
Chapter 21

A Productive Implementation
of an Associative Array Processor:

STARANi

Jack A. Rudolph / Kenneth E. Batcher

Introduction [Rudolph]

The associative or content-addressed memory has been an

attractive concept to computer designers ever since Slade and
McMahon [1957] described a "catalog" memory. Associative

memories offered relief from the continuing problem presented

by the typical coordinate-addressed memory which requires that

an "address" be obtained or calculated before data stored at that

address may be retrieved. The associative memory could acquire
in a single memory access any data from memoy without

pre-knowledge of its location. Ordered files and sorting operations
could be eliminated. Unfortunately, early associative memories
were expensive, hence none found their way as the "main frame"

memory into any commercial computer design.
The organization of an associative memory (AM) requires that

each n-bit physical word of the memory be connected to a

dedicated processing element (PE) which performs the compare
function between a bit read non-destructively from the word and
a corresponding input bit from a query word. The PE's for all

words are driven by a central controller, thus a single query bit is

simultaneously compared with the corresponding stored bit in

every word of the AM. With the ability to simultaneously write

back the state of each PE into a specified bit position of each word
it became possible to perform bit-serial arithmetic between fields

of bits within each physical memory word. An array of associative

memory words could then be viewed as an array of simple

computers—^an associative array processor
—with all the simple

computers in the array simultaneously executing the same instruc-

tion obtained from a common control unit as is done in the more

complex ILLIAC-IV design.

An alternative AP design provides a PE at each bit of each

physical memory word. This design, though complex in terms of

logic and interconnection requirements, permits a simultaneous

compare of all bits in a query word with all bits of the memory
word rather than the serial-by-bit operation described earlier.

Due to the early high cost of semi-conductor memory and logic

'This chapter is compiled from Rudolph [1972], Proc. FJCC, 1972,

pp. 229-241; and Batcher [1974], Proc. NCC, 1974, pp. 405-410.

elements none of the many associative processor designs de-
scribed in the literature were attractive enough to warrant

development. However, it has now become commercially feasible

to construct a computing system embodying "main frame"

memory content addressability coupled with array arithmetic

capability operating under a more or less conventional stored

program control system.

Several proprietary versions of the associative processor (AP)
are being developed. The first working engineering model known
to the author, built for USAF by Goodyear Aerospace Corpora-
tion, was demonstrated during a Tri-Service contract review in

June, 1969 at Akron, Ohio [Fulmer and Meilander, 1970]. The
same machine, modified to include a larger instruction memory,
was loaned by USAF in 1971 to the FAA for conflict detection tests

in a live air traffic control terminal environment at Knoxville,
Tennessee operating in a multi-computer configuration with a
Univac 1230 conventional computer [Rudolph, Fulmer and Mei-

lander, 1971]. The original test objectives were achieved by
December, 1971 and additional experiments involving terrain

avoidance processing were completed successfully in June, 1971.

The lessons learned in programming and testing the USAF AP
model resulted in a new design called STARAN S which was
committed to production in 1971. This first commercial AP was

publicly introduced in a series of live demonstrations in May, 1972
at the TRANSPO exhibit in Washington, D.C. and in June, 1972
at Boston, Mass.

This paper describes STARAN S and its programming language,
provides examples of its applications, and discusses measures of
AP cost-effectiveness.

STARAN Description

A configuration diagram ofSTARAN S is shown in Fig. 1. Studies
have shown that initial uses of AP's would be weighted toward
real-time applications involving interface with a wide variety of

sensors, conventional computers, signal processors, interactive

displays, and mass storage devices. To accommodate all such
interfaces the STARAN system was divided into a standardized
main frame design and a custom interface unit. A variety of I/O

options implemented in the custom interface unit includes conven-
tional direct memory access (DMA), buffered I/O (BIO) channels,
external function channels (EXF) and a unique interface called

parallel I/O (PIO).

A top-cut diagram of the STARAN main frame is shown in Fig.
2. It consists of a conventionally addressed control memory for

program storage and data buffering, a control logic unit for

sequencing and decoding instructions from control memory and
from one to thirty-two modular AP arrays. A typical AP array is

shown in Fig. 2.

