
Chapter 18

The IBM 1401

The second-generation transistor-technology IBM 1401 has been

included both because a large number 1 have been produced and

because it differs from common fixed word length binary and deci-

mal computers. IBM 1401s are used in business data-processing

applications requiring variable-length character strings or fields

and rather limited calculating ability. Two specific applications

are as a card processor in making a transition from plugboard

programmed calculators to full-scale automatic computations and

for converting data from one medium to another, for example, from

card to tape. The 1401 was little used by the scientific, engineer-

ing, and scientific business data-processing communities, probably

because of the limited Mp size, the low overall processing speed,

and the lack of concurrent I/O operation in the smaller configura-

tions. However, it did achieve considerable use as a stand-alone

Cio in C(7090) installations, perhaps because of the speed and

quality of the T('1403; line; printer).

Although undoubtedly influenced by machines outside the IBM

organization, the IBM 1401 is derived primarily from the IBM 702

and 705, which are variable word length decimal machines. The

relationship of the various IBM decimal computers to one another

is shown in Fig. 1. (RCA's early computers
2 also use a combination

of fixed-length and variable-length 7-bit character strings and may
have influenced the 1401.)

The IBM 1401's ISP was the first to be adopted by another

company. Honeywell defined its H-200 ISP to be a superset of the

IBM 1401 ISP. The ISP of the H-200 is more complex and increases

performance by organizing Mp by both characters and words.

The IBM 1401, 1440, and 1460 are the only IBM computers
to be completely character-string oriented. That is, both instruc-

tions and data are stored in variable-length character strings; these

strings are addressed by a pointer register to the string. The ad-

dress integer is fixed at three characters. The encoding process

for addresses is given in Appendix 1 of this chapter. The 3-char-

acter address (3x6 bits) is assigned as 3 X 4 bed characters for

encoding addresses 0:999; 2x2 bits for selecting 16 X 1,000

addresses; and 2 bits for selecting one of the three index registers.

The IBM 1620 processes variable-length data strings, although

1T
Jp to 1966, more 1401s were produced than any other model. An esti-

mated 7,500 1401s, 1,500 1401 G's (card-only system), 3,600 1440s, and 1,500

1460s were produced. About 1,800 1620s were produced.
2RCA 301, 501, and 601.

the instruction length is a fixed 12-digit string corresponding to

a word in Mp. The 1620, though not identical to the 1401, is

almost a member of the same family.

The 1401 evolved. Figure 1 shows the evolution of "features"

which have created new computers. The 140 l's optional features

are mainly design afterthoughts; they sometimes increase perform-

ance, sometimes make certain operations possible, and sometimes

provide substantive change. There are approximately 19 features

in the 1401: memory expansion beyond the anticipated 4,000

characters and index registers required encoding the field bits of

the A and B addresses; store A-Address and store B-Address register

Vorloble- character

string acta and

Fi*ed
-
length instruction,

variable
"
character

string data

FiKed length instruction,
tixed

-
length data

(Honeywell H-200)

I
1401

|
7070 7074 7072

|
1620 1710 1620 III

702 705 705 III

650

Core
,
vacuum tubes

|

I650
I

Plugboard and punched"
cord programmed
calculators

M(< 200 digit]

vt.drum, XR,disk, magnetic tope

305<RAMAC)U— Technology:

+ core.transistor/t;

vt, disk

I 609 608,610 I

second generation

Technology: vacuum tube/vt, t tt

electromechanical ;

first generation



226 Part 3
|

The instruction-set processor level: variations in the processor Section 3
|

Processors for variable-length-string data

instructions are necessary for subroutines—the Store Address Regis-
ter Feature; Indexing Feature; Multiply-Divide Feature; High-

Low-Equal Compare Feature; Read Release and Punch Release

Feature; the Column Binary Feature; Early-Card-Read Feature;

Processing Overlap Feature, etc.

