

several factors are responsible for its being so expensive: making

the capabilities addressable at both source and destination, the

locking required for the capability copies, and simply moving the

8-word representation. Since this move cannot be done indivisi-

bly, the locking is required. The typecalls studied were catalog

lookups and had fewer than 15 capabilities per LNS. That fraction

of the overhead devoted to building the LNS is proportional to

LNS length.

The result of the high overhead has been that although the

capability-based protection system is highly effective, its efficien-

cy has often limited its use. In particular, protected procedure

calls are used on a considerably larger grain than was anticipated.

It should be noted that this is not considered a problem inherent

in capability systems, but an artifact of implementation with small

words and on hardware not specifically intended to support

capability addressing.

3.2.3 Indivisible Operations The implementation of locks in a

multiprocessor is dependent on having at least one indivisible

operation on shared memory. Although not specified in the

PDP-11 ISP, the 11/20 and 11/40 both perform indivisible

read-modify-write cycles. Smp maintains the indivisibility, mak-

ing any instruction using this access mode indivisible. Increment,

decrement, and shift instructions are used in the construction of

the various forms of lock in Hydra. The fact that the bit

manipulation instructions are made indivisible automated the

synchronization of the bit mask operations so critical in using the

IP-bus functions. The richness of the indivisible instruction set

has been of great value to C.mmp and should not be underesti-

mated.

3.2.4 Lack of Error Checking The necessity of constructing

C.mmp from available minicomputers greatly restricted the

possible-fault-tolerant mechanisms that could be incorporated.

For example, neither of the two PDP-11 models used, nor the

Unibus, has error-checking abilities; one must assume that their

results are correct. Experience has shown that this is frequently

not the case. Therefore elaborate error checking and correcting of

the shared memory and its access path were not justified, because

of the possibihty of data corruption on the Unibus.

The lack of checking by the hardware forced the burden onto

the software, with a resultant penalty in performance. Software

checking generally consists of checksums and type and consisten-

cy checks. Because data integrity is considered highly important,

the error-checking burden falls most heavily on the GST.

3.3 Reliability

In spite of the difficulties, the machine has been reasonably

reliable, considering its highly experimental and unique nature.

Recent statistics indicate that the total system mean time to crash

(MTTC) from all causes is, with one exception, fluctuating

between 6 and 15 h, averaged on a monthly basis. This is more

than enough to be a useful research tool, especially since the

average downtime after a crash is only about five minutes and the

machine automatically reloads itself (operator intervention is

virtuallynever required). In a researchenvironment, availabilityhas

proved to be more important than absolute reliability. Figure 12

illustrates the distribution of crashes during the end of construc-

tion and the beginning of an intensive maintenance period.

Completion of the machine allowed engineering efibrts to be

directed to reliability, and the error rate improved accordingly.

3.3.1 Reliability Experience The reliability experience has been

quite varied: many failures that were once common are now rare

or nonexistent, others are still apparent, and some reappear from

time to time. The failure rate has been significantly improved

through a program of intensive maintenance, which has been in

progress since completion of the basic machine.

Memory parity failures have, with rare exception, been the

most common failure mode. Most are transient, but hard errors

happen with regularity. Often the memory failure rate has largely

determined the MTTC. For example, the sharp peak in Fig. 12

was caused by memory-related errors when the last of the MOS
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memory was installed. A methodology for recovering from

transient memory failures in the shared memory of the operating

system is now being developed, and a marked improvement in

reliability is expected from this one recovery effort, since most

memory parity failures happen in the operating-system kernel.

Memory failures in user-allocated pages present a lesser problem.
Transient failures, while it is always difficult to isolate their

source, have been an especially large problem on C.mmp, since

there are few, if any, trace points in most data paths. Not

including powerful debugging aids in the logical design has

continuously hampered development. There was little that could

be done for the processors, but aids could have been incorporated
into all the CMU-built logic. When this weakness was reahzed,

one tracking register (for the program counter) was added to

Dmap; another (for operand addresses) is being developed. A
similar weakness became evident in the software: often informa-

tion about a failure was lost by the operating system, making

recording of the conditions for transients unreliable. Robust

crash-logging procedures have alleviated this to a great extent.