To accommodate both bit-slice accesses for associative process-

317



318 Part 2
{ Regions of Computer Space Section 3

I Concurrency: Single-Processor System

I DWA J

STARAN
ASSOCIATIVE

ARRAY

PROCESSOR

MAIN
FRAME

CUSTOM

INTERFACE
UNIT

DIRECT
MEMORY

. ACCESS
n

BUFFERED
INPUT/
OUTPUT

EXTERNAL t

FUNCTION I

COMMANDS J

TYPICAL

USEfl

EOU I PMENT

•COMPUTERS
• PERiPHERAl
• DISPLAYS

• SENSORS

I I

Fig. 1 . STARAN system configuration.

For many applications, the MDA memory is treated as a square

array of bits, 256 words with 256 bits in each word. The bit-sUce

access mode (Fig. 2a) is used in the associative operations to

access one bit of all words in parallel, while the word acess mode

(Fig. 2b) is used in the I/O operations to access several or all bits of

one word in parallel.

The MDA memory structure is not limited to a square array of

256 by 256. For example, the data may be formatted as records

with 256 8-bit bytes in each record. Thirty-two such records can

be stored in an MDA memory and accessed several ways. To input

and output records, one can access 32 consecutive bytes of a

record in parallel (Fig. 3a). To search key fields of the data, one

can access the corresponding bytes of all records in parallel (Fig.

3b). To search a whole record for the presence of a particular byte,

one can access a bit from each byte in parallel (Fig. 3c).

The MDA memories in the STARAN array modules are bipolar.

They exhibit read cycle times of less than 150 nsec and write cycle

times of less than 250 nsec.

ing and word-shce accesses for STARAN input/output (I/O), the

data are stored in a multi-dimensional access (MDA) memory (Fig.

2).
'

It has wide read and write busses for parallel access to a large

number (256) ofmemory bits. The write mask bus allows selective

writing of memory bits. Memory accesses (both read and write

accesses) are controlled by the address and access mode control

inputs; the access mode selects a stencil pattern of 256 bits, while

the address positions the stencil in memory.

'The passage beginning with this paragraph is from Batcher [1974].

JkSSOCIATIve
PROCESSOR

ASSOCIATIVi PROCESSOR ARRAY

lO/mOM CONTROL

^^



Chapter 21 A Productive Implementation of an Associative Array Processor: STARAN 319

STARAN Array Modules

A STARAN array module (Fig. 4) contains an MDA memory

communicating with three 256-bit registers (M, X, and Y) through

a flip (permutation) network. One may think ofan array module as

having 256 small processing elements (PE's), where a PE contains

one bit of the M register, one bit of the X register, and one bit of

the Y register.

The M register drives the write mask bus of the MDA memory
to select which of the MDA memory bits are modified in a

masked-write operation. The MDA memory also has an

unmasked-write operation that ignores M and modifies all 256

accessed bits. The M register can be loaded from the other

components of the array module.

In general, the logic associated with the X register can perform

any of the 16 Boolean fiinctions oftwo variables; that is, if Xi, is the

state of the ith X-register bit, and fi is the state of the tth flip

network output, then:

x,^ Mx^. /) (t
= 0, 1, . . . , 255)

where (j)
is any Boolean function of two variables. Similarly, the

logic associated with the Y-register can perform any Boolean

function:

!/.^<J)(!/„y;)(i
= 0,l, 255)

where
t/,

is the state of the ith Y-register bit. The programmer is

given the choice of operating X alone, Y alone, or X and Y

together.

IfX and Y are operated together, the same Boolean function, (}>,

is applied to both registers:

Xi<-<|> (Xi, /)

!/iM> iVi, fi)

The programmer also can choose to operate on X selectively,

using Y as a mask:

Xi<-^ (xi, fi) (where yi
=

1)

Xj<— Xi (where (/j
=

0)

Another choice is to operate on X selectively while operating on



320 Part 2
I Regions of Computer Space Section 3 Concurrency: Single-Processor System

Xj-«-<|> (*i. fi)

Ii«— Xi

Vi*-^ (yufi)

(where yt
=

1)

(where yi
= 0)

The states of X and Y are now:

x,=c ik

In this case, the old state ofY (before modification by <i>) is used

as the mask for the X operation.