PMS structure

The 1401 PMS structure (Fig. 2) is an early 1 Pc structure. The

diagram does not show the S(flxed) Pc interconnection structure

with the Ms and T. The Pc-(Ms | T) interconnection restricts the

concurrency of T and Ms. The optional processing overlap feature

provides a link to Mp to allow the T(card; read, punch) to be run

concurrently with Pc processing. When any of the peripheral
devices are operating without the processing overlap feature, the

Pc is dedicated to be a data transmission link or K (as in earlier

computers). The device K is connected directly to Pc. For example,

Ms(disk, magnetic tape) data transfers use the main registers of

the Pc and can tie it up full time during data transmission. By
careful programming, several devices can be synchronized and

thus run concurrently for communicating with Pc from a K. The

Pc does not have an interrupt system. Thus the peripherals have

no way of communicating with Pc. Subsequent models, the 1440

and 1460, added interrupt capability and made it easier to control

multiple simultaneous data transfers among the peripheral K's

and Pc.

-T. console-

Mpt Pc'-,-— T('1402; card; reader, punch)-

T(
'

1^03 I

'

1A0A; line; printer)-*

T('H07 Console Inquiry Station; typewriter)-

T(pap,er tape; reader)*-

Ms(#l:6; magnetic tape)-

-Ms( l

l405; disk)

Pc(string; I
** 8 char/instruction; M. processor state

(7 ~ 16 char); technology; vacuum tubes; 1 960 — ] 965 ;

descendants MMO, 1 460)

2
Mp(core; 11.5 us/char; 1)000 ~ 16000 char; (7,1 parity)

b/char)

Fig. 2. IBM 1401 PMS diagram.

ISP structure

The IBM 1401 ISP is given in Appendix 1 of this chapter. Instruc-

tion strings and data strings are delimited by the special F bit

in a character. A character in Mp is of the form 1

C<check,F,B',A', 8, 4, 2, 1>

An n-character string is C[0], C[l], . . . C[n - 1]

and would be stored in Mp[j:j + n — 1]

The first character (or head) of an instruction must contain the

word-mark flag or F bit. The head of the instruction, which is to

be interpreted next, is held at Mp[I], and- succeeding characters

of the instruction are at Mp[I + 1], Mp[I + 2], etc. Correctly
defined instructions are 1, 2, 4, 5, 7, and 8 characters long. Un-

defined instruction lengths of up to 8 characters are also inter-

preted without an error condition. The interpretation algorithm

presented in the ISP description does not explain the action of

instructions which have an incorrect length. Actually, the 1401

Reference Manual does not go into details of general instruction

interpretation but dwells on "correct" operation. Table 1 presents
the correct instruction lengths and formats. If we take the instruc-

tions in the table, the set is not variable in length but is fixed at

these six sizes. The instruction set (not including the input/output

instructions) is presented in Table 2. This table also provides a

hint of the implementation, since the execution times are given
in terms of memory cycles.

The ISP state, unlike that of more conventional processors, has

no temporary operand storage (e.g., accumulators). The ISP state

has registers which point to operands. The state of the machine

(see Appendix 1) is basically: Mp, the Instruction Location Counter,

Indicators or miscellaneous bits, three 3-character blocks of Mp
reserved for Index registers, and the two registers A„address and

B„address which point to data operands.

Instruction interpretation

There are three principal state types in processing an instruction:

o.q., when the instruction is being formed; o.v., when the operands
are being accessed or the results are being stored in Mp; and o,

when the operation specified by the instruction is being carried

out. Each state transition corresponds essentially to a memory
access. The three instruction types of Fig. 3 each have their own

particular states. Only types 1 and 2 process the variable-length

1 See Appendix 1 of this chapter for the meaning of the bits in a character.

We have renamed the A and B bits A' and B' to avoid confusion with

the registers.



Chapter 18 The IBM 1401 227

Table 1 IBM 1401 instruction formats

Length

(char)

Location:

MP] M[(l + l):(l + 3)] M[(l + 4):(l + 6)] M[l + 7] Types

1



228 Part 3 The instruction-set processor level: variations in the processor Section 3
|

Processors for variable-length-string data

Table 2 IBM 1401 instruction set (excluding input, output)

Instruction

Op
Code]

Execution time

in memory cyclest

Length



Chapter 18 The IBM 1401 229

No termination

character for q

q fetch

char, string

complete
Operation

Data
store

in M
V

Type li Type 2:

MCBJ-f (MCA], MCEVJ.fchar string}) MCB:-f(MC AH.Cchar. string})

