
Chapter 18

The IBM System/360 Model 91:

Machine Philosophy and

Instruction-Handling^

D. W. Anderson / F. J. Sparacio / F. M. Tomasulo

Abstract The System/360 Model 91 central processing unit provides

internal computational performance one to two orders of magnitude

greater than that of the IBM 7090 Data Processing System through a

combination ofadvancements in machine organization, circuit design, and

hardware packaging. The circuits employed will switch at speeds of less

than 3 nsec, and the circuit environment is such that delay is approximate-

ly 5 nsec per circuit level. Organizationally, primary emphasis is placed on

(1) alleviating the disparity between storage time and circuit speed, and (2)

the development of high speed floating-point arithmetic algorithms.

This paper deals mainly with item (1) of the organization. A design is

described which improves the ratio of storage bandwidth and access time

to cycle time through the use of storage interleaving and CPU buffer

registers. It is shown that history recording (the retention of complete

instruction loops in the CPU) reduces the need to exercise storage, and

that sophisticated employment of buffering techniques has reduced the

effective access time. The system is organized so that execution hardware

is separated from the instruction unit; the resulting smaller, semiautono-

mous "packages" improve intra-area communication.

Introduction

This paper presents the organizational philosophy utilized in

IBM's highest performance computer, the System/360 [Amdahl,

Blaauw, and Brooks, 1964] Model 91. The first section of the

paper deals with the development of the assembly-line processing

approach adopted for the Model 91. The organizational tech-

niques of storage interleaving, buflFering, and arithmetic execution

concurrency required to support the approach are discussed. The

final topic of this section deals with design refinements which

have been added to the basic organization. Special attention is

given to minimizing the time lost due to conditional branches, and

the basic interrupt problem is covered.

The second section is comprised of a treatment of the instruc-

tion unit of the Model 91. It is in this unit that the basic control is

exercised which leads to attainment of the performance objec-

tives. The first topic is the fetching of instructions from storage.

Branching and interrupting are discussed next. Special handling

HBM Journal, vol. 11, January 1967, pp. 8-24.

of branching, such that storage accessing by instructions is

sometimes eliminated, is also treated. The final section discusses

the interlocks required among instructions as they are issued to

the execution units, the initiation ofoperand fetches from storage,

status switching operations, and I/O handling.

CPU Organization

The objective of the Model 91 is to attain a performance greater

by one to two orders of magnitude than that of the IBM 7090.

Technology (that is, circuitry and hardware) advances^ alone

provide only a four-fold performance increase, so it is necessary to

turn to organizational techniques for the remaining improvement.

The appropriate selection of existing techniques and the develop-

ment of new organizational approaches were the objectives of the

Model 91 CPU design.

The primary organizational objective for a high performance

CPU is concurrency
—the parallel execution of difierent instruc-

tions. A consideration of the sequence of functions involved in

handling a typical processor instruction makes the need for this

approach evident. This sequence—instruction fetching, instruc-

tion decoding, operand address generating, operand fetching, and

instruction execution—is illustrated in Fig. 1. Clearly, a primary

goal of the organization must be to avoid the conventional

concatenation of the illustrated functions for successive instruc-

tions. Parallelism accompUshes this, and, short of simultaneously

performing identical tasks for adjacent instructions, it is desired to

"overlay" the separate instruction functions to the greatest

possible degree. Doing this requires separation of the CPU into

loosely coupled sets of hardware, much like an assembly Une, so

that each hardware set, similar to its assembly line station

counterpart, performs a single specific task. It then becomes

^Circuits employed are from the IBM ASLT family and provide an

in-environment switching time in the 5 nsec range.

GENERATE
INSTRUCTION
ADDRESS

DECODE INSTRUCTION
AND GENERATE OPERAND

ADDRESS

INSTRUCTION
EXECUTION

CIRCUIT FUNCTION

STORAGE FUNCTION

Fig. 1. Typical instruction function time sequence.

276

Chapter 18 ' The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling 277

possible to enter instructions into the hardware sets at shortly

spaced time intervals. Then, following the delay caused by the

initial filling of the line, the execution results will begin emerging
at a rate of one for each time interval. Figure 2 illustrates the

objective of the technique.

Defining the time interval (basic CPU clock rate) around which

the hardware sets will be designed requires the resolution of a

number of conflicting requirements. At first glance it might

appear that the shorter the time interval (i.e., the time allocated

to successive assembly line stations), the faster the execution rate

will be for a series of instructions. Upon investigation, however,

several parameters become apparent which frustrate this seem-

ingly simple pattern for high performance design. The parameters

of most importance are:

1 An assembly-line station platform (hardware "trigger") is

necessary within each time interval, and it generally adds a

circuit level to the time interval. The platform "overhead"

can add appreciably to the total execution time of any one

instruction since a shorter interval implies more stations for

any pre-specified function. A longer instruction time is

significant when sequential instructions are logically de-

pendent. That is, instruction n cannot proceed until

instruction n -I- 1 is completed. The dependency factor,

therefore, indicates that the execution time ofany individu-

al instruction should not be penalized unnecessarily by
overhead time delay.

2 The amount of control hardware—^and control

complexity—required to handle architectural and machine

organization interlocks increases enormously as the num-
ber of assembly line stations is increased. This can lead to a

situation for which the control paths determining the gating

between stations contain more circuit levels than the data

paths being controlled.

Parameters of less importance which influence the determina-

tion of the basic clock rate include:

1 The number of levels needed to implement certain basic

data paths, e.g., address adders, instruction decoders, etc.

2 EEFective storage access time, especially when this time is

relatively short. Unless the station-to-station time interval

of the CPU is a sub-multiple of storage access time the

synchronization of storage and CPU functions will involve

overhead time.

Judgment, rather than algorithms, gave the method by which

the relative weights of the above parameters were evaluated to

determine the basic station-to-station time interval.' The interval

selected led to a splitting of the instruction handling functions as

illustrated in Fig. 3.^

It can be seen in Fig. 3 that the basic time interval accommo-

dates the assembly line handling of most of the basic hardware

functions. However, the storage and many execution operations

'The design objective calls for a 60 nsec basic machine clock interval. The

judgment exercised in this selection was tempered by a careful analysis of

the number of circuit levels, fan in, fan out, and wiring lengths required to

perform some of the basic data path and control functions. The analysis

indicated that 11 or 12 circuit levels of 5-6 nsec delay per level were

required for the worst-case situations.

"Figure 3 also illustrates that the hardware sets are grouped into larger

units—instruction unit, main storage control element, fixed-point execu-

tion unit, floating-point execution unit. The grouping is primarily caused

by packaging restrictions, but a secondary objective is to provide

separately designable entities having minimum interfacing. The total

hardware required to implement the required CPU functions demands

three physical frames, each having dimensions 66" L x 15
" D x 78" H.

The units are allocated to the frames in such a way as to minimize the

effects of interframe transmission delays.