For a programming example, the basic loop of an unmasked add

fields operation is selected. This operation adds the contents of a

Field A of all memory words to the contents of a Field B of the

words and stores the sum in a Field S of the words. For n-bit

fields, the operation executes the basic loop n times. During each

execution of the loop, a bit-slice (a) of Field A is read from

memory, a bit-slice (b) of Field B is read, and a bit-slice (s) of Field

S is written into memory. The operation starts at the least

significant bits of the fields and steps through the fields to the

most significant bits. At the beginning of each loop execution, the

carry (c) from the previous bits is stored in Y, and X contains

zeroes:

x,=0

yi=Ci

The loop has four steps:

Step 1: Read Bit-slice a and exclusive-or (©) it to X selectively and

also to Y:

x,«-x,®!/,aj

The states of X and Y are now:

Xi=a,c,

Step 2: Read Bit-slice b and exclusive-or it to X selectively and also

toY;

Xi*—x,®yibi

yi<r-y,®b,

Registers X and Y now contain the carry and sum bits:

Xi= aiCt®aibi®biCi =c'i

!/(=a,®i>,©Ci=Si

Step 3: Write the sum bit from Y into Bit-slice s and also

complement X selectively:

Si<-yi

yi=Si

Step 4: Read the X-register and exclusive-or it into both X and Y:

I,«—X,©Xi

yi<^y,®Xi

This clears X and stores the carry bit into Y to prepare the

registers for the next execution of the loop:

Xi=0

yi=c'i

Step 3 takes less than 250 nsec, while Steps 1, 2, and 4 each take

less than 130 nsec. Hence, the time to execute the basic loop once

is less than 700 nsec. If the field length is 32 bits, the add

operation takes less than 22.4 microsec plus a small amount of

setup time. The operation performs 256 additions in each array

module. This amounts to 1024 additions, if four array modules are

enabled, to achieve a processing power ofapproximately 40 MIPS

(million-instructions-per-second).

The array module components communicate through a network

called the flip network. A selector chooses a 256-bit source item

from the MDA memory read bus, the M register, the X register,

the Y register, or an outside source. The bits of the source item

travel through the flip network, which may shift: and permute the

bits in various ways. The permuted source item is presented to

the MDA memory write bus, M register, X register, Y register,

and an outside destination.

The permutations of the flip network allow inter-PE communi-

cation, A PE can read data from another PE either directly from

its registers or indirectly from the MDA memory. One can

permute the 256-bit data item as a whole or divide it into groups of

2, 4, 8, 16, 32, 64, or 128 bits and permute within groups.

The permutations allowed include shifts of 1, 2, 4, 8, 16, 32, 64,

or 128 places. One also can mirror the bits of a group (invert the

left-right order) while shifting it. A positive shift of mirrored data

is equivalent to a negative shift of the unmirrored data. To shift

data a number of places, multiple passes through the flip network

may be required. Mirroring can be used to reduce the number of

passes. For example, a shift of31 places can be done in t\\o passes:

mirror and shift 1 place on the first pass, and then remirror and

shift 32 places on the second pass.

The flip network permutations are particularly useful for Fast

Fourier transforms (FFT's). A 2" point FFT requires n steps,

where each step pairs the 2" points in a certain way and operates

on the two points of each pair arithmetically to form two new



Chapter 21 A Productive Implementation of an Associative Array Processor: STARAN 321

points. The flip network can be used to rearrange the pairings

between steps. Bitonic sorting [Batcher, 1968] and other algo-

rithms [Stone, 1971] also find the permutations ofthe flip network

useful.

Each array module contains a resolver reading the state ofthe Y

register. One output of the resolver (activity-or) indicates if any Y
bit is set. If some Y bits are set, the other output of the resolver

indicates the index (address) of the first such bit. Since the result

of an associative search is marked in the Y register, the resolver

indicates which if any words respond to the search.

Other STARAN Elements

Figure 3 is a block diagram of a typical STARAN system with four

array modules. Each array module contains an assignment switch

that connects its control inputs and data inputs and outputs to AP
(associative processor) control or the PIO (parallel input/output)

module.

The AP control unit contains the registers and logic necessary to

exercise control over the array modules assigned to it. It receives

instructions from the control memory and can transfer 32-bit data

items to and from the control memory. Data busses communicate

with the assigned array modules. The busses connect only to

32-bits of the 256-bit-wide input and output ports of the array

modules (Fig. 4), but the permutations of the array module flip

networks allow communication with any part of the array. The AP
control sends control signals and MDA memory addresses and

access modes to the array modules and receives the resolver

outputs from the array modules.

Registers in the AP control include:

Fig. S. Typical STARAN blocit diagram.

1 An instruction register to hold the 32-bit instruction being
executed.

2 A program status word to hold the control memory address

of the next instruction to be executed and the program
priority level.

