
Chapter 16

Burroughs' B6500/B7500 Stack

Mechanism^

E. A. Hauck / B. A. Dent

Introduction

Burroughs' B6500/B7500 system structure and philosophy are an

extention of the concepts employed in the development of the

B5500 system. The unique features, common to both hardware

systems, are that they have been designed to operate under the

control ofan executive program (MCP) and are to be programmed
in only higher level languages (e.g., ALGOL, COBOL, and

FORTRAN). Through a close integration of the software and

hardware disciplines, a machine organization has been developed
which permits the compilation of efficient machine code and

which is addressed to the solution of problems associated with

multiprogramming, multiprocessing and time sharing.

Some of the important features provided by the B6500/B7500

system are dynamic storage allocation, re-entrant programming,
recursive procedure facilities, a tree structured stack organization,

memory protection and an efficient interrupt system. A compre-
hensive stack mechanism is the basic ingredient of the B6500/

B7500 system for providing these features.

B6500/B7500 Processor

The command structure of the B6300/B7500 Processor is Polish

string, which allows for the separation of program code and data

addresses. The basic machine instruction is called an operator

syllable. This operator syllable is variable in length, from a

minimum of 8 bits to a maximum of96 bits. In the interest ofcode

compactness, more frequently used operator syllables are encod-

ed in the 8 bit form.

The Processor is provided with a hardware implemented stack

in which to manipulate data and store dynamic program history.

Also, data may be located in arrays outside the stack and may be

brought to the stack temporarily for processing. Program parame-

ters, local variables, references to prograim procedures and data

arrays are normally stored within the stack.

The data word of the B6500/B7500 Processor is 51 bits long.

Data are transferred between memory and within the Processor in

51 bit words. The first 3 bits ofthe word are used as tag bits, which

'SJCC, 1968, pp. 245-251.

serve to identify the various word types as illustrated in Fig. 1.

The remaining 48 bits are data. Tag bits, in addition to identifying

word type, provide the B6500/B7500 Processor with two unique
features: (1) data may be referenced as an operand, with the

processor worrying about whether the operand consists of one or

two words, and (2) system integrity and memory protection are

extended to the level of the basic machine data words. If a job

attempts to execute data as program code, or to modify program

code, the system is interrupted.

The Stack

The stack consists of an area of memory assigned to a job. This

stack area serves to provide storage for basic program and data

references associated with the job. In addition, it provides a

facility for the temporary storage of data and job history. When
the job is activated, four high speed registers (A, X, B and Y) are

linked to the job's stack area (Fig. 2). This linkage is established by
the stack pointer register (S), which contains the memory address

of the last word placed in the stack memory area. The four

top-of-stack registers (A, X, B and Y) function to extend the job's

stack into a quick access environment for data manipulation.

Data are brought into the stack through the top-of-stack

registers. The stack's operating characteristic is such that the last

operand placed into the stack is the first to be extracted. The

top-of-stack registers become saturated after having been fiUed

with two operands. Loading a third operand into the top-of-stack

Oaia vwocdi



Chapter 16
|
Burroughs' B6S(X)/B7500 Stack Mechanism 245

IN/OUTPUTJ TD^ofjtackVegister

Path of -<—r^

data to stack!

I

I

I

I

I

Stack area

assigned

to program

Stack area

currently

in use

WORD ntx

TOS WORD

WORDn

Stack

memory
area

r- S

I
Stack limit register)

SL

BOS

I :

Fig. 2. Top of stack and stack bounds registers.

registers causes an operand to be pushed from the top-of-stack

registers into the stack memory area. The stack pointer register (S)

is incremented by one as each additional word is placed into the

stack memory area; and is, of course, decremented by one as a

word is withdrawn from the stack memory area and placed in the

top-of-stack registers. As a result, the S register continually points

to the last word placed into the job's stack memory area.

A job's stack memory area is bound, for memory protection, by
two registers, the Base of Stack (BOS) register, and the Stack

Limit (SL) register. The contents of the BOS register defines the

base of the stack area, and the SL register defines the upper limit

of the stack area. The job is interrupted if the S register is set to

the value contained in either SL or BOS.