- ir.ME

H INSTRUCTION ACCESS H OPERAND ACCESS,

—JGENERATE I ADDRESS,

^ INSTRUCTION ACCESS j

2ND
INSTRUCTION

I DECODE. GENERATE OPERAND, ADDRESS

•(OPERAND ACCESS2

•(GENERATE I ADDRESS j

^ INSTRUCTION ACCESS3

3RD
INSTRUCTION

(DECODE. GENERATE OPERAND^ ADDRESS

•(OPERAND ACCESS3

4 GENERATE I ADDRESS 3

—H INSTRUCTION ACCESS4

•(DECODE. GENERATE OPERAND3 ADDRESS

H OPERAND ACCESS4

EXECUTE INST- 3

4TH
INSTRUCTION

4 GENERATE I ADORESS4 DECODE. GENERATE OPERAND4 ADDRESS (EXECUTE INST- A

Fig. 2. Illustration of concurrency among successive instructions.

27S Part 2
I
Regions of Computer Space Sactlon 3

[
Concurrency: Single-Processor System

BASIC TIME
INTERVAL

Peo NSEC
1

GENERATE
INST.

ADDRESS

INSTRUCTION
ACCESS

MOVE
INST
TO

DECODE
AREA

DECODE
INST,

GENERATE
OPERAND
ADDRESS

TRANSMIT
INST. TO
FLOATING
EXECUTION

OPERAND
ACCESS

FLOATING
DECODE

MOVE INST
TO

EXECUTION
HARDWARE

EXECUTION
DECODE
ISSUE TO

ARITHMETIC
UNIT

ARITHMETIC
UNIT

WAIT FOR
OPERAND

STORAGE
OPERAND
RETURN

TRANSMIT
OPERAND

TO
EXECUTION
HARDWARE

INSTRUCTION
EXECUTION

MAIN STORAGE
CONTROL UNIT
& STORAGE
FUNCTIONS

INSTRUCTION UNIT
FUNCTION

MAIN STORAGE CONTROL UNIT
AND STORAGE FUNCTIONS

FLOATING POINT INSTRUCTION
UNIT FUNCTIONS

i. FLOATING-
POINT

EXECUTION
FUNCTION

INSTRUCTION
UNIT

FUNCTION

Fig. 3. CPU assembly-line stations required to accommodate a typical floating-point storage-to-register instruction.

require a number of basic intervals. In order to exploit the

assembly line processing approach despite these time disparities,

the organizational techiques of storage interleaving [Buchholz,

1962], arithmetic execution concurrency, and buffering are uti-

lized.

Storage interleaving increases the storage bandwidth by

enabling multiple accesses to proceed concurrently, which in turn

enhances the assembly line handling of the storage function.

Briefly, interleaving involves the splitting of storage into indepen-

dent modules (each containing address decoding, core driving,

data read-out sense hardware, and a data register) and arranging

the address structure so that adjacent words—or small groups of

adjacent words—reside in different modules. Figure 4 illustrates

the technique.

The depth of interleaving required to support a desired

concurrency level is a function of the storage cycle time, the CPU

storage request rate, and the desired effective access time. The

ADDRESS

Chapter 18
|

The IBM Systeni/360 Model 91: Machine Philosophy and Instruction-Handling 279

"strings" of instructions, but permits those which are independent
to be executed out of order.

The organizational techniques described above provide bal-

ance between the number of instructions that can be pre-

pared for arithmetic execution and those that can actually be exe-

cuted in a given period, thereby preventing the arithmetic

execution fianction from creating a "bottleneck" in the assem-

bly line process.

Buffering of various types plays a major role in the Model 91

organization. Some types are required to implement the assembly
line concept, while others are, in light of the performance

objectives, architecturally imposed. In all cases the buffers

provide queueing which smooths the total instruction flow by

allowing the initiating assembly line stations to proceed despite

unpredictable delays down the line. Instruction fetch, operand

fetch, operand store, operation, and address buffering are utilized

among the major CPU units as illustrated in Fig. 5.'

Instruction fetch buffering provides return data "sinks" for

'Eight 64-bit double words comprise the array of instruction buffers. Six

32-bit operand buffers are provided in the fixed-point execution unit,

while six 64-bit buffers reside in the floating-point execution unit. Three

64-bit store operand buffers along with three store address and four

conflict address buffers are provided in the main storage control element.

Also, there are six fixed-point and eight floating-point operand buffers.

previously initiated instruction storage requests. This prefetching

hides the instruction access time for straight-line (no branching)

programs, thereby providing a steady flow of instructions to the

decoding hardware. The buffering is expanded beyond this need

to provide the capacity to hold program loops of meaningful size.

Upon encountering a loop which fits, the buffer locks onto the

loop and subsequent branching requires less time, since it is to

the buffers rather than to storage. The discussion of branching

given later in this paper gives a detailed treatment of the loop

action.

Operand fetch buffers effectively provide a queue into which

storage can "dump" operands and from which execution units can

obtain operands. The queue allows the isolation of operand

fetching from operand usage for the storage-to-register and

storage-to-storage instruction types. The required depth^ of the

queue is a fianction of the number of basic time intervals required
for storage accessing, the instruction "mix" of the operating

program, and the relative time and frequency of execution

bottlenecks. Operand store buffering provides the same function

as fetch buffering, except that the roles of storage and execution

^To show precise algorithms defining these and other buffering require-

ments is impractical, since different program environments have different

needs. The factors considered in selecting specific numbers are cited

instead.

STORAGE MODULES

INSTRUCTION
FETCH

BUFFERS
(8)

BRANCH
TARGET
BUFFERS

(2)

ADDRESS TO STORAGE

X
DATA TO STORAGE DATA FROM STORAGE

STORAGE
CONFLICT
SUFFERS

(•1)

STORE
ADDRESS
BUFFERS

(3)

ADDRESS OUT TO STORAGE

I I

INSTRUCTION UNIT

STORE DATA
BUFFERS

(3) FIXED

280 Part 2
{
Regions of Computer Space Section 3

]
Concurrency: Single-Processor System

are reversed. The number of store buffers required is a function of

the average waiting time encountered when the desired storage

module is busy and the time required for the storage, when

available, to utilize the operand.

Operation buffers in the fixed-point and floating-point execution

units allow the instruction unit to proceed with its decoding and

storage-initiating functions while the execution units wait for

storage operands or execution hardware. The depth of the

operation buffering is related to the amount of operand buffering

provided and the "mix" of register-to-register and storage-to-

register instruction types.

Address buffering is used to queue addresses to busy storage

modules and to contain store addresses during the interval

between decoding and execution of store instructions. The

instruction unit is thereby allowed to proceed to subsequent

instructions despite storage conflicts or the encountering of store

operations. These buffers have comparators associated with them

to establish logical precedence when conflicting program refer-

ences arise. The number of necessary store address buffers is a

function of the average delay between decode and execution,

while the depth of the queue caused by storage conflicts is related

to the probable length of time a request will be held up by a busy

storage module [Boland, Granito, Marcotte, Messina, and Smith,

1967].