3 A common register to hold a 32-bit search comparand, an

operand to be broadcast to the array modules, or an

operand output from an array module.

4 An array select register to select a subset of the assigned

array modules to be operated on.

5 Four field pointers to hold MDA memory addresses and
allow them to be incremented or decremented for stepping

through the bit-slices of a field, the words of a group, etc.

6 Three counters to keep track ofthe number of executions of

loops, etc.

7 A data pointer to allow stepping through a set of operands
in control memory.

8 Two access mode registers to hold the MDA memory access

modes.

The parallel input/output (PIO) module contains a PIO flip

network and PIO control unit (Fig. 5). It is used for high
bandwidth I/O and inter-array transfers.

The PIO flip network permutes data between eight 256-bit

ports. Ports through 3 connect to the four array modules through
bufier registers. Port 7 connects to a 32-bit data bus in the PIO
control through a fan-in, fan-out switch. Ports 4, 5, and 6 are spare

ports for connections to high bandwidth peripherals, such as

parallel-head disk stores, sophisticated displays, and radar video

channels. The spare ports also could be used to handle additional

array modules. Higli bandwidth inter-array data transfers up to

1024 bits in parallel are handled by permuting data between Ports

0, 1, 2 and 3. Array I/O is handled by permuting data between an

array module port and an I/O port. The PIO flip network is

controlled by the PIO control unit.

The PIO control unit controls the PIO flip network and the

array modules assigned to it. While AP control is processing data

in some array modules the PIO control can input and output data

in the other array modules. Since most of the registers in the AP
control program are duplicated in PIO control; it can address the

array modules associatively.

The control memory holds AP control programs, PIO control

programs, and microprogram subroutines. To satisfy the high
instruction fetch rate of the control units (up to 7.7 million

instructions per second), the control memory has five banks of

bipolar memory with 512 32-bit words in each bank. Each bank is

expandable to 1024 words. To allow for storage of large programs,
the control memory also has a 16K-word core memory with a cycle



322 Part 2
I
Regions of Computer Space Section 3

|
Concurrency: Single-Processor System

time of 1 microsec. The core memory can be expanded to 32K

words. Usually the main program resides in the core memory, and

the system microprogram subroutines reside in bipolar storage.

For flexibility, users are given the option of changing the storage

allocation and dynamically paging parts of the program into

bipolar storage.

A Digital Equipment Corporation (DEC) PDP-11 minicomput-

er is included to handle the peripherals, control the system from

console commands, and perform diagnostic functions. It is called

sequential control to differentiate it from the STARAN parallel

processing control units. The sequential control memory of 16K

16-bit words is augmented by a 8Kx 16-bit "window" into the

main control memory. By moving the window, sequential control

can access any part of control memory. The window is moved by

changing the contents of an addressable register.

The STARAN peripherals include a disk, card reader, line

printer, paper-tape reader/punch, console typewriter, and a

graphics console.

Synchronization of the three control units (AP control, sequen-

tial control, and PIO control) is maintained by the external

function (EXF) logic. Control units issue commands to the EXF

logic to cause system actions and read system states. Some of the

system actions are: AP control start/stop/reset, PIO control

start/stop/reset, AP control interrupts, sequential control inter-

rupts, and array module assignment.

The design of STARAN allows it to be connected to other

computers (host computers) as a special-purpose peripheral. The

interface can take many difiFerent forms. One could connect to an

I/O channel of the host. Alternately, one could connect to the

memory bus of the host so that it can address STARAN memory
directly and/or allow STARAN to address its memory directly. For

example, the STARAN at Rome Air Development Center [Feld-

man] is connected to an I/O channel of a Honeywell HIS-645

computer. At Goodyear Aerospace, another STARAN is interfaced

to the direct memory access port of an SDS 2 5 computer.

Associative Processor Software [Rudolph]

The STARAN software system consists of a symbolic assembler

called APPLE (for Associative Processor Programming Z^anguagE),

and a set of supervisor, utility, debug, diagnostic, and subroutine

library program packages. An associative compiler has not yet

been developed for STARAN. Early applications of STARAN must

therefore be accomplished by assembly language programmers.

