
Chapter 22

Design of the B 5000 system
1

William Lonergan / Paul King

Computing systems have conventionally been designed via the

'hardware' route. Subsequent to design, these systems have been

handed over to programming systems people for the development
of a programming package to facilitate the use of the hardware.

In contrast to this, the B 5000 system was designed from the start

as a total hardware-software system. The assumption was made

that higher level programming languages, such as ALGOL, should

be used to the virtual exclusion of machine language programming,
and that the system should largely be used to control its own

operation. A hardware-free notation was utilized to design a proc-

essor with the desired word and symbol manipulative capabilities.

Subsequently this model was translated into hardware specifica-

tions at which time cost constraints were considered.

Design objectives

The fundamental design objective of the B 5000 system was the

reduction of total problem through-put time. A second major

objective was facilitation of changes both in programs and system

configurations. Toward these objectives the following aspects of

the total computer utilization problem were considered:

Statement of problems in higher-level machine-independent

languages; efficiency of compilation of machine language; speed of

compilation of machine language; program debugging in higher-

level languages; problem set-up and load time; efficiency of

system operation; ease of maintaining and making changes in

existing programs, and ease of reprogramming when changes are

made in a system configuration.

Design criteria

Early in the design phase of the B 5000 system the following

principles were established and adopted:

Program should be independent of its location and unmodified

as stored at object time; data should be independent of its location;

addressing of memory within a program should take advantage
of contextual addressing schemes to reduce redundancy; provisions

^Datamation, vol. 7, no. 5, pp. 28-32, May, 1961.

should be made for the generalized handling of indexing and

subroutines; a full complement of logical, relational and control

operators should be provided to enable efficient translation of

higher-level source languages such as ALGOL and COBOL; pro-

gram syntax should permit an almost mechanical translation from

source languages into efficient machine code; facilities should be

provided to permit the system to largely control its own operation;

input-output operations should be divorced from processing and

should be handled by an operating system; multi-programming and

true parallel processing (requires multiple processors) should be

facilitated, and changes in system configuration (within certain

broad limitations) should not require reprogramming.

System organization

The B 5000 system achieves its unique physical and operational

modularity through the use of electronic switches which function

logically like telephone crossbar switches. Figure 1 depicts the

basic organization of the system as well as showing a maximum

system.

Master control program

A master control program will be provided with the B 5000 system.

It will be stored on a portion of the magnetic drum. During normal

operations, a small portion of the MCP will be contained in core

memory. This portion will handle a large percentage of recurrent

system operations. Other segments of the MCP will be called in

from the magnetic drum, from time to time, as they are required

to handle less frequently-occurring events, or system situations.

Whenever the system is executing the master control program,
it is said to be in the Control State. All entries to the Control

State are made via 'interrupts.' A special operation is provided,

which can only be executed when the system is in the Control

State, to permit control to return to the object program it was

executing at the time the 'interrupt' occurred.

The following are a few typical occurrences which cause an

automatic 'interrupt' in the system: An input-output channel is

267



268 Part 3 The instruction-set processor level: variations in the processor Section 5 Processors with stack memories (zero addresses per instruction)

1 or 2

1 to 16

1or2

1or2

1

1

1

1



Chapter 22
|

Design of the B 5000 system 269

F



270 Part 3
|

The instruction-set processor level: variations in the processor Section 5 Processors with stack memories (zero addresses per instruction)

way around machine design, but they still must provide object

coding to accomplish the storage and recall functions. In brief,

conventionally designed computers, with or without automatic

programming aids, require the wasteful expenditure of program-

ming effort, memory capacity, and running time to overcome the

limitations of their internal organization.

The problem is attacked directly in the B 5000 by incorporation

of a "pushdown" stack, which completely eliminates the need for

instructions (coded or compiled) to store or recall intermediate

results.