The contents of the top-of-stack registers are maintained

automatically by the processor hardware in accordance with the

environmental demands of the current operator syllable. If the

current operator syllable demands that data be brought into the

stack, then the top-of-stack registers are adjusted to accommodate

the incoming data, and the surplus contents of the top-of-stack

registers if any, are pushed into the job's stack memory area.

Words are brought out of the job's stack memory area and pushed
into the top-of-stack register for operator syllables which require

the presence of data in the top-of-stack registers, but do not

explicitly move data into the stack.

Top-of-stack registers operate in an operand oriented fashion as

opposed to being word oriented. Calling a double precision

operand into the top-of-stack registers implies the loading of two

memory words into the top-of-stack registers. The first word is

always loaded into the A register where its tag bits are checked. If

the word has a double precision tag, a second word is loaded into

X. The A and X registers are then concatenated to form a double

precision operand image. The B and Y registers concatenate when
a double precision operand is moved to the B register. The double

precision operand splits back to single words as it is pushed from

the B and Y registers into the stack memory area. The reverse

process is repeated when the double precision operand is

eventually popped up from the stack memory area back into the

top-of-stack registers.

Data Addressing

Three mechanisms exist within the B6500/B7500 Processor for

addressing data or program code: (1) Data Descriptor (DD)/

Segment Descriptor (SD), (2) Indirect Reference Word (IRW),

and (3) StuflFed Indirect Reference Word (IRWS). The Data

Descriptor (DD) and Segment Descriptor (SD) are B5500 carry-

overs and provide the basic mechanism for addressing data or

program segments which are located outside of the job's stack

area. The basic addressing component of the descriptor is an

absolute machine address. The Indirect Reference Word (IRW)
and the Stuffed Indirect Reference Word (IRWS) are B6500/B7500

mechanisms for addressing data located within the job's stack

memory area. The addressing component of both the IRW and

IRWS is a relative address. The IRW is used to address within the

immediate environment of the job's stack, and addresses relative

to a display register (described later in Non-Local Addressing). The

IRWS is used to address beyond the immediate environment of

the current procedure, and the addresses relative to the base of

the job's stack. Addressing across stacks is accomplished with an

IRWS.

The Descriptor

In general, the descriptor functions to describe and locate data or

program code associated with a given job. The Data Descriptor



246 Part 2
I
Regions of Computer Space Section 2

{ Memory Hierarchies and Multiple Processes

(DD) is used to fetch data to the stack or store data from the stack

into an array which resides outside the job's stack area. The format

of Data and Segment Descriptors are illustrated in Fig. 1. The

ADDRESS field of both descriptors is 20 bits in length and

contains the absolute address of an array in either main system

memory or in the back-up disk store. The Presence bit (P)

indicates whether the referenced data are present in main system

memory or in the back-up disk store, and is set equal to ONE
when the referenced data are present in main system memory.
A Presence Bit Interrupt is incurred when the job makes

reference to data via a descriptor which has a P bit equal to ZERO.
The Presence Bit Interrupt stimulates the operating system

(called the Master Control Program, br MCP) to move the data

from disk to main memory. The data location on disk is contained

in the ADDRESS field of the DD when the P bit is equal to

ZERO. After transferring the data array into the main memory,
the operating system (MCP) marks the descriptor present by

setting the P bit equal to ONE, and places the current memory
address into the ADDRESS field of the descriptor. The interrupt-

ed job is then reactivated.

A Data Descriptor may describe either an entire array of data

words, or a particular element within an array of data words. Ifthe

descriptor describes an entire array, the Indexed bit (I-bit) in the

descriptor is ZERO, indicating that the descriptor has not yet

been indexed. The LENGTH field of the descriptor defines the

length of the data array.

A particular element of an array may be described by indexing

an array descriptor. Memory protection is insured during in-

dexing operations by performing a comparison between the

LENGTH field of the descriptor and the index being applied to it.

An Invalid Index Interrupt is incurred if the index value exceeds

the length of the memory area defined by the descriptor.

