
Chapter 15

Instruction logic of the

Soviet Strela (Arrow)
1

John W. Can III

A typical general purpose digital computer using three-address

instruction logic is the Strela (Arrow) constructed in quantity

under the leadership of Iu. la. Basilewskii of the Soviet Academy
of Sciences, and described in detail by Kitov [1956], This com-

puter uses a (35, 6, 0)
2
binary floating point number system.

Its instruction word, of 43 digits, contains a six-digit operation

code, and three 12-digit addresses, with one breakpoint bit. In

octal notation, two digits represent the operation, four each the

addresses, and one bit the breakpoint. This machine operates with

up to 2048 words of high-speed cathode ray tube storage.

Input-output is ordinarily via punched cards and punched

paper tape. A "standard program library" is attached to the com-

puter as well as magnetic tape units (termed "external accumula-

tors" below). Note. This computer is different from both the BESM

described by Lebedev [1956] and the Ural reported by Basilewskii

[1957]. Apparently, it is somewhat lower in performance than

BESM.

Since all arithmetic is ordinarily in floating point, "special

instructions" perform fixed point computations for instruction

modifications.

Ordinarily instructions are written in an octal notation, but

external to the machine operation symbols are written in a

mnemonic code. The two-digit numerals are the octal instruction

equivalent.

Arithmetic and logical instructions

01. + a P y. Algebraic addition of (a) to (P) with result

in y.

02. +j a p y. Special addition, used for increasing ad-

dresses of instructions. The command (a) or (/?) is added to the

number (/J) or (o) and the result sent to the cell with address y.

'In E. M. Grabbe, S. Ramo, and D. E. Wooldridge (eds.), "Handbook of

Automation, Computation, and Control," vol. 2, chap. 2, pp. 111-115,

John Wiley & Sons, Inc., New York, 1959.

2 Carr's triplet notation for: fractional significant digits, digits in exponent,
and digits to left of radix point.

As a rule, the address of the instruction being changed corresponds

to the address y.

03. — a ft y. Subtraction with signed numbers. From

the number (a) is subtracted the number ((S) and the result sent

to y.

04. —
j

a /} y. Difference of the absolute value of two

numbers |(«)|
-

|(/?)|
=

(y).

05. X a P y. Multiplication of two numbers (a) and (/J)

with result sent to y.

06. A a P y. Logical multiplication of two numbers in

cells a and /?. This instruction is used for extraction from a given

number or instruction a part defined by the special number (/?).

07. V at P y. Logical addition of two numbers (a) and

(P) and sending the result to cell y. This instruction is used for

forming numbers and commands from parts.

10. Sh a P y. Shift of the contents of cell a by the

number of steps equal to the exponent