In a B 5000 processor, the stack is composed of a pair of regis-

ters, the A and B registers, and a memory area. As operands are

picked up by the programs, they are placed in the A register. If

the A register already contains a word of information, that word

is transferred to the B register prior to loading the operand into

the A register. If the B register is also occupied by information,

then the word in B is stored in a memory area defined by an

address register S. Then the word in A can be transferred to B

and the operand brought into the A register. The new word coming
into the stack has pushed down the information previously held

in the registers. As each pushdown occurs, the address in the S

register is automatically increased by one. The information con-

tained in the registers is the last information entered into the stack;

the stack operates on a "last in-first out" principle. As information

is operated on in the stack, operands are eliminated from the stack

and results of operations are returned to the stack. As information

in the stack is used up by operations being performed, it is possible

to cause "pushups," i.e., a word is brought from the memory area

addressed by the S register, and the address in the S register is

decreased by one.

To eliminate unnecessary pushdowns and pushups, the A and

B registers both have indicators used for remembering whether

the registers contain information or are empty. When an operand
is to be placed in the stack and either of the registers is empty,
no pushdown into memory occurs. Also, when an operation leaves

one or both of the registers empty, no automatic pushup occurs.

Polish notation

The Polish logician, J. Lukasiewicz, developed a notation which

allows the writing of algebraic or logical expressions which do not

require grouping symbols and operator precedence conventions.

For example, parentheses are necessary as grouping symbols in

the expression A(B+ C) to convey the desired interpretation of the

expression. In the expression A+ B/C, the normal interpretation

is A+ (B/C), rather than (A + B)/C, because of the convention that

the / operator is of higher precedence than the + operator. The

right-hand Polish notation used in the B 5000 is based on placing

the operators to the right of their operands: A + B becomes AB+
in Polish notation. A+ B+ C can be written either as AB+ C-I-,

or as ABC + + . In the expression ABC + + ,
the first + operator

says to add the operands B and C. The second + operator says

to add A to the sum of B and C. Beturning to the first examples

above, A(B+ C) can be written as BC +Ax or ABC+ X in Polish.

The second example is written as BC/A+ or ABC/+ . The exten-

sion of Polish notation to handle equations is shown in the follow-

ing example:

Conventional notation Z= A(B- C)/(D+ E)

Polish notation ABC- xDE+ /Z=

The stack in use

To illustrate the functioning of the stack, two simple examples
are shown in Figs. 4 and 5. In the examples, the letters P, Q and

R represent syllables in the program that cause the operands P,

Q, and R to be picked up and placed in the stack. The symbols

+ and X represent syllables that cause the add and multiply

operations to occur. The two examples represent different ways
of writing P(Q+ R) in Polish notation. The first example in Fig.

4 does not require pushdowns or pushups. The second example,

shown in Fig. 5, requires a pushdown in the execution of the

syllable R, and a pushup in the execution of the syllable X The

columns in the table represent the contents of the various registers

after execution of the syllable listed in the first column.

Independence of addressing

One of the goals set in the design of the B 5000 was to make the

programs independent of the actual memory locations of both the

program itself and the data, in order to provide really automatic

Polish Notation QR + Px



Chapter 22 Design of the B 5000 system 271

Polish Notation PQR +



272 Part 3 The instruction-set processor level: variations in the processor Section 5 Processors with stack memories (zero addresses per instruction)

Word mode program

The word mode of the B 5000 processor has four types of syllables.

The syllable type is distinguished by the two high-order bits of

each 12-bit syllable. The types of syllable and the identification

bits are:

00—Operator Syllable

01—Literal Syllable

10—Operand Call Syllable

11—Descriptor Call Syllable

The first of these, the operator syllable, causes operations to be

performed. The remaining ten bits of the operator syllable are the

operation codes. There are approximately sixty different operations

in the word mode. For those operations requiring an operand or

operands, the processor checks for sufficient operands in the regis-

ters; if they are not there, pushups from the stack in memory occur

automatically.

The literal syllable is used for placing constants in the stack

to be used as operands. The ten bits of the literal syllable are

transferred to the stack. This allows the program to contain inte-

gers less than 1,024 as constants.

The operand call syllable, and the descriptor call syllable ad-

dress locations in the program reference table. The purpose of the

operand call syllable is to place an operand in the stack; the

purpose of the descriptor call syllable is to place the address of

an operand, a descriptor, in the stack. There are four situations

that arise, depending on the word read from the program reference

table.

1 The word is an operand.

2 The word is a descriptor containing the address of the

operand.

3 The word is a descriptor containing the base address of the

data area in which the operand resides.

4 The word is a program descriptor containing the base ad-

dress of a subroutine.