Concurrency Limitations

The assembly line processing approach, using the techniques of

storage interleaving, arithmetic concurrency, and buffering,

provides a solid high-performance base. The orientation is toward

smooth-flowing instruction streams for which the assembly line

can be kept full. That is, as long as station n need only

communicate with station n -I- 1 of the line, highest performance
is achieved. For example, floating-point problems which fit this

criterion can be executed internally on the Model 91 at up to 100

times the internal speed of the 7090 [Flynn and Low, 1967].

There are, however, cases where simple communication be-

tween adjacent assembly line stations is inadequate, e.g., list

processing applications, branching, and interrupts. The storage

access time and the execution time are necessarily sequential

between adjacent instructions. The organization cannot complete-

ly circumvent component delay in such instances, and the internal

performance gain diminishes to about one order of magnitude

greater than that of the 7090.

The list processing application is exemplified by sequentialism

in addressing, which produces a major interlock situation in the

Model 91. The architecturally specified usage of the general

purpose registers (GRP's) for both address quantities and fixed-

point data, coupled with the assembly line delay between address

generation and fixed-point execution, leads to the performance
slowdown. Figure 6 illustrates the interlock and the resulting

delay. Instructions n and n -I- 1 set up the interlock on GPR X
since they will alter the contents of X. The decode of n -(- 3 finds

that the contents of X are to be used as an address parameter,

and since the proper contents are not available n + 3 must wait un-

til n -I- 1 is executed. The interlock technique involves assigning

the decode area a status count for each GPR. A zero status count

indicates availability. As fixed-point instructions pass through the

decode, they increment the appropriate counter(s). A decode

TIME

Chapter 18
|

The IBM Systeni/360 Model 91: Machine Philosophy and Instruction-Handling 281

requiring an unavailable (non-zero status count) GRP cannot be

completed. As the fixed-point execution unit completes instruc-

tions it decrements the appropriate counter(s), thus eventually

freeing the register.

Branching leads to another sequential situation, since a disrup-

tion in the instruction supply is created. (Techniques employed to

minimize or circumvent the storage access delay involved in

obtaining the new instructions are discussed under Instruction

Supplying in the following section of this paper.) Conditional

branching poses an additional delay in that the branch decision

depends on the outcome of arithmetic operations in the execution

units. The Model 91 has a relatively lower performance in cases

for which a large percentage of conditional branch instructions

lead to the branch being taken. The discontinuity is minimized,

when the branch is not taken, through special handling of the

condition code (CC) and the conditional branch instruction (BC).

The condition code is a two-bit indicator, set according to the

outcome of a variety of instructions, and can subsequently be

interrogated for branching through the BC instruction. Since the

code is to represent the outcome of the last decoded CC-afiFecting

instruction, and since execution can be out of sequence, interlocks

must be established to ensure this. This is accomplished, as

illustrated in Fig. 7, by tagging each instruction at decode time if

it is to set the CC. Simultaneously, a signal is communicated

throughout the CPU to remove all tags from previously decoded

but not executed instructions. Allowing only the execution of the

tagged instruction to alter the code ensures that the correct CC
will be set. The decode hardware monitors the CPU for outstand-

ing tags; only when none exists is the condition code considered

valid for interrogation.

The organization assumes that, for a conditional branch, the CC
will not be valid when the "branch-on-condition" (BC) is decoded

(a most likely situation, considering that most arithmetic and

logical operations set the code). Rather than wait for a valid CC,
fetches are initiated for two instruction double-words as a hedge

against a successful branch. Following this, it is assumed that the

branch will fall, and a "conditional mode" is established. In

conditional mode, shown in Fig. 8, instructions are decoded and

conditionally forwarded to the execution units, and concomitant

operand fetches are initiated. The execution units are inhibited

from completing conditional instructions. When a valid condition

code appears, the appropriate branching action is detected and

activates or cancels the conditional instructions. Should the

no-branch guess prove correct, a substantial head start is provided

by activating the conditionally issued and initiated operand
fetches for a number of instructions. If the branch is successful,

the previously fetched target words are activated and provide

work while the instruction fetching is diverted to the new stream.

(Additional optimizing techniques are covered under the discus-

sion of branching in a subsequent section of this paper.)

Interrupts, as architecturally constrained, are a major bottle-

neck to performance in the assembly line organization. Strict

adherence to a specification which states that an interrupt on

instruction n should logically precede and inhibit any action from

being taken on instruction n -I- 1 leaves two alternatives. The first

would be to force sequentialism between instructions which may
lead to an interrupt. In view of the variety of interrupt possibilities

defined, this course would totally thwart high performance and is

necessarily discarded. The second is to set aside suflBcient

information to permit recovery from any interrupt which might
arise. In view of the pipeline and execution concurrency which

allows the Model 91 to advance many instructions beyond n prior

to its execution, and to execute independent instructions out of

sequence {n + m before n), the recovery problem becomes

282 Part 2
I Regions of Computer Space Section 3 Concurrency: Single-Processor System

TIME

DECODE
INST, n EXECUTE

INST, n

TRANSMIT
CC TO
I UNIT

DECODE
INST, n i 1

/ BRANCH \

ON
VCOND /

FETCH
TARGET

j«-60 NSEC-»j

FETCH
TARGET
+ 1

COND
DECODE
INST, n J- 2

CC
VALID

TEST
CC
(NOBR)

TRANSMIT
ACTIVATE
TO EXEC.
AREAS

FREE TO
EXECUTE
WHEN
OPERAND
RETURNS

OPERAND ACCESS

COND.
DECODE
INST, n + 3

OPERAND ACCESS

COND.
DECODE
INST, n + 4

OPERAND ACCESS

COND.
DECODE
INST, n + 5

OPERAND ACCESS

COND.
DECODE
INST, n + 6

OPERAND ACCESS

DECODE
INST n - 7

Fig. 8. Conditional instruction issuing: the branch-on-condition philosophy.

extremely complex and costly. Taking this approach would entail

hardware additions to the extent that it would severely degrade
the performance one is seeking to enhance. The impracticality of

both alternatives by which the interrupt specifications could be

met made it mandatory that the specifications themselves be

altered. The architecture was compromised by removing the

above-mentioned "precedence" and "inhibit" requirements. The

specification change led to what is termed the "imprecise

interrupt" philosophy of the Model 91 and reduced the interrupt

bottleneck to an instruction supply discontinuity. The imprecise

interrupt, and the manner in which the instruction discontinuity

is minimized, are covered in the next section of the paper.

The bottlenecks discussed above gave rise to the major

interlocks among the separate CPU areas. Within each of the

areas, however, additional considerations hold. These are dis-

cussed as appropriate in the next section or in following papers.