If the value being used to index the descriptor is valid, the

LENGTH field ofthe descriptor is replaced by the index value. At

this time the I-bit in the descriptor is set to ONE to indicate that

indexing has taken place. The ADDRESS and LENGTH fields are

added together to generate an absolute machine address whenev-

er a present, indexed Data Descriptor is used to fetch or store

data.

The Double Precision bit (D) is used to identify the referenced

data as being either single or double precision and, as a result, is

also associated with the indexing operation. The D bit being equal

to ONE signifies double precision and implies that the index value

be multiplied by two before indexing.

The Read-Only bit (R) specifies that the memory area described

by the Data Descriptor is a read-only area. An interrupt is

incurred upon referencing an area through a descriptor with the

intention to write if the R bit is equal to ONE.
The Copy bit (C) identifies a descriptor as being a copy of a

master descriptor and is related to the present bit action. The

intent of the copy action is to keep multiple copies of an absent

descriptor linked back to one master descriptor. Copy action is

incurred when a job attempts to pass by name an absent Data

Descriptor. When this occurs, the hardware manufactures a copy
of the master descriptor, forces the C bit equal to ONE and inserts

into the ADDRESS field the address of the master descriptor.

Thus, multiple copies of absent descriptors are all linked back to

the master descriptor.

Non-Local Addressing

The most important single aspect of the B6500/B7500 stack is its

facility for storing the dynamic history of a program under

execution. Two lists of program information are saved in the

B6500/B7500 stack, the stack history list and the addressing

environment list. The stack history list is dynamic in nature,

varying as the job is driven through different program paths with

changing sets of data. Both lists are generated and maintained by
the B6500/B7500 hardware system.

The stack history list is formed from a list of Mark Stack Control

Words (MSCW) which are linked together by their DF fields (Fig.

3). A MSCW is inserted into the stack as a procedure is entered,

and is extracted as that procedure is exited. Therefore, the stack

Procedure "B"

>n

Procedure "D"

Procedure "C"

Outer program block

Address

environment

Stack

history

Disp r



Chapter 16
'

Burroughs' B6500/B7500 Stack Mechanism 247

history list grows and contracts in accordance with the procedural

depth of the program. Mark Stack Control Words serve to identify

the portion of the stack related to each procedure. When the

procedure is entered, its parameters and local variables are

entered in the stack following the MSCW. When executing the

procedure, its parameters and local variables are referenced by

addressing relative to the location of the related MSCW.
Each MSCW is linked back to the prior MSCW through the

contents of its DF field to identify the point in the stack where the

prior procedure began. When a procedure is exited, its related

portion of the stack is discarded. This action is achieved by setting

the stack pointer register (S) to point to the memory cell

preceding the most recent MSCW (Fig. 4). This top-most MSCW,
pointed to by another register (F), is in effect deleted from the

stack history list by causing F to point back at the prior MSCW,
thereby placing it at the head of the stack history list.

This concept is implemented in the Burroughs' B5500 system,

and it provides a convenient means to handle subroutine entry

and exit. But this mechanism alone also gives rise to one of the

most serious limitations of the ALGOL implementation on the

B5500. In the B3500 stack, local variables are addressed relative

to the first Mark Stack Control Word (which corresponds to the

outer-most block), or relative to the most recent Mark Stack

Control Word (which corresponds to the current procedure). All

intervening Mark Stack Control Words, however, are invisible to

the current procedure. This means that the variables declared

global to the current procedure, but local to some other proce-

dure, cannot be addressed at all! This inability to reference

 «.r,>,f,>./
'f'}'!'/}>

^>hhh%

TOSWORD

MSCW

Discarded

portion

of stack

Stack

history

list

~ Procedure "A"

MSCW

DF *1*H

DF
T7->-3 ;--



24$ Part 2
I
Regions of Computer Space Section 2

j Memory Hierarchies and Multiple Processes

pBEGIN-
REAL VI;
REAL V2;
PROCEDURE A;

rBEGIN'

REAL V3;
PROCEDURE B;

i-BEGIN-

V3^3;
VI ^ V3;

•-END;

B;

•-END;

PROCEDURE C;