For (1), the operand call syllable has completed its action by

placing an operand in the stack. The descriptor call syllable will

cause the construction of a descriptor of the operand, replacing

the operand by the constructed descriptor.

For (2), the operand call syllable then reads the operand from

the cell addressed. The descriptor call syllable has completed its

action.

For (3), indexing of the descriptor by the item that is now the

second item in the stack occurs. For an operand call syllable, the

operand is obtained from the indexed address; for the descriptor

call syllable, action is complete after the indexing.

In the case of (4), subroutine entry occurs to the subroutine

addressed. A word of the three previous types may be left in the

registers upon return from the subroutine, in which instance the

actions described above will take place, depending upon the type
of syllable which initiated the subroutine.

Essentially, the four types of action that occur for an operand
call syllable are obtaining an operand directly, indirectly, from

an array, or by computation. Sometimes in the use of the call

syllables, it is not known which type of action will occur for a

particular syllable when the program is created. This is particu-

larly true for call syllables in subroutines.

Programs in the word mode consist of strings of syllables which

follow the rules of Polish notation. Variable length strings of call

syllables and literal syllables, which place items of information

in the stack, are followed by operator syllables which perform their

operations on information in the stack.

The indexing features of the B 5000 allow generalized indexing

and at the same time provide complete storage protection. Data

areas and program segments of different programs may be inter-

mingled, but a program is prevented from storing outside of its

data areas. The method of indexing allows any of the 1,024 words

of the program reference table to be considered index registers.

Multilevel indexing is provided, i.e., indices of arrays can them-

selves be elements of arrays.

The subroutine control provided in the B 5000 allows nesting

of subroutines—even recursive nesting (a subroutine is a subrou-

tine of itself)
—

arbitrarily deep. Dynamic allocation of storage for

parameter lists and temporary working storage simplify the use

of subroutines. Storage is automatically allocated and deallocated

as required.

Character mode program

In the character mode of the B 5000 Processor, there is only one

type of syllable, called the operator syllable. Program segments
in the character mode are constructed of strings of these syllables.

The character mode is designed to provide editing, formatting,

comparison, and other forms of data manipulation. In doing so,

the processor uses two areas of memory—the source and desti-

nation areas. When a program switches from word mode to char-

acter mode, two descriptors containing the base addresses of these

areas are supplied. The source area or destination area may be



Chapter 22
j

Design of the B 5000 system 273

changed at any time during character mode so that the program

may act on several areas.

The character mode operator syllable is split into two 6-bit

parts; the last part specifies the operation to be performed and

the first part specifies the number of times the operation is to be

performed. Operations are provided for the transferring, deletion,

comparison, and insertion of characters or bits. Also, there are

operations which allow the repetition of syllable strings. This is

quite useful for complex table look-up operations and for editing

information which contains repeated patterns.

Conclusion

The Burroughs B 5000 system has been designed as an integrated

hardware-software package which offers such benefits as savings

in the memory space required to store equivalent object programs;

multi-processing and parallel processing; and running identical

programs on systems with different size memories and different

system configurations with no loss in individual system efficiency.

References

LoneW61; BartR61; BockR63; CarlC63; MaheR61



Chapter 9

Design of the B 5000 System^

William Lonergan /Paul King

Computing systems have conventionally been designed via the

"hardware" route. Subsequent to design, these systems have been
handed over to programming systems people for the development
of'a programming package to facilitate the use of the hardware. In

contrast to this, the B 5000 system was designed from the start as

a total hardware-software system. The assumption was made that

higher level programming languages, such as ALGOL, should be
used to the virtual exclusion of machine language programming,
and that the system should largely be used to control its own
operation. A hardware-free notation was utilized to design a

processor with the desired word and s\ mbol manipulative capabil-
ities. Subsequently this model was translated into hardware

specifications at which time cost constraints were considered.

indexing and subroutines; a full complement of logical, relational

and control operators should be provided to enable efficient

translation of higher-level source languages such as ALGOL and

COBOL; program syntax should permit an almost mechanical

translation from source languages into efficient machine code;
facilities should be provided to jjermit the system to largely
control its own operation; input-output operations should be
divorced from processing and should be handled by an operating

system; multi-programming and true parallel processing (requires

multiple processors) should be facilitated, and changes in system

configuration (within certain broad limitations) should not require

reprogramming.