Instruction Unit

The central control functions for the Model 91 CPU are performed
in the instruction unit. The objective here is to discuss these

functions in terms of how they are performed and to include the

reasons for selecting the present design. However, before pro-

ceeding with this discussion it will be useful to examine some

over-all design considerations and decisions which directly affect

Chapter 18
|

The IBM System/360 Model 91 : Machine Philosophy and Instruction-Handling 283

the instruction unit functions. In approaching the design of the

instruction unit, many program situations were examined, and it

was found that while many short instruction sequences are nicely

ordered, the trend is toward frequent branching. Such things as

performing short work loops, taking new action based on data

results, and calling subroutines are the bases upon which pro-

grams are built and, in many instances, these factors play a larger

role in the use of available time than does execution. Consequent-

ly, emphasis on branch sequencing is required. A second finding

was that, even with sophisticated execution algorithms, very few

programs can cause answers actually to flow from the assembly
line at an average rate in excess of one every two cycles. Inherent

inter-instruction dependencies, storage and other hardware con-

flicts, and the frequency of operations requiring multi-cycle

execution all combine to prevent it.

Consideration of branching and execution times indicates that,

for overall balance, the instruction unit should be able to surge

ahead of the execution units by issuing instructions at a faster-

than-execution rate. Then, when a branch is encountered, a

significant part of the instruction unit slowdown will be over-

lapped with execution catch-up. With this objective in mind it

becomes necessary to consider what constitutes a fast issue rate

and what "trade-ofis" would be required to achieve it. It is easily

shown that issuing at a rate in excess of one instruction per cycle

leads to a rapid expansion of hardware and complexity. (Variable-

length instructions, adjacent instruction interdependencies, and

storage requirements are prime factors involved.) A one-cycle

maximum rate is thereby established, but it too presents difficul-

ties. The assembly line process requires that both instruction

fetching and instruction issuing proceed concurrently in order to

hide storage delays. It is found through program analysis that

slightly more than two instructions will be obtained per 64-bit

instruction fetch' and that approximately 80% of all instructions

require an operand reference to storage. From this it is concluded

that issuing the average instruction entails approximately 1.25

storage accesses: 0.45 (instruction fetches) + 0.80 (operand

fetches). This figure, with the one-per-cycle issue rate goal,

clearly indicates a need for either two address paths to storage and

associated return capabilities, or for multiple words returned per
fetch. In considering these options, the initial tendency is to

separate instruction and operand storage access paths. However,

multiple paths to storage give rise to substantial hardware

'Storage-to-storage (SS) instructions are not considered here. They can be

viewed as macro-operations and are treated as such by the hardware. The

macro-operations are equivalent to basic instructions, and the number of

micro-instructions involved in performing an SS function indicates that

many instruction fetches would be required to perform the same function

using other System/360 instructions.

additions and lead to severe control problems, particularly in

establishing storage priorities and interlocks due to address

dependencies. With a one-at-a-time approach these can be

established on each new address as it appears, whereas simultane-

ous requests involve doing considerably more testing in a shorter

time interval. Multiple address paths to storage were considered

impractical because of the unfavorable compromise between

hardware and performance.
The multiple-words-retumed-per-fetch option was considered

in conjunction with instruction fetching since the instruction

stream is comprised of sequential words. To prevent excessive

storage "busying" this approach requires a multiple word readout

at the storage unit along with a wider data return path. Also, the

interleaving factor is altered from sequential to multi-sequential,

i.e., rather than having sequential double words in difierent

storage modules, groups of sequential words reside in the same

module. The interlock problems created by this technique are

modest, the change in interleaving technique has little perform-
ance efiect,^ and storage can be (is, in some cases) organized to

read out multiple words, all of which make this approach feasible.

However, packaging density (more hardware required for wide

data paths), storage organization constraints, and scheduling were

such that this approach was also discarded. As a consequence, the

single-port storage bus, which allows sequential accessing of

double words, was adopted. This fact, in conjunction with the 1.25

storage accesses required per instruction, leads to a lowering of

the average maximum issue rate to 0.8 instructions per machine

cycle. The instruction unit achieves the issue rate through an

organization which allows concurrency by separating the instruc-

tion supplying from the instruction issuing function.

Instruction Supplying

Instruction supplying includes the provision of an instruction

stream which will support the desired issue rate in a sequential

(non-branch) environment, and the ability to switch readily to a

new instruction stream when required because of branching or

interrupts.

^This is more intuitive than analytical. Certainly for strictly random

addressing, the interleave technique is irrelevant. However, in real

applications, programs are generally localized with (1) the instructions

sequential and (2) branches jumping tens or hundreds rather than

thousands of words. Data is more random because, even though it is often

ordered in arrays, quite frequently many arrays are utilized concurrently.

Also, various data constants are used which tend to randomize the total

use. A proper analysis must consider all these factors and so becomes

complex. In any event, as long as the interleave factor remains fixed the

interference appears little affected by small changes in the interleaving

pattern.

284 Part 2
j
Regions of Computer Space Section 3

\
Concurrency: Single-Processor System

Sequential Instruction Fetching. Provision of a sequential string

of instructions has two fundamental aspects, an initiation or

start-up transient, and a steady-state function. The initial transient

entails filling the assembly line ahead of the decode station with

instructions. In hardware terms, this means initiating suflScient

instruction fetches so that, following a wait of one access time, a

continuous flow of instruction words will return from storage.

Three double-word fetches are the minimum required to fill the

assembly line, since approximately two instructions are contained

within a double word, and the design point access time is six

machine cycles. The actual design exceeds the minimum for

several reasons, the first being that during start-up no operand

requests are being generated (there are no instructions), and

consequently the single address port to storage is totally available

for instruction fetching. Second, the start-up delay provides

otherwise idle time during which to initiate more fetches, and the

eight double words of instruction buSering provide space into

which the words can return. A third point is that, should storage

requiring more than six cycles of access time be utilized, more

fetching-ahead will be required. Finally, establishing an excess

queue of instructions during the transient time will allow tempo-

rary maintenance of a full assembly line without any further

instruction fetching. The significance of this action is that it allows

the issuing of a short burst of instructions at a one-per-cycle rate.

This follows from the fact that the single, normally shared storage

address port becomes exclusively available to the issue function. A

start-up fetching burst of five double instruction words was the

design point which resulted when all of these factors had been

considered. '

Steady-state instruction supplying serves the function of main-

taining a full assembly line by initiating instruction fetches at

appropriate intervals. The address port to storage is multiplexed
between instruction fetches and operand fetches, with instruc-

tions receiving priority in conflict situations. An additional

optimization technique allows the instruction fetching to re-

advance to the start-up level of five double words ahead if storage

address time "slots" become available. A flow chart of the basic

instruction fetch control algorithm is shown in Fig. 9,^ while Fig.