Programmers find APPLE a convenient language to use, however,
and write significantly fewer instructions to program a suitable

application on STARAN than would have to be written for a

conventional machine since APPLE'S command structure reflects

the content addressability and processing characteristics of the

associative arrays the language controls. For example, although

the programmer must explicitly define his record formats via field

definition statements, he usually need not be concerned with

physical record location in the arrays. Also, he need not order data

tables by key, since any desired datum may be located in one

parallel search operation. A third example ofAPPLE convenience

is the elimination of the conventional programming loop which

requires advancing a list pointer, examination of an exit criterion,

and making a decision for each pass over diSerent data sets. The

APPLE array instruction processes all pertinent data sets simulta-

neously and does not require initialization of an index register

with the count of data sets to be processed.

Internally, all software packages with the exception of array

diagnostics and the subroutine library operate on the SC. In the
-^

minimum STARAN configuration the software packages are
;

furnished on paper tape for input via the SC tape reader. Where
STARAN is installed with interface to a conventional computer

system in a multicomputer configuration, APPLE and supporting

software can be input to STARAN using the existing peripherals of

the conventional computer.
The usual load, store, test, branch, and control instructions

required for sequential execution of an application program are

present in APPLE. Where APPLE departs most from convention-

al assemblers is in the search and arithmetic array instructions. A

representative set of fixed point standard instructions is shown in .

Table 1 with the approximate timing formulas. Hardware floating

point is available on special order.

Associative search and arithmetic instructions are of two types,

"argument register" and "field." In the first an operand (32 bits

max) stored in the argument register of AP control is used as the
'

search or arithmetic argument against a specified field in all array

words simultaneously. Instructions of the field type perform ;

similar operations but between specified fields within each array

word.

Instruction execution times are dependent upon n, the number

of bits in the operands (fields) involved in the instruction

executions, but are not functions of the number of operands being

processed, which relationship is exactly the opposite of that

existing in the conventional computer. This characteristics depen-
dence of execution time on operand or field length is a conse-

quence of the word-parallel bit-serial design of the associative

arrays discussed earlier.

From the programmer's point of view. Table 1 has interesting

connotations, some of which are:

1 In real-time applications the programmer can easily time

out his initial flow diagram since programming loops in the

conventional sense are eliminated. This single consequence
of associative processing can save much of the reprogram-

ming effort invariably found necessary during the testing

phase of conventional attacks on real-time problems.

2 He can conserve on execution time (and array memory



Chapter 21 A Productive Implementation of an Associative Array Processor: STARAN 323

Table 1 Typical APPLE Associative Fixed Point Instructions



324 Part 2
I
Regions of Computer Space Section 3

j
Concurrency: Singie-Processor System



Chapter 21 A Productive Implementation of an Associative Array Processor: STARAN 325

PROBLEM: a; .bj.cj .dj ,ej .fj ARE 20 BIT OPERANDS.
FORM PRODUCTS Oibj, Cjdj , ejfi FOR n DATA SETS

METHOD A - ALLOCATE ONE ARRAY WORD (PROCESSING ELEMENT) PER DATA SET

FIELD NAME -^ABCDEF G H J

FILE

SET IDENT \X \
ACTIVE

Oi bi c.
1

<l| <| fi oi br Ci i. .1 fi g^^ i



326 Part 2
I
Regions of Computer Space Section 3

|
Concurrency: Single-Processor System

. . „



Chapter 21 A Productive Implementation of an Associative Array Processor: STARAN 327



32S Part 2
I
Regions of Computer Space Section 3

|
Concurrency: Single-Processor System

LIE, FAST TRAFFIC SEVEN O'CLOCK, 4 MILES, ALTITUDE
123 HUNDRED, NORTHEAST BOUND."

Top level flow charts for four of the associative programs, used

in the demonstration are shown in Figs. 11, 12, 13, and 14. A
detailed report is in preparation describing all of the ATC

programs used in this demonstration, but some comments on the

four flow charts shown may be of interest.

Live target tracking (Fig. 11) is performed in two dimensions

(mode C altitude data was not available) using both radar and

beacon target reports to track all aircraft. Incoming reports are

correlated against the entire track file using five correlation box

sizes, three of which vary in size with range. Any incoming report

which does not correlate with an existing track is used to

automatically initiate a new tentative track. An aircraft track must

correlate on two successive scans and have a velocity exceeding 21

knots to quahfy as an established track and must correlate on

three successive scans to achieve a track firmness level high

enough to be displayed to a controller as a live target. There are

provisions for 15 levels of track firmness including 7 "coast" levels.

f ENTER "^



Chapter 21 A Productive Implementation of an Associative Array Processor: STARAN 329

cowvre
lOTERCEPT TIMES

REF VS ALL

COMFAraS

ALL imracipis
TIMZS AlfD

LOOK-AUCAD
praioD

APPROPRIATE
CONFUCIS

TAGS

Fig. 13. Conflict prediction.

forced by the conflict resolution program to simulate pilot

response to a ground controller's collision avoidance maneuver

command. Targets may have velocities between and 600 knots,

altitudes between 100 and 52,000 feet, and altitude rates between

and 3000 feet per minute.