NOTE ; The time in each state is roughly 1 memory cycle

q The instruction q
oq Operation and memory access to determine instruction q , a correct tength

instruction 1, 2, 4, 5, 7, and 8 characters
o.v Operation and memory access fetches to determine an operand
o Operation specified in the instruction q; requires no time
o.v' Operand and memory access stores to restore result operand

character-by-character scan with string A and B being added

together; the result string is placed in B. States 4 and 5 define

the string addition, when string A is terminated; i.e., it is con-

sidered to be zero. States 7, 8, 9, and 10 define the recomple-

mentation process in which the B string has to be recomplemented.
This condition occurs when the operand signs differ, and the

A-field result is greater than the B field; the results are in ten's

complement form. States 7 and 8 define the B-field scan (to return

to find the least digit of B), and states 9 and 10 define the recom-

plementation of each character. Thus an add operation may re-

quire up to three scans of the B string.

The 1401 ISP (Appendix 1 of this chapter) has four parts: State

Declaration, Instruction-interpretation process, Instruction-exe-

cution process, and Operand address-register calculation proc-

ess. The Operand address-register calculation process is analogous

to the Effective-address calculation in more conventional Pc's and

is the most elaborate part of the instruction interpretation. The

operand address registers A^address and B_,address are part of the

Pc state and must be retained between instructions. At the end

of an instruction, these registers point to the character of the next

lowest data string in Mp, that is, the character at C[n].

Implementation

The 1401 has a small Pc state, and there are only a few registers

in the implementations. Figure 5 shows the registers, interregister

transfer paths, and data operations that make up the register-

Fig. 3. IBM 1401 instruction-interpretation state diagram.

n — 1]. The values of the string are based on the bed value of

the 8, 4, 2, 1 bits of each digit. The magnitude of the integer is

C[n - 1] X lO"- 1 + C[n - 2] X 10" + • + C[0] X 10°

and the sign is

Sign := ((-,C[0](A'> A C[0]<B'»-» -;

-,(-,C[0]<A'> AC[0]<B'»^+)

A string is addressed (or accessed) via the A^,address or B„ad-

dress pointer registers. These point to the tail (or least significant

digit), that is, C[0], of the string. The instruction-execution state

diagram of a variable-string add is shown in Fig. 4. The state

diagram assumes that A and B address registers are set up accord-

ing to Fig. 3. Thus Fig. 4 is a more detailed description of states

o.v, o.v, o, and o.v'. Each horizontal pair of states (Fig. 4) corre-

sponds to a single scan of the states of type 1 instruction o.v, o.v, o,

o.v' in Fig. 3. Transition: among states 2 and 3 correspond to the

Carry, M[B}--M[B] +M[A] + carry;

A-*-A-1; A---A-1;

-M [B+1]<F>* -, M [A+l]<F>— ;

im[b<i]<F>*M [A+l]<F>*;

carry, M[B]-»- m[b] + carry +0;"*- B -1
;

-iM[B+l]<F>—;

trecomp-."; g m[B+1]<F>-^;

Recomp-^B-«-B+1;y%' M[B + l]<F>-^j

1 B— B + 1;

\nM[B]<B'>^;

m[b}<f>-mb^b-i)

Initial state; operand
addresses in AuAddress
and BuiAddress registers

pointing to A and B strings

3 ]

char, string addition

A string has terminated

>B string has terminated

I M[B]— -.M[B] B— B-1;

iM[Btl]<F>*;

^ M [B + l]<F> -»;

8 { Go to head

0+ B string

10 L Recomplement

|

B string

Result string ,B,

has wrong sign
and must be

recomplemented

Final state, M
[b]{ char, string}

has result data

Fig. 4. IBM 1401 add-instruction-execution state diagram.



230 Part 3 The instruction-set processor level: variations in the processor Section 3
|

Processors for variable-length-string data

UOI BASIC SYSTEM

HUNTER

INHIBIT DRIVE r»-

~~T"
CORE

STORAGE

ADDRESS
MODIFIER

STORAGE
ADDRESS
REG

3=^
OP

REG

ZL

A - AUX
ADDRESS

t t

r
r» ..u

ADDER
AND
LOGIC

OP
DECODE

U01 TAPE. MULTIPLY. DIVIDE UOI PROCESS OVERLAP

PRINTER

INHIBIT DRIVE

t ~rr
CORE

STORAGE

ADDRESS

MODIFIER

STORAGE
ADDRESS
REG

IX

READER

zr~
PRINTER

OP

REG

ADDRESS

12=

£^3
A - AUX

ADDRESS

=5=

ADDER
AND

|

—
|

LOGIC

jy.
OP

DECODE

r
B - AUX

ADDRESS

id

INHIBIT DRIVE

i

r~

CORE

STORAGE

ADDRESS
MODIFIER

STORAGE
ADDRESS
REG

3

O

REG

ADDRESS

ix:
ADDRESS

=E=

A - AUX

ADDRESS

REG I-.