10 is a schematic of the data paths provided for the total

instruction supplying function. Some of the decision blocks

'The one disadvantage to over-fetching instructions is that the extra

fetches may lead to storage conflicts, delaying the subsequently initiated

operand fetches. This is a second-order efiect, however, first because it is

desirable for the instruction fetches to win conflicts unless these fetches

are rendered unnecessary by an intervening branch instruction, and

second because the sixteen-deep interleaving of storage significantly

lowers the probability of the conflict situation.

^In this flow chart, unlabeled exits from decision blocks imply that a "wait"

state will exist until the required condition has been satisfied.

IS THE CPU ENVIRONMENT
ALLOWING SEQUENTIAL
INSTRUCTION FETCHING;

IS THIS THE START UP AND, IF SO.
HAVE THE FIRST TWO DOUBLE
WORDS ALREADY BEEN FETCHED

. TO THE BRANCH TARGET BUFFERS?

/ IS THE INSTRUCTION
BUFFER WHICH WILL RECEIVE

THE NEXT DOUBLE
V WORD FETCH AVAIUBLE?

SKIP THE NORMAL START UP
FETCHING OF THE FIRST TWO

DOUBLE WORDS

/HAS THE PREVIOUS INSTRUCTION>
FETCH BEEN ACCEPTED BY THE
MAIN STORAGE CONTROL UNIT?

(ADDRESS PORT TO STORAGE IS

V AVAILABLE)

HAVE THREE tXJUBLE WORDS
BEYOND THE REQUIRED WORD

BEEN FETCHED?

<^
HAS THE

LOOP MODE BEEN
ESTABLISHED?

IS THE ADDRESS PORT TO
STORAGE BUSY WITH
OPERAND FETCHING?

/ IS THE \/CV INSTRUCTION \
V_A BUFFER ARRAY /T \ FULL? /

HAVE FOUR DOUBLE WORDS
BEYOND THE REQUIRED WORD

BEEN FETCHED?

INITIATE THE FETCH FOR
THE NEXT DOUBLE WORD

Fig. 9. Flow chart of the sequential instruction-supply function.

contained in the flow chart result from the efiects of branch

instructions; their function will be clarified in the subsequent
discussion of branching. There are two ftindamental reasons for

checking bufier availability in the algorithm. First, the instruction

bufier array is a modulo-eight map of storage that is interleaved by
sixteen. Second, fetches can return out of order because storage

may be busy or of varying performance. For example, when a

branch is encountered, point one above implies that the target

may overlay a fetch which has not yet returned from storage. In

view of the second point, it is necessary to ensure that the

unretumed fetch is ignored, as it would be possible for a new
fetch to return ahead of it. Proper sequencing is accomplished by

"tagging" the bufiers assigned to outstanding fetches, and pre-

venting the initiation of a new fetch to a bufiFer so tagged.

Chapter 18
|

The IBM System/360 Model 91 : Machine Philosophy and Instruction-Handling 285

DATA BUS FROM MSCE

BRANCH START UP
ADDRESS FROM
OPERAND ADDRESS

"

REGISTER

ARRAY BYPASS
FROM STORAGE

001

010

Oil

100

101

110

111

INSTRUCTION
BUFFER
ARRAY

BRANCH TARGET BUFFER 1 (64)

BRANCH TARGET BUFFER 2 (64)

ARF(AY BYPASS
FROM BRANCH BUFFERS

TO INSTRUCTION REGISTER

32 39

NEW PSW START UP ADDRESS

l_l_t
ARRAY

UPPER BOUND

(23)

ARRAY
LOWER BOUND

1 INSTRUCTION FETCH
2 BRANCH
3 INTERRUPT rr

ADDRESS
GENERATION

TO MSCE FOR
STORING CURRENT PSW

(24)

COND BR
ADDRESS

TO MSCE
INSTRUCTION
FETCH
ADDRESS

TO OPERAND
ADDRESS DETECT
STORE INTO INSTRUCTION
BUFFER ARRAY

CONDITIONAL
BRANCH RECOVERY
ADDRESS

Fig. 10. Data paths for the basic instruction supply.

Branch Handling. Branching ad(is to the complexity of the

instruction supplying junction because attempts are made to

minimize discontinuities caused by the branching and the conse-

quent adverse effects on the issue rate. The discontinuities result

because for each branch the supply of instructions is disrupted for

a time roughly equivalent to the greater of the storage access

period (start-up transient previously mentioned), or the internal

testing and "housekeeping" time required to make and carry out

the branch decision. This time can severely limit the total CPU
performance in short program loops. It has a somewhat less

pronounced effect in longer loops because the branch time

becomes a smaller percentage of the total problem loop time and,

njore important, the instruction unit has greater opportunity to

run ahead of the execution units (see Fig. 11). This last makes

more time available in which to overlap the branch time with

execution catch-up.

The detrimental performance effect which stems from short

loops led to a dual branch philosophy. The first aspect deals with

branches which are either forward into the instruction stream,'

beyond the prefetched instructions, or if backward from the

branch instruction, greater than eight double-words back. In

these situations, the branch storage-delay is unavoidable. As a

hedge against such a branch being taken, the branch sequencing

(Fig. 12) initiates fetches for the first two double words down the

target path. Two branch buffers are provided (Fig. 10—the

instruction supply data flow) to receive these words, in order that

the instruction buffer array will be unaffected if the result is a no-

branch decision. The branch housekeeping and decision making
are carried on in parallel with the access time of the target fetches.

If a branch decision is reached before the access has been

completed, additional optimizing hardware routes the target fetch

around the buffer and directly to the instruction register, from

which it will be decoded. Minor disadvantages of the technique

'In the actual program the branch instruction would precede the target for

this case.

286 Part 2
{
Regions of Computer Space Section 3

j
Concurrency: Single-Processor System

Fig. 11. Schematic representation of execution delays caused by

(branch) discontinuities in the instruction issuing rate, for the case

in which the issuing rate is faster than the execution rate.

are that the "hedge" fetching results in a delay of the no-branch

decision and may lead to storage conflicts. Consequently, a small

amount of time is lost for a branch which "falls through."

The second aspect of the branch philosophy treats the case for

which the target is backward within eight double words of the

branch instruction. A separation of eight double words or less

defines a "short" loop
—this number being chosen as a hardware/

performance compromise. Part of the housekeeping required in

the branch sequencing is a "back eight" test. If this test is satisfied

the instruction unit enters what is termed "loop mode." Two
beneficial results derive from loop mode. First, the complete loop

is fetched into the instruction buffer array, after which instruction

fetching ceases. Consequently, the address port to storage is

totally available for operand fetching and a one instruction per

cycle issue rate is possible. The second advantage gained by loop

mode is a reduction by a factor oftwo to three in the time required

to sequence the loop-establishing branch instruction. (For exam-

ple, the "branch on index" instruction normally requires eight

cycles for a successful branch, while in loop mode three cycles are

sufiBcient.) In many significant programs it is estimated that the

CPU will be in loop mode up to 30% of the time.