BEGIN-

REAL V4;
PROCEDURE D;

rBEGIN-

REAL V5;
V4^4;
V5 ^ 5;

A;

V2 *- V4;
•-END;

D;

•END;

C;

•-END;

(a)

Procedure "B"

Procedure "A

Lexicograpliical level "2"

!ili
=

2, 6 = 2

66 =
2, 6 = 3

66 =
2, 6 = 4

' Lexicographical level "3"

66 =
3, 6 = 2

66 =
3, 6 = 3

 Lexicographical level "4"

66 =
2, 6 = 5

Lexicographical level "3"

66 =
3, 6 = 2

66 =
3, 6 =3

Lexicographical level "4"

66 = 4,6 = 2

Procedure "D'

Outer program block

(b)

Lexicographical

level "4"

Lexicographical

level "3"

Lexicographical
level "2"

Fig. 6. (a) ALGOL program with lexicographical structure indicat-

ed, (b) Addressing environment tree of ALGOL program in (a).

portion of the address couple functions to select the Display

Register which contains an absolute memory address pointing at

the MSCW related to the procedural block (environment) where

the referenced variable is located. The index value of the address

couple is then added to the contents of the Display Register to

generate an absolute memory address to locate the variable.

It should be recognized that the address couples assigned to the

variables in a program are not unique. This is true because of the

ALGOL scope of definition rules, which imply that two variables

may have identical address couples only if there is no procedure
within which both of the variables can be addressed. So this

addressing scheme works because, whereas two variables may
have the same address couples, there is never any doubt as to

which variable is being referenced within any particular proce-

dure.

What this does imply, however, is that there is a unique place (a

MSCW) to which each Display Register must point during the

execution of any particular procedure, and that the settings of the

Display Registers might have to be changed, upon procedure

entry or exit, to point to the correct MSCW. This list of MSCWs
to which the Display Registers must point is called the addressing

environment of the procedure.

The addressing environment of the program is maintained by
the hardware. It is formed by linking the MSCW's together in

accordance with the lexicographical structure of the program.
This linkage information is contained with the Stack Number

(Stack No.) and Displacement (DISP) fields of the MSCW, and is

inserted into the MSCW whenever a procedure is entered. The

contents of the DISP field indicate the environment in which the

entered procedure was declared. Thus the addressing environ-

ment list is formed by linking each procedure entry Mark Stack

Control Word back to the MSCW appearing immediately below

the declaration for that procedure. This forms a tree structured list

which indicates the legitimate addressing environment of each

procedure under dynamic conditions (Figs. 5 and 6b). This list is

searched by the hardware to update the Display Registers'

contents whenever a procedure entry or exit occurs.

The entry and exit mechanism of the Processor hardware

automatically maintains both stack lists to reflect the current

status of the program. Therefore, the system is able to respond to,

and return from, interrupts conveniently. Interrupt response is

handled as a procedure entry. Upon recognition of an interrupt

condition, the hardware causes the stack to be marked, inserts

into the stack an indirect reference word (address couple) pointing

to the interrupt handling procedure, inserts a literal constant to

identify the interrupt condition, and then causes an entry into the

operating system interrupt-handling procedure. The Display

Registers will track with the entry into the interrupt-handling

procedure to make all legitimate variables visible. Also upon

return, the Display Registers track back to the environment ofthe

former procedure, making all of its variables visible again.



Chapter 16 I Burroughs' B6500/B7500 Stack Mechanism 249

Multiple Stacks and Re-Entrant Code

The B6500/B7500 stack mechanism provides a faciUty to handle

several active stacks. These stacks are organized into a single tree

structure. The trunk of this tree structure is a stack which contains

certain operating system global variables, and contains all of the

Segment Descriptors describing the various procedures within

the operating system.

Let us make a distinction between a program, which is a set of

executable instructions, and a job, which is single execution of a

program for a particular set of data. As the operating system is

requested to run a job, a level-! branch of the basic stack is

created. This level-1 branch is a stack which contains only the

Segment Descriptors describing the executable code for the

named program. Emerging from this level-1 branch is a level-2

branch, a stack to contain the variables and data for this job. Thus,

starting from the job's stack and tracing downward through the

tree structure, one would find first the stack containing the

variables and data for the job (at level 2), the program code to be

executed (at level 1), and finally the operating system's stack at the

trunk (level 0).