ADDER
AND
LOGIC

,»
LOGIC

3T
6 -AUX

ADDRESS

2Z

Fig. 5. IBM 1401 system data flow (registers structure). (Courtesy of International Business Machines Corporation.)

transfer level primitives of the complete computer together with

several options. The options, of course, increase the complexity

(and concurrency). Without the overlap feature, for example,

all data are accessed in Mp via Pc's address registers.

There are register pairs consisting of a 3-character memory
address (access) register, and a 1-character data register. The

memory-address, memory-data register pairs are A^address,

A„data; B„address, B^data; I„address, Operation/Op; Overlap-

„address, Overlapwdata/0.

The implementation is straightforward, and the instruction

times (Table 2) show the implementation at the register-transfer

level. For example, as an instruction is being read by Pc, prior

to instruction execution, each new character is taken in and ex-

amined for the instruction-terminating flag bit. When the flag bit

is present, the instruction is complete and ready to be executed.

The character of the next instruction is not saved but is picked

up again after the previous instruction has been executed.



Chapter 18 The IBM 1401 231

APPENDIX 1 IBM 1401 ISP DESCRIPTION

Appendix 1

IBM 140] JSP Description

Pc* Pc Console* and 10 Device Control States
The following description is a highly simplified description of the IBM 1401, For example, the edit instruction given below in one-

line corresponds to a three page description in the Reference Manual for the 1401. It does not include the input-output instruc-
tions which transfer character strings to fixed blocks of primary memory. The character strings are denoted as character. string/
ch. string/ch.s. For the character. string operations the Ajzddress/A and B^address/B registers contain a pointer to the next A ana
B strings at the end of the operations; this aspect of the operation is not described—but implied in the string operations.

I [l :3]<P
r

,A' ,8,4,2 1
1> I^address register* the instruction location pointer

A[l :3]<$' ,A> ,8,4,2, 1> A^address register

B[l :3]<P* ,A* ,8,4,2, 1> B^address register

String Data pointer registers A and B point to the least significant digit end of a variable length string in memory (see Mp
State definition be low J . Normally A and B are decreased by one and move to the more significant end for variable length string
{ch.s} operations. B is normally the result string* and the length is defined by a word mark* F* the last character of the B

string. If A string has a word mark* and is shorter than the B string* then the remaining A string is taken to be a zero. I is

a pointer to the most significant digit of the instruction. Although Pc register characters have the B' *A'*8*4*2*1 bits* the M
has two additional bits check* and field. The bits of Mp are:

Check/Parityjyit. The sum (modulo 2) + 1, of the F*B'*A'*8*4*2*1* bits.

WM/WordJtiark/F/FielcLbit. This bit defines the beginning of each instruction. The F bit also defines the most significant
digit (the last digit) of a variable length numeric integer string.

B' *A
f

*8*4*2*l bits. A 6 bit character is encoded in these bits. If numeric data is represented* the 8*4*2*1 bits are used
as a bed digit. The sign is encoded with the least significant digit. For numeric data* a minus sign* -* is encoded by
(A' - 0) A (B' = 1). All other combinations of A'*B

f

represent a plus sign* +.

XR [1:3] D;3]<B ,

,A;8 r 4,2,l>i= M [87:89, 92:94, 97)99]<B' ,A' ,8,4,2, 1> 3 three character optional index registers stored in Mp

Indicators [0:63] logical bit array encoding Pc State (not including I*A* and B)

There are a set of 31 status bits of the possible 64. They can be cleared or set under instruction control. Some Indicators
are used by external Pc status or I/O status. The indicators can be selected for testing by the d character of an instruction.