Loop mode may be established by all branch instructions except

"branch and link." It was judged highly improbable that this

instruction would be used to establish the type of short repetitious

program loops to which loop mode is oriented. A conditional

branch instruction, because it is data dependent and therefore less

predictable in its outcome than other branch instructions, re-

quires special consideration in setting up loop mode. Initial

planning was to prevent looping with this instruction, but

consultation with programmers has indicated that loops are

frequently closed conditionally, since this allows a convenient

means for loop breaking when exception conditions arise.

Furthermore, in these situations the most likely outcome is

often known and can be utilized to bias the branch decision

whichever way is desirable. For such reasons, the "back eight"

test is made during the sequencing of a conditional branch

instruction, and the status is saved through conditional mode.

Should it subsequently be determined that the branch is to be

taken, and the "saved" status indicates "back eight," loop mode is

established. Thereafter the role of conditional mode is reversed,

i.e., when the conditional branch is next encountered, it will be

assumed that the branch will be taken. The conditionally issued

instructions are from the target path rather than from the

no-branch path as is the case when not in loop mode. A cancel

requires recovery from the branch guess. Figure 12 is a flow chart

of this action. In retrospect, the conditional philosophy and its

efiects on loop mode, although significant to the performance of

the CPU and conceptually simple, were found to require numer-

ous interlocks throughout the CPU. The complications of condi-

tional mode, coupled with the fact that it is primarily aimed at

circumventing storage access delays, indicate that a carefiil

re-examination of its usefulness will be called for as the access

time decreases.

Interrupts. Interrupts, like branching, are another disruption to

a smooth instruction supply. In the interrupt situation the

instruction discontinuity is worsened because, following the

recognition of the interrupt, two sequential storage access delays

are encountered prior to receiving the next instruction.'

Fortunately, and this is unlike branches, interrupts are relatively

infrequent. In defining the interrupt function it was decided that

architectural "imprecise" compromise mentioned in the previous

section would be invoked only where necessary to achieve the

required performance. In terms of the assembly line concept, this

means that interrupts associated with an instruction unit decode

time interval will conform with the specifications. Consequently,

only interrupts which result from address, storage, and execution

functions are imprecise.

One advantage of this dual treatment is that System/360

compatibility is retained to a useful degree. For example, a

programming strategy sometimes employed to call special subrou-

tines involves using a selected invalid instruction code. The

ensuing interrupt provides a convenient subroutine entry tech-

nique. Retaining the compatible interrupt philosophy through the

decoding time interval in the Model 91 allows it to operate

'This arises from the architectural technique of indirectly entering the

interrupt subroutines. In System/360 the interrupts are divided into

classes. Each class is assigned a different, fixed low storage address which

contains the status to which the CPU shall be set should an interrupt ofthe

associated class occur. Part of this status is a new program address.

Consequently, interrupting requires obtaining a new supply of instruc-

tions from storage indirectly, through the new status word.

Chapter 18
|

The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling 2S7

/IS A BRANCH INSTRUCTION
SCURRENTLY BEING DECODED'

IS THE LOOP MODE
y X CURRENTLY

ESTABLISHED'

^IS THIS A CONDITIONAL
BRANCH INSTRUCTION'

GENERATE THE TARGET
ADDRESS AND FETCH TWO DOUBLE
WORDS. DOWN THE TARGET PATH,
INTO THE BRANCH TARGET BUFFERS

1. DO THE BRANCH
DECISION ARITHMETIC

IS THE BRANCH
TAKEN?)9

GO TO NEXT
INSTRUCTION

IS THE LOOP MODE ESTABLISHED
AND WAS IT ESTABLISHED BY
THIS CONDITIONAL BRANCH'

,. GENERATE AND SET ASIDE THE
ADDRESS OF THE TARGET OF
THE CONDITIONAL BRANCH

! DO THE 'BACK EIGHT

ARITHMETIC
TO DETERMINE IF THIS INSTRUCTION
SHOULD ESTABLISH THE LOOP MODE

! PROCEED TO NEXT SEQUENTIAL
INSTRUCTION IN CONDITIONAL MODE

(

1 GENERATE AND SET ASIDE THE
ADDRESS OF THE SEQUENTIAL
INSTRUCTION FOLLOWING THE

CONDITIONAL BRANCH
2 PROCEED DOWN BRANCH PATH

(CONTAINED WITHIN THE
INSTRUCTION ARRAY)
IN CONDITIONAL MODE

HAS THE CONDITION CODE >

BECOME VALID'

IS THE LOOP MODE ESTABLISHED\,^->
AND WAS IT ESTABLISHED BY X.^)
THIS BRANCH INSTRUCTION' /N^

1 SET UP INSTRUCTION
FETCHING TO STARTUP
ALONG BRANCH PATH

2, DO THE BACK EIGHT-
LOOP DETERMINATION

GET TARGET FROM
INSTRUCTION BUFFERS

AND PROCEED

/ARE INSTRUCTIONS'
AVAILABLE FROM
STORAGE, BUFFER
ARRAY, OR BRANCH

V TARGET BUFFERS'

1, DECODE TARGET
2, ESTABLISH THE LOOP MODE.

IF APPROPRIATE

IS THE LOOP MODE ESTABLISHED
AND WAS IT ESTABLISHED BY
THIS CONDITIONAL BRANCH'

^
I, ACTIVATE THE CONDITIONAL

ISSUED INSTRUCTIONS
2 REMOVE THE CONDITIONAL

MODE

1. CANCEL THE CONDITIONAL
ISSUED INSTRUCTIONS

2 REMOVE THE CONDITIONAL
MODE

1, RECOVER THE INSTRUCTION STREAM
TO THE TARGET OF THE BRANCH

2. ESTABLISH THE LOOP MODE,
IF APPROPRIATE

RECOVER INSTRUCTION
STREAM TO SEQUENTIAL
INSTRUCTION FOLLOWING
THE BRANCH INSTRUCTION

Fig. 12. Flow cliart of the branching sequence.

programs employing such techniques. The manifestation of this

approach is illustrated in the flow chart of Fig. 13. In accordance

with System/360 specifications, no further decoding is allowed

once either a precise or an imprecise interrupt has been signalled.