System Organization

The B 5000 system achieves its unique physical and operational

modularity through the use of electronic switches which function

logically like telephone crossbar switches. Figure 1 depicts the

basic organization of the system as well as showing a maximum
system.

Design Objectives

The fundamental design objective of the B 5000 system was the

reduction of total problem through-put time. A second major
objective was facilitation of changes both in programs and system
configurations. Toward these objectives the following aspects of

the total computer utilization problem were considered:

Statement of problems in higher-level machine-independent
languages; efficiency ofcompilation of machine language; speed of

compilation of machine language; program debugging in higher-
level languages; problem set-up and load time; efficiency of

system operation; ease of maintaining and making changes in

existing programs, and ease of reprogramming when changes are

made in a system configuration.

Design Criteria

Farly in the design phase of the B 5000 system the following

principles were established and adopted:

Program should be independent of its location and unmodified
as stored at object time; data should be independent of its

location; addressing of memory within a program should take

advantage of contextual addressing schemes to reduce redundan-

c\; provisions should be made for the generalized handling of

'Datamation, vol. 7, no. 3, May 1961, pp. 28-.32.

lUlaster Control Program

A master control program will be provided with the B 5000

system. It will be stored on a portion of the magnetic drum.

During normal operations, a small portion of the MCP will be
contained in core memory. This portion will handle a large

percentage of recurrent system operations. Other segments of the

MCP will be called in from the magnetic drum, from time to time,
as they are re(juired to handle less frequently-occurring events, or

system situations. Whenever the system is executing the master

control program, it is said to be in the Control State. All entries to

the Control State are made via "interrupts.
"
A special operation is

provided, which can only be executed when the system is in the

Control State, to permit control to return to the object program it

was executing at the time the "interrupt" occurred.

The following are a few typical occurrences which cause an

automatic "interrupt" in the system: An input-output channel is

available, an input-output operation has been completed or an

indexing operation was attempted which violated the storage

protection features built into the system.
In addition to processing interrupt conditions, the master

control program handles fundamental parts of the total system

operation such as the initiation of all input-output operations,

linking of input-output areas when required, file control, alloca-

tion of memory, scheduling of jobs (priority ratings, system

requirements of each object program, and the present system

configuration are considered), maintenance of an operations log
and maintenance of a system description.

1S»



130 Part 1 Fundamentals Section 3
| Computers of Historical Significance

1 or 2

1 to 16

lor 2

lor 2

1

1

1

1



Chapter 9 Design of the B 5000 System 131

on how the program references the data word. If the data word is a

single sariable and not an element of an array, the flag identifies

the word as being operand, that is, a data word. If the word is an

element ofan array, the flag may be used to identify this particular

element as an element of data which is not to be processed by the

normal program (for example, a boundary point in mesh calcula-

tions).

When operating in the character mode, each data word consists

of eight alphanumeric characters as illustrated in Fig. 3. Programs
in the character mode can address any character in a word. Fields

can start at any position in a word. A processor in a single

operation can operate on fields of any length up to 63 characters

long; operations on fields of greater length can easily be pro-

grammed. For example, two 57 character fields could be com-

pared in a single operation.

There are two instances when the character mode operates with

words of the type used in the word mode. Operations are

provided in the character mode for converting numeric informa-

tion in the alphanumeric representation to the standard word type

of the word mode and vice versa. In both of these instances, the

length of the alphanumeric fields being converted to or from the

word mode type of word can be no greater than eight characters

long. Again, conversion of fields of greater length can easily be

programmed.
The purpose of the word mode is to provide the advantages of

high-speed parallel operations, floating-point abilities and the

inherent information density possible in a binary- machine. In the

first case, it is economically feasible to provide parallel operations

in a word machine; the cost of parallel operations on variable

length fields would be prohibitive. In the last case, a given size

memor\' can contain over twenty percent more numeric informa-

tion if that information is expressed in binar>' rather than

binary-coded decimal, and over eighty percent more information

than can be expressed in six-bit alphanumeric representation.