The Pc indicators assignment to Pc State is:

Uncondi tional := I

Sense,_swi tch<£,B,C ,D, E, F,G>

Unequa lucompa re

Equaltjcompare

Low^jcompare

Hi ghucompare

Overflow

The indicator array is partially encoded below:

Indicator [000000] := Unconditional

Indicator
[l lOOOl] := Sense^swi tch<A>

Indicator [OlOOOl] :- Unequa l^compare

Indicator [01 lOOl] := Overflow

Mp State

M[0 : 1 5999]<Check ,F,B\A',8,4,2,I>

address[X[1:3]<B ,

,A\8,4,2,l>;|<l:5>, := (

always a 1

a set of 7 console keys

B ? A

B = A

B< A

B> A

set by arithmetic overflow* cleared by a branch instruction if
it is set

primary memory

Address encoding for 1 of 16000 from a 3 char value of regis-
ter X. Indexina described below.



232 Part 3 The instruction-set processor level: variations in the processor Section 3
[

Processors for variable-length-string data

APPENDIX 1 IBM 1401 ISP DESCRIPTION (Continued)

x [3] <b
'

,A*> x **ooo 10 +

x[]]<B' ,A'> x ]000, +

x[l :3]<«,i+,?_,]>[bcd. string})

Instruction Format

op<5,B' ,A' ,8,^,2 J>

d^har<F, B
1

,A' ,8,4,2,1>

d^char^present

act i ve

A,_add res s,_,p resent

B,_add res s^p resent

instruction register specifying the operation

additional character used in some instructions

indicates a djyhar is used in the current instruction

indicates an instruction string is still being fetched

indicates there is an A address part of an instruction

indicates there is a B address part of an instruction

Move, load, and store instruction types control the initialization of A and B.

move or load or store A or B/mls ;= ((move characters and edit = op) v (load characters to A word mark = op) v (move characters
to A or B words mark = op) v (move characters and suppress zeros - op) V (move numerical = op) V (move zone = op) V (store A

address register = op) v (store B address register = op))

Instruction Interpretation Process

Run _» (op «- M [l] : I «- I + 1 ; next

Fetch^operand^addresses ; next

I nstruct lonLjexecut ion)

fetch operation

fetch addresses for A and B

execute

Address Calculation Process
The 1401 calculates explicit effective addresses by first setting up the A, and B address registers. Operands are not fetched
in Instruction^0xecution. There are 1,2,4,5,7 and 8 character instructions which have the op and the following operands

(respectively) : no char, d char, the I or A address, the I or A address and d char, the A and B address, and the I or A address
and B address and d char. The following process defines the operation for correct length instructions.

Fetch^operand^addresses := (

d^jchar^present *- 0;

M[|]<F> -» (active <- 0);

"
| M[|]<F> ~» (active <- 1; -^ mis -» B *-0); next

active -» (d^char ^-get^char; next A[i] «_ d^char;

d^char^present «- 1 ; next

-imls -» (B[l] *_ A[l] )); next

active -» (A[2] ^get^char; next -1 mis -» b[2] «- a[2] ) ; next

active -» (A[3] «_ get^char; next -, mis -» B[3] «-A[3]): next

active-* (A^ddress^present «- 1 ) ;

,

active -» (A^address^present «-0); next

A^address^present -» (d^char^present «-0;

(A[2]<B',A'> * 0) -4 (A ^A + XR[A[2]<B\A'>] {3.ch}));

iM[l]<F> _> (B «- 0); next

active -» (d,_,char «- get,_,char ; next B[l] ^-d^har;

d.jChar.^present «- 1 ) ;

active -* (b[2] *- get,_,char) ; next

active -» (B[3j «- get^char) ; next

active -» (Bwaddress^present «- 1 ) ;

1 active -» (B^ddress^present *- 0) ; next

Bwaddress^jpresent -* (

d^char.jjresent <-0;

(B[2]<B' ,A'> t 0) -» (B <_ B + XR[B[2]<B' ,A'>] [ 3. eh}));

1 char instruction

proceed to get an I or A address

I or A address set up or d^char

record whether I or A address is present

add index register to I or A

B address set up or djzhar

record whether B address is present

add index register to B



Chapter 18 The IBM 1401 233

APPENDIX 1 IBM 1401 ISP DESCRIPTION (Continued)

(-i M
[l J<5> A active) -* (d,_char <- get,_,char;



234 Part 3 The instruction-set processor level: variations in the processor Section 3 Processors for variable-length-string data

APPENDIX 1 IBM 1401 ISP DESCRIPTION (Continued)