With the assembly line organization, it is highly probable that at

the time of the interrupt there will be instructions still in the

pipehne which should be executed prior to changing the CPU
status to that ofthe interrupt routine. However, it is also desirable

to minimize the efiFect of the interrupt on the instruction supply,

so the new status word is fetched to the existing branch target

buffer in parallel with the execution completion. After the return

from storage of the new status word, if execution is still incom-

plete, further optimizing allows the fetching of instructions for the

interrupt routine. Before proceeding, it becomes necessary to

consider an implication resulting from the dual interrupt philoso-

phy. Should a precise interrupt have initiated the action, it is

2S$ Part 2
I
Regions of Computer Space Section 3

|
Concurrency: Single-Processor System

'HAS AN INTERRUPT(S)\
L BEEN SIGNALED? /

1 STOP DECODtNG INSTRUCTIONS
2 RECOGNIZE HIGHEST PRIORITY

OF PENDING INTERRUPTS

'ARE THE BRANCH TARGET
. BUFFERS AVAILABLE

HAS THE NEW
PSW RETURNED
FROM STORAGE'

INITIATE THE FETCH OF THE
NEW PROGRA M STATUS WORD

(PSW) FROM STORAGE

1 STARTUP INSTRUCTION FETCHING
USING THE PROGRAM ADDRESS
PORTION OF THE NEW PSW

2 THE STATUS PORTION OF THE
NEW PSW IS RETAINED IN THE
BRANCH TARGET BUFFER

'IS THIS AN IMPRECISE
. INTERRUPT)Q

HAS AN IMPRECISE
INTERRUPT OCCURRED

'

DUE TO EXECUTION
COMPLETION'

/is all EXECUTION \

\ACTIVITY FINISHED'^

^IS THIS AN I/O >

STORE THE CURRENT PSW
ACTIVATE THE STATUS
PORTION OF THE NEW PSW
PROCEED DOWN INTERRUPT
INSTRUCTION PATH

SIGNAL PROPER
CHANNEL INTERRUPT

HONORED-

HAS THE CHANNEL
RESPONSE COMPLETE

BEEN RECEIVED?

Fig. 13. Flow chart of the interrupt sequence.

possible that the execution "cleanup" will lead to an imprecise

condition. In this event, and in view of the desire to maintain

compatibility for precise cases, the logically preceding imprecise

signal should cancel all previous precise action. The flow chart

(Fig. 13) illustrates this cancel-recovery action. Should no cancel

action occur (the more likely situation), the completion of all

execution functions results, with one exception, in the release of

the new status word and instruction supply. The I/O interrupts

require special consideration because of certain peculiarities in

the channel hardware (the System 360/Model 60-75 channel

hardware is used). Because of them, the CPU-channel communi-

cation cannot be carried out in parallel with the execution

completion. However, the relative infrequency of I/O interrupts

renders negligible the degradation caused by this.

Instruction Issuing

The instruction-issuing hardware initiates and controls orderly

concurrency in the assembly line process leading to instruction

execution. It accomplishes this by scanning each instruction, in

the order presented by the program, and clearing all necessary

interlocks before releasing the instruction. In addition, should a

storage reference be required by the operation, the issuing

mechanism performs the necessary address calculations, initiates

the storage action, and establishes the routing by which the

operand and operation will ultimately be merged for execution. In

addition, certain essential inter-instruction dependencies are

maintained while the issue functions proceed concurrently.

In terms of the assembly line of Fig. 3, the moving of

instructions to the decode area, the decode, and the operand
address generation comprise the issue stations. The moving of

instructions to the decode area entails the taking of 64-bit

double-words, as provided by the instruction supply, and extract-

ing from them the proper instruction half-words, one instruction

at a time. The instruction register is the area through which this is

accomplished (Fig. 14). The register efficiently handles variable-

length instructions and provides a stable platform from which to

decode. All available space in this 64-bit register is kept fiill of

instructions yet to be decoded, provided only that the required

new instruction information has returned from storage. The

decoder scans across the instruction register, starting at any

half-word (16-bit) boundary, with new instructions refilling any

space vacated by instruction issuing. The register is treated

conceptually as a cylinder; i.e., the end of the register is

concatenated with the beginning, since the decode scan must

accommodate instructions which cross double-word boundaries.

The decoding station is the time interval during which instruc-

tion scanning and interlock clearing take place. Instruction-

independent functions (interval timer update, wait state, certain

interrupts and manual intervention) are subject to entry interlocks

during this interval. Instruction-associated functions also have

interlocks which check for such things as the validity of the

scanned portion of the instruction register, whether or not the

instruction starts on a half-word boundary, whether the instruc-

tion is a valid operation, whether an address is to be generated for

the instruction (and if so, whether the address adder is available),

and where the instruction is to be executed. In conjunction with

this last point, should the fixed- or floating-point execution units

be involved, availability of operation buSering is checked. Inter-

instruction dependencies are the final class of interlocks which can

occur during the decoding interval. These arise because of

decision predictions which, if proven wrong, require that decod-

Chapter 18
|

The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling 289

FROM INSTFfUCTION SUPPLY (64)

(161 (16) (16)

INSTRUCTION REGISTER

INSTRUCTION UNIT ^ ,

IN DECODE STATE' A '')

n VANV INTERRUPT PENDING?

n X MANUAL INTERRUPTION?

n X TIMER UPDATE REQUIRED^

n X CPU IN WAIT STATE

WAIT UNTIL INSTRUCTION
SUPPLYING PROVIDES -

THE HALF WORDS -^

0(

)G>-
GO TO INTERRUPT

SEQUENCE

i>0-

)&-
 GO TO TIMER SEQUENCE

X^ • WAIT FOR INTERRUPT

ARE THE INSTRUCTION REGISTER HALF WORDS
REQUIRED FOR THIS INSTRUCTION ALL VALI

QSV-N,

^IS A RECOVERY PROCEDURE
REQUIRED BECAUSE OF AN
NCORRECT BRANCH GUESS?

 GO TO RECOVERY SEQUENCE

<x

HAS A STORE INTO THE INSTRUCTION
STREAM POSSIBILITY BEEN SIGNALLED?X>

WAIT FOR CLARIFICATION &
• GO TO RECOVERY SEQUENCE

IF NECESSARY

^
DOES THE INSTRUCTION LIE ON

HALF WORD BOUNDARY IN STORAGEDq
DOES THE INSTRUCTION CONTAIN

A VALID OPERATION CODE' >
GO TO INTERRUPT

SEQUENCE GENERAL INSTRUCTION
DECODE INTERLOCKS

INSTRUCTION CLASSIFYING

IS THE INSTRUCTION A
FLOATING POINT OPERATION'

^ IS THE SPECIFIED Rl OPERAND
REGISTER 0. 2. 4. OR 6?

WAIT UNTIL EXECUTION
MAKES SPACE AVAILABLE

IS THE FLOATING OPERATION
BUFFER STACK FULL' >

-©(

'

IS THE INSTRUCTION A
REGISTER STORAGE (RX)

TYPE' ^ \FIXI

IS THE INSTRUCTION A
BRANCH OR STATUS SWITCH

'

OR STORAGE TO STORAGE
OPERATION'

THE INSTRUCTION A
FIXED POINT OPERATION)G>

IS THE SPECIFIED R2 OPERAND
REGISTER 2. 4, OR 6' y?