A transient failure that has eluded solution is the problem of

"false NXM's." The processor reports a nonexistent memory
(NXM) exception, but upon analysis it is found that the memory is

responding and the instruction, registers, and index word(s) are

well formed; no exception should have resulted. Because of the

lack of checkpoints in the memory data paths, there is insuflRcient

information available to isolate what may be failing.

Another long-standing transient is stack operation problems.
This usually appears as misexecution of subroutine call/return

instructions or as interrupt entry/exit mistakes. The most common
form of the error is one word too many (few) pushed (popped) onto

(from) the stack. No cause has ever been isolated, and no method
of recovering from this failure has been developed, but, fortunate-

ly, it is relatively rare.

A pleasant surprise has been the reliability of Smp. Although it

is the most complex component of the multiprocessor hardware, it

is now among the most reliable. No doubt the relatively simple

design, conservative implementation, and careful construction

have paid off. The complexity of Smp is indicated in the chip
counts in Table 4, which also includes the expected chip failure

rates as calculated by Autofail, a CMU-developed hard-failure

model based on the Military Standardization Handbook 217B

Table 4 Chip Complexity and Theoretical Failure Rate for Smp

Logic unit

Failures per

Chips Gates W h

Cross-point logic
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(c) (d)

Fig. 13. PC boards used In the crosspoint switch, (a) Crosspoint logic (72 boards), (b) Priority contention

resolution (16 boards), (c) Pc interface (16 boards), (d) Memory interface (16 boards).

sources of failure. The software recovery methods, developed by

design and evolution, may be grouped by similarity: methods for

recovery from frequent failures that have little probability of

nonlocal damage, and methods for treating relatively rare, but

serious, failures that may imply systemwide damage.
The first class of failures is typically transient, though fre-

quent, and does not involve shared data structures. Examples are

IPI failures, DMA overruns, and memory parity failures in

user-allocated pages. Although simple recovery methods of

retrying and reporting failure are used to handle these errors, a

consistent efiFort is made to reflect the error report back to a level

where there is suiEcient information for proper action [Pamas,

1972].

For the second class of errors, those serious enough to imply

nonlocal damage, two major techniques have been developed,

both of which exploit the parallel environment of C.mmp. In the

Hydra kernel, the availability of multiple Pc's is used to create a

robust recovery and logging system, and at user level, multiple

processes are used in an analogous manner.

Important system elements of Hydra, such as job scheduling
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and file systems, are implemented £is user-level programs. Their

response to errors is critical to system reliability, and several

multiprocess techniques are used. The processes may be multiple

incarnations of the subsystem's server processes, or they may be

free-running daemon processes created specifically to play a

watchdog role in ensuring the correct and reliable operation ofthe

subsystem. The multiple-incarnations approach accepts the loss of

a server and the processes dependent upon it as a method of

limiting damage and also tends to improve response. The daemon

approach is specifically creating redundancy for reliability.

Within the kernel, serious errors are handled by a formal

mechanism, the suspectImonitor model, which causes the whole

system to pause so that a known state is reached before a sequence
of error logging and analysis is performed. This procedure allows a

wide range of options, from continuing execution, possibly with

configuration changes, to reloading (again, possibly reconfigured).

Developed in response to the low reliability of the developing
hardware and software, suspect/monitor was retrofitted to the

existing software.

Invocation of the suspect monitor sequence may occur in two

ways: First, a Pc may detect an error condition either by hardware

trap or software check. It then becomes the suspect, and a

monitor Pc is randomly chosen from the remaining processors.

Second, a Pc executing the watchdog routine detects that some
other processor has apparently not been executing. The watchdog

processor becomes the monitor and declares the apparently

nonexecuting Pc to be the suspect. The watchdog routine is

executed by all processors as part of several frequently used

interrupt service routines and sets a bit (corresponding to the

executing processor) in a mask maintained by the watchdog.

Periodically this mask is compared with a mask of Pc's known to

have completed initialization (upmask) and then cleared. Any
processors in the upmask but not in the watchdog mask are

declared suspects.

Once the monitor is chosen, it and the suspect achieve

synchronization by means of a shared-state variable. Each advanc-

es the variable to the next state upon entry. Both examine the

state, and if it is not in the synchronized state, each waits for the

other to advance it to that state. The monitor times all waits for the

suspect to reach a desired state, and if synchronization is not

achieved quickly, the monitor attempts to force the suspect Pc to

execute the recovery code with a sequence of IP-bus operations.