A subsequent request to run another execution of an already-

running program would require that only a level-2 branch be

established. This level-2 stack branch would sprout from the

level-1 stack that describes the already running program. Thus

two jobs which are different executions of the same program will

have a common node, at level 1, which describes the executable

code. It is in this way that program code, which is not modifiable,

is re-entrant and shared. It comes about simply from the proper

tree-structured organization of the various stacks within the

machine. Thus all programs within the system are re-entrant,

including all user programs as well as the compilers and the

operating system itself

The B6500/B7500 stack mechanism also provides the facility for

a single job to split itself into two independent jobs. It is

anticipated that the most common use of this facility will occur

when there is a point in a job where two relatively large

independent processes must be performed. This kind of splitting

could be used to make full use of a multiprocessor configuration,

or simply to reduce elapsed time by multiprogramming the

independent processes.

This kind of program splitting becomes almost literally "repro-

duction by budding" in the B6500/B7500 system. A split of this

type is handled by establishing a new limb of the tree structured

stack, with the two independent jobs sharing that part of the stack

which was created before the budding was requested. The process

is recursively defined, and can happen repeatedly at any level. An

implementation restriction limits the total number of separate

stacks to 1024.

This tree-structure organization for handling multiple stacks is

referred to as the Saguaro Stack System.

Linkage of stack branches is achieved through a single array of

data descriptors, the stack vector array (Fig. 7). A data descriptor

is entered into the array for every stack branch as it is set up by
the operating system. This data descriptor, the stack descriptor,

serves to describe the length of the memory area assigned to a

stack branch, and its location in either main memory or on disk.

A stack number is assigned to each stack branch to indicate the

position of its stack descriptor within the stack vector array. The

stack number is used as an index value to locate the related stack

descriptor from the stack vector array for subsequent reference.

The stack vector array's size and location in memory is

described by the stack vector descriptor. This descriptor is located

in a reserved position of the stack's trunk (Fig. 7). All references to

stack branches are made through the stack vector descriptor

which is indexed by the value of the stack number to select the

stack descriptor for the referenced stack.

A Presence Bit Interrupt is incurred upon making reference to a

stack which is not present in memory. This Presence Bit Interrupt

facility provides the means to permit stack overlays and recalls

under dynamic conditions. Idle or inactive stacks may be moved

from main memory to disk as the need arises, and when

subsequently referenced will cause a Presence Bit Interrupt

which triggers the operating system to recall the non-present

stack from disk.

Referencing a variable within the current addressing environ-

ment of an active procedure is accomplished through the use of

the address couples contained in the IRW and the address couple

field ofthe Program Control Word (PCW) as shown in Fig. 1. Both

references are made relative to the Display Registers specified by
the address couple. The address couple and Display Registers are



250 Part 2
I
Regions of Computer Space Section 2

I Memory Hierarchies and Multiple Processes

usable only for addressing variables within the scope of the

current addressing environment. Reference to variables beyond
the scope of the current environment is accomplished by a stuEFed

IRWS. This causes the addressing to be accomplished by address-

ing relative to the base of the stack (BOS) in which the variable is

located.

The IRWS contains information specifying the stack number

(Stack No.), the location (DISP) of the related MSCW, and the

displacement (8) of the parameter relative to the MSCW. The

absolute memory location of the sought parameter is formed by

adding the contents of DISP and 8 to the base address of the

referenced stack. The base address of the stack is determined by

accessing the stack descriptor as described previously. The
information contents of the stuffed IRWS with the exception of 8,

is dynamic in nature and must therefore be accumulated as the

program is executed. The contents of the stack number (Stack

No.) and DISP fields are entered into the IRWS by a special

hardware operator which is invoked by the software whenever the

program attempts to pass a parameter by name.

References

Burroughs [1964]; Burroughs [1965]; Randall and Russell [1964].