ARE THE GENERAL
PURPOSE REGISTERS
(GPRS) REQUIRED FOR
OPERAND ADDRESS

GENERATION AVAILABLE

GO TO INTERRUPT
SEQUENCE

WAIT FOR FIXED EXECUTION
TO MAKE GPRS AVAILABLE

1. ISSUE THE INSTRUCTION TO
THE FLOATING POINT STAGE

2 UPDATE THE FLOATING
OPERATION STACK BUSY STATUS

3. PROCEED TO DECODE
OF NEXT INSTRUCTION

GATE ADDRESS PARAMETERS
TO ADDER
GATE CONTROL INFORMATION
TO ADDER TO BE PASSED
ONTO MAIN STORAGE
INSTRUCTION UNIT

rX

INITIATE PROPER INSTRUCTION
UNIT SEQUENCER TO

EXECUTE THE OPERATION

CLEAR THE APPROPRIATE
INTERLOCKS (SIMILAR TO
FLOATING POINT) S. ISSUE
TO THE FIXED POINT STAGE

AND ADDRESS GENERATING
HARDWARE (IF NECESSARY)
AND GO TO DECODE OF
NEXT INSTRUCTION

WILL THE EXECUTION OF THIS
'

OPERATION CHANGE AN
ADDRESS PARAMETER USED
IN A LOOP ESTABLISHING

INSTRUCTION?

IS THE ADDRESS ADDER
BUSY?)&-

REMOVE THE LOOP MODE

DOES THE INSTRUCTION
REQUIRE A STORAGE

FETCH?

WAIT FOR ADDER
TO BE AVAIUBLE

IS THERE A STORE
ADDRESS BUFFER

AVAILABLE?

WAIT FOR EXECUTION
TO FREE A STORE ADDRESS

BUFFER

IS THERE A FLOATING
OPERAND BUFFER AVAILABLE;>?

WAIT UNTIL EXECUTION FREES
AN OPERAND BUFFER

290
Fig. 15. Decision sequence for instruction decoding and instruction issuing.

Chapter 18
|

The IBM System/360 Model 91 : Machine Philosophy and Instruction-Handling 291

<
IS THE ADDER GENERATING

A STORE ADDRESS? >?

DOES THE STORE ADDRESS ,
GENERATION INDICATE \^^

A CARRY INTO THE DOUBLE Y ")
WORD PORTION OF THE /S^

ADDRESS (BIT 28)? /

IS THE IP ADDRESS (MOD 8)
: STORE ADDRESS (MOD 8)'
r BITS 25 28 OF BOTH]

LiR & STORE ARE EQUAL J

(BLOCK
THE 1

CURRENT DECODE)

IS THERE ANY POSSIBILITY
THAT THE CURRENT INSTRUCTION

CROSSES A DOUBLE WORD BOUNDARY
AND IF SO. DOES THE [R + 1 ADDRESS
(MOD 8) = STORE ADDRESS (MOD 8)?

Fig. 16. Decode interlock (established following the issue of a store instruction).

execution unit when it prepares to execute the instruction. With

this technique the execution units are isolated from storage and

can be designed to treat all operations as involving only registers.

A final decoding function is mentioned here, to exemplify the

sort of design considerations and hardware additions that are

caused by performance-optimizing techniques. The branch se-

quencing is optimized so that no address generation is required

when a branch which established the loop mode is re-

encountered. This is done by saving the location, within the

instruction array, of the target. It is possible, even if unlikely, that

one ofthe instructions contained in a loop may alter the parameter

originally used to generate the target address which is now being

assumed. This possibility, although rare, does require hardware to

detect the occurrence and terminate the loop mode. This

hardware includes two 4-bit registers, required to preserve the

address of the general purpose registers (X and B) utilized in the

target address generation, and comparators which check these

DECODE
STORE
OPERATION

STORE
ADDRESS

COMPARE IC
WITH STORE
ADDRESS
(TRUNCATED)

BLOCK
DECODE OF
INSTRUCTION
FOLLOWING
STORE
/IF COMPARE N

\ EQUAL I

TRANSMIT
ADDRESS TO
STORE DATA
BUFFER

COMPARE
STORE
ADDRESS WITH
INSTRUCTION
ARRAY BOUNDS

BLOCK DECODE

I IF BETWEEN \

\ BOUNDS I

INITIATE

RE FETCH
FOR AFFECTED
INSTRUCTION
WORD

BLOCK DECODE

DECODE FREE
TO PROCEED
UNDER NORMAL
INTERLOCKS

Fig. 17. Effect of the decode interlock on pre-fetched instructions.

addresses against the sink address (Rl) of the fixed-point instruc-

tions. Detection of a compare and termination of loop mode are

necessary during the decoding interval to ensure that subsequent

branch sequencing will be correct.

The address-generating time interval provides for the combin-

ing of proper address parameters and for the forwarding of the

associated operation (fetch or store) control to the main storage

control element through an interface register. A major concern,

associated with the address parameters, was to decide where the

physical location of the general purpose registers should be. This

concern arises since the fixed-point execution unit, as well as the

instruction unit, makes demands on the GPR's, while the

packaging split will cause the registers to be relatively far from

one of the units. It was decided to place them in the execution

unit since, first, execution tends to change the registers while

address generation merely examines their contents, and second,

it was desired that a fixed-point execution unit be able to

iteratively use any particular register on successive time intervals.

In order to circumvent the resulting time delay (long wire

separation) between the general purpose registers and the address

adder, each register is fed via "hot" lines to the instruction unit.

The gating of a particular GPR to the adder can thereby be

implemented locally within the instruction unit, and no transmis-

sion delay is incurred unless the register contents have just been

changed.

Placing the GPR's outside the instruction unit creates a delay of

two basic time intervals before a change initiated by the instruc-

tion unit is reflected at the address parameter inputs from the

GPRs. This delay is particularly evident when it is realized that

the address generated immediately following such a GPR change

generally requires the contents of the affected register as a

parameter. For example, branch on index, branch on count,

branch and link, and load address are instruction unit operations

292 Part 2
I
Regions of Computer Space Section 3

I
Concurrency: Single-Processor System

which change the contents of a GPR. Further, in loop situations

the target of the branch frequently uses the changed register as an

index quantity in its address. Performance demands led to the

incorporating of controls which recognize the above situation and

effect a by-pass of the GPR. This entails substituting the content of

the adder output register (which contains the new GPR data) for

the content ofthe affected GPR. One performance cycle was saved

by this technique.

In addition to address generation, the address adder serves to

accomplish branch decision arithmetic, loop mode testing, and

instruction counter value generation for various situations. In

order to perform all of these ftinctions, it was required that the

adder have two 32-bit inputs and one input of 12 bits. One of the

32-bit inputs is complementable and a variety of fixed, single-bit

inputs is provided for miscellaneous sequences. The data path is

illustrated in Fig. 18.

Status Switching and Input/Output. The philosophy associated

with status switching instructions is primarily one of design