The purpose of the character mode is to provide editing,

scanning, comparison and data manipulative abilities (although

addition and subtraction are also provided). The type of editing

facilities provided obviate the need for the artificial "add-shift-

extract-store" type of editing. For example, operations are

provided for generalized insertion of editing symbols (such as

blanks, decimal points, floating dollar signs, etc.) and for the

substitution or suppression of any unwanted characters. For those

interested in the new area of Information Processing Languages,
the character mode is particularly well suited to list structures.

First

Char

acter



132 Part 1 Fundamentals Section 3 Computers of Historical Significance

information is operated on in the stack, operands are eliminated

from the stack and results of operations are returned to the stack.

As information in the stack is used up by operations being

performed, it is possible to cause "pushups," i.e., a word is

brought from the memory area addressed by the S register, and

the address in the S register is decreased by one.

To eliminate unnecessary pushdowns and pushups, the A and B

registers both have indicators used for remembering whether the

registers contain information or are empty. When an operand is to

be placed in the stack and either of the registers is empty, no

pushdown into memory occurs. Also, when an operation leaves

one or both of the registers empty, no automatic pushup occurs.

Polish Notation

Polish Notation QR + Px

Syllable

Executed



Chapter 9
|
Design of the B 5000 System 133

then possible to load all the segments of a program or programs
onto the drum at load time and call in the segments to any
available space in core memory as needed during run time. If

some segment of a program is overlaid by a subsequent segment
of a program, the segment of the program destroyed in core

memory is still available on the drum to be called in again if

needed.

Due to the very high program densities in the B 5000, the

availability of high capacity drum storage on every system and

automatic segmentation, a minimum B 5000 system has the

capacity for a program or programs equivalent to approximately

40,000 to 60,000 single address instructions. Of course, if an

installation normally ran such large programs, the system would

very likely not be a minimum system. However, the installation

having an occasional need to run very large programs is not

prevented from doing so by storage capacity.

Processing speed now becomes a function of the size of core

memory. If large programs are run in a system with small core

memory, time will be consumed in recalling program segments
from drum to core. If the core memory is expanded, less time will

be spent in such activity and the program or programs will be

speeded up, and no reprogramming is required.

memory, automatic entry to the Master Control Program
will occur and the desired segment will then be brought in

from the drum. Notice that in moving from one segment to

another, it is not necessary to know whether the segment to be

entered is currently in core memory. Branching within a program
segment is self-relative, i.e., the distance to jump either forward

or backward is specified, not the address to be jumped to.

As a result of keeping all actual addresses of data and program in

the PRT, the program itself does not contain any addresses, but

only references to the PRT. To specify one of the 1,024 positions

in the PRT requires only 10 bits which contributes greatly to the

high program density achieved in the B 5000. Since the PRT is

relocatable, references to the PRT contained in the program are to

relative locations, thus completely freeing the program from any

dependence whatsoever on actual memory locations.

The Word Mode Program

The word mode of the B 5000 processor has four types of syllables.
The syllable type is distinguished by the two high-order bits of

each 12-bit syllable. The types of syllable and the identification

bits are:

Program Reference Table

The means ofachieving independence ofaddressing in the B 5000

is called a Program Reference Table (PRT). The PRT is a 1,024

word relocatable area in memory used primarily for storing

control words that locate data areas or program segments. There

are also control words for describing input-output operations.

These control words, called descriptors, contain the base address

and size of data areas, program segments and input-output

operation areas. A descriptor specifying an input-output operation _

also contains the designation of the unit to be used and the type of

operation to be performed. Operands may also be stored in the

PRT, providing direct access to single values such as indices,

counts, control totals, etc.

In the word mode of the B 5000, every item of data is

considered to be either a single value or an element of an array of

data. If it is a single value, it will be obtained directly by indexing
a descriptor contained in the PRT.

Program segments are described by program descriptors. In

addition to core base address, the program descriptor contains the

location in drum storage of the program segment and an indication

if the program segment is currently in core memory starting at the

address specified in the descriptor. Entry to a program segment is

made via its program descriptor contained in the PRT. If the pro-

gram segment is in core memory, entry will be made to the program

segment. However, when entry is attempted to a program seg-

ment whose descriptor indicates that the segment is not in core

00—Operator Syllable

01—Literal Syllable

10—Operand Call Syllable

11—Descriptor Call Syllable

The first of these, the operator syllable, causes operations to be

performed. The remaining ten bits of the operator syllable are the

operation codes. There are approximately sixty different opera-
tions in the word mode. For those operations requiring an

operand or operands, the processor checks for sufficient operands
in the registers; if they are not there, pushups from the stack in

memory occur automatically.