Continued failure to synchronize causes the monitor to abort the

sequence and force a reload. Multiple suspects are processed one
at a time by the same monitor.

The suspect's sequence is: record all Pc state at the time of

failure, including which pages were addressable; copy its local

memory; execute a short-diagnostic; and, assuming correct execu-

tion of the diagnostic, attempt analysis of the failure. Completion
of these actions is communicated to the monitor via the state

variable. Because of the sensitive nature of the suspect's execu-

tion, several coding restrictions were employed in its implemen-
tation. For reliability, no stack operations are performed, the Pc

state-logging code is straight-line, and a flag is set upon entry to

the suspect routine to force an immediate halt upon repeated

entry for any reason. Halting causes a monitor time-out, forcing a

reload and preventing the previously logged data from being
overwritten.

Once synchronized, the monitor follows the suspect through its

sequence and, after successfijl completion, has the following

options:

• Continue with no changes.

• Halt the suspect and continue.

• "Quiesce" the suspect and continue.

• Reload.

• Reload and delete suspect from configuration.

• Reload and quiesce the suspect.

Quiescing a processor allows it to service I/O device interrupts but

not to execute any other functions (notably user programs). This

way, the duty cycle is kept low, and it is hoped, so is the

probability of a failure. This mode is required to keep processors

with critical I/O devices in the configuration. Since most data

structures lack the redundancy and associated verification rou-

tines to guarantee repair of damage, all paths through suspect/

monitor currently lead to one of the system reload options.

The analysis that the suspect may perform is highly failure-

dependent. Because of the problems of installing any recovery
scheme in an existing large program, the problems of analysis are

only beginning to be examined. Recovery from memory parity

failures during kernel execution is being considered as the first

candidate for analytical recovery. These parity failures are consid-

ered serious enough to invoke suspect/monitor because of the

requirement to maintain the integrity of the GST. Also, a page

may hold segments of many objects, and so a failure may imply
future trouble if not caught promptly. For parity failures, the

analysis must ascertain three things: whether the failure is

repeatable, whether it happened during interrupt service, and

whether any critical data structures were locked. If any of these is

true, recovery is not possible. There is no way to report the failure

to the process while servicing an interrupt. If locked, a data

structure may be in an inconsistent state. In these cases, the

suspect notifies the monitor to reload the system. Otherwise, the

failure has occurred during a kernel call and may be aborted with a

parity failure report. The caller may then decide whether to retry

the call. No claim is made that this particular method is optimal; it

is intended to illustrate the role of analysis in the suspect/monitor.

However, it does promise a high probability of recovering from

the majority of parity failures with an acceptably small risk of

undetected damage.
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The auto-restart mechanism is responsible for reloading the

system and is invoked by the suspect/monitor mechanism. Three

basic steps are involved: adjusting the configuration masks for any

deleted or quiesced processors, constructing a free memory list

(deleting pages that have been marked errant), and loading a fresh

copy of the kernel from disk. The new system is entered and

initialization begins. This sequence is normally accomplished

without human intervention and is so reliable that C.mmp runs

without an operator.

The last mechanism associated with failure recovery is the

automatic diagnostic driver, which initiates and monitors the

deleted processors' execution of a diagnostic. The driver maintains

a history of the failures found by each processor as well as the

processor's successful executions of the diagnostic. The histories

may be printed on command and are also accessible from Hydra.

If a processor is able to successfully run the diagnostic for a period

of time determined by its failure history over the previous few

days, the driver automatically returns it to the system. Automatic

return is accomplished by executing the standard per-processor

initialization and does not require pausing or reloading the

system.

4. Conclusion

The successful implementation of systems such as Harpy, ZOG,
several language compilers, several file and directory systems,

ARPANET support, and measurement tools such as the script

driver has shown that C.mmp and Hydra provide a useful.

general-purpose computing environment on a multiprocessor.

The symmetric design of C.mmp has proved to be valuable in

error-recovery techniques and in simplifying process scheduling.

Also, the kernel approach to operating-system design, the protec-

tion system, and the mechanisms for data abstraction have

effectively allowed construction of much of the operating system
as user-level programs.

The problems, such as reliability, memory contention, and the

small-address problem, have been eflFectively managed, if not

solved entirely. These problems were challenging and the

reliability problems, especially, motivated a profitable research

effort.
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