The conflict prediction program sequentially selects up to 100

operator-designated "controlled" or "AVA" aircraft, called refer-

ence tracks in Fig. 13, and compares the future position of each

during the look-ahead period with the future positions of all live

and simulated aircraft and also to the static position of all terrain

obstacles. Any detected conflicts cause conflict tags in the track

word format to be set, making the tracks available for conflict

display processing. A turn detection program not shown opens up
the heading uncertainty for turning tracks.

Display processing (Fig. 14) is a complex associative program
which provides a variety of manage-by-exception display options

and automatically moves operator-assigned alphanumeric identifi-

cation display data blocks associated with displayed aircraft so as to

prevent overlap of data blocks for aircraft in close proximity to one

another on the display screen. Sector control, hand ofi', and

quick-look processing is provided.

SEND A AND
B WORDS TO
BUKKEH

Fig. 14. Display processing.

All programs listed in Table 2 were successfully demonstrated

at three difierent locations in three successive weeks, using live

radar data from the Suitland radar at each location. The associative

programs were operated directly out of the bulk core and page

portions of control memory since there was no requirement, in

view of the low 400 aircraft density involved, for the higher speed
instruction accesses available from the page memories. At inter-

vals during the demonstration all programs were demonstrated at

a speed-up of20 times real time with the exception ofthe live data

and AVA programs which, being real-time, cannot be speeded up.

Timing data for the individual program segments will be available

in the final report. The entire program executed in less than 200

milliseconds per 2 second radar sector scan or in less than 10

percent of real time. All programming eflbrt was completed in 4V^

months with approximately 3 man-years of efibrt. This was the

first and as of this writing the only actual demonstration of a

production associative processor in a live signal environment

known to the author. It was completed in June, 1972. Other actual



330 Part 2
j
Regions of Computer Space Section 3

j
Concurrency: Single-Processor System

applications currently in the programming process at Goodyear
involve sonar, electronic warfare and large scale data management

systems. These will be reported as results are achieved.

Fast Fourier Transform^

The Fast Fourier Transform (FFT) is a basic operation in digital

signal processing which is being widely used in the real-time

processing of radar and sonar signals. The structure of the FFT

algorithm is such that it can be segmented into many similar

concurrent operations. Parallel implementation of the FFT can

provide orders of magnitude speed increases over sequential

computer execution times. The organization of STARAN lends

itself to efficient manipulation of data in the FFT.

The Air Force supplied real radar data (on tapes) to GAG to be

transformed by the STARAN system. A 512-point, 16-bit FFT was

performed on this real data in 2.7 milliseconds using only two

MDA arrays. A 1024-point transform on real input data could be

performed in about 3.0 milliseconds using all four arrays available

at GAC's STARAN evaluation and training facility. For comparison

purposes, the following is a list of reported execution times for a

1024-point, real input, FFT:

Sequential computers



Chapter 21 ! A Productive Implementation of an Associative Array Processor: STARAN 331

The associative processor may be viewed as a software-

programmable super-peripheral, or special purpose subsidiary

processor, for attachment to any general purpose conventional

computer system via standard channel attachment. In this role the

super-peripheral is assigned parallel oriented problem segments
and data bases which would otherwise, through excess operating

system software overhead, tend to choke the conventional

machine.

Although first applications ofthe associative processor are ofthe

real time, dedicated, command and control type, the extension to

large scale data base management, on-line management informa-

tion systems with immediate response to complex multiple-key

queries, and large scale matrix computations await only user

decision and ingenuity to accomplish now that production hard-

ware and software has become available at the 370/145 price level.

The cost effectiveness of associative processing has yet to be

proven in operational systems, but test results from initial users

should accumulate rapidly now that associative processing is no

longer only an interesting concept in the literature.

References

Batcher [1974]; Rudolph [1972]; Batcher [1968]; Feldman; Fulmer

and Meilander [1970]; Minker [1971]; Rudolph, Fulmer, and

Meilander [1971]; Slade and McMahon [1957]; Stillman [1972];

Stone [1971].