The literal syllable is used for placing constants in the stack to

be used as operands. The ten bits of the literal syllable are

transferred to the stack. This allows the program to contain

integers less than 1,024 as constants.

The operand call syllable, and the descriptor call syllable

address locations in the program reference table. The purpose of

the operand call syllable is to place an operand in the stack; the

purpose of the descriptor call syllable is to place the address of an

operand, a descriptor, in the stack. There are four situations that

arise, depending on the word read from the program reference

table.

1 The word is an operand.

2 The word is a descriptor containing the address of the

operand.



134 Part 1 Fundamentals Section 3
I
Computers of Historical Significance

3 The word is a descriptor containing the base address of the

data area in which the operand resides.

4 The word is a program descriptor containing the base

address of a subroutine.

For (1), the operand call syllable has completed its action by

placing an operand in the stack. The descriptor call syllable will

cause the construction of a descriptor of the operand, replacing

the operand by the constructed descriptor.

For (2), the operand call syllable then reads the operand from

the cell addressed. The descriptor call syllable has completed its

action.

For (3), indexing of the descriptor by the item that is now the

second item in the stack occurs. For an operand call syllable, the

operand is obtained from the indexed address; for the descriptor

call s\Ilable, action is complete after the indexing.

In the case of (4), subroutine entry occurs to the subroutine

addressed. A word of the three previous types may be left in the

registers upon return from the subroutine, in which instance the

actions described above will take place, depending upon the type

of syllable which initiated the subroutine.

Essentially, the four types of action that occur for an operand
call syllable are obtaining an operand directly, indirectly, from an

array, or by computation. Sometimes in the use of the call

syllables, it is not known which type of action will occur for a

particular syllable when the program is created. This is particular-

ly true for call syllables in subroutines.

Programs in the word mode consist of strings of syllables which

follow the rules of Polish notation. Variable length strings of call

syllables and literal syllables, which place items of information in

the stack, are followed by operator syllables which perform their

operations on information in the stack.

The indexing features of the B 5000 allow generalized indexing

and at the same time provide complete storage protection. Data

areas and program segments of different programs may be

intermingled, but a program is prevented from storing outside of

its data areas. The method of indexing allows any of the 1,024

words of the program reference table to be considered index

registers. Multilevel indexing is provided, i.e., indices of arrays

can themselves be elements of arrays.

The subroutine control provided in the B 5000 allows nesting of

subroutines—even recursive nesting (a subroutine is a subroutine

of itself) arbitrarily deep. Dynamic allocation of storage for

parameter lists and temporary working storage simplify the use of

subroutines. Storage is automatically allocated and deallocated as

required.

Character Mode Program

In the character mode of the B 5000 Processor, there is only one

type of syllable, called the operator syllable. Program segments in

the character mode are constructed of strings of these syllables.

The character mode is designed to provide editing, formatting,

comparison, and other forms of data manipulation. In doing so,

the processor uses two areas of memory—the source and destina-

tion areas. When a program switches from word mode to

character mode, two descriptors containing the base addresses of

these areas are supplied. The source area or destination area may
be changed at any time during character mode so that the

program may act on several areas.

The character mode operator syllable is split into two 6-bit

parts; the last part specifies the operation to be performed and the

first part specifies the number of times the operation is to be

performed. Operations are provided for the transferring, deletion,

comparison, and insertion of characters or bits. Also, there are

operations which allow the repetition of syllable strings. This is

quite usefiil for complex table look-up operations and for editing

information which contains repeated patterns.

Conclusion

The Burroughs B 5000 system has been designed as an integrated

hardware-software package which offers such benefits as savings

in the memory space required to store equivalent object pro-

grams; multi-processing and parallel processing; and running
identical programs on systems with different size memories and

different system configurations with no loss in individual system

efficiency.

References

Lonergan and King [1961]; Barton [1961]; Bock [1963]; Carlson

[1963]; Maher [1961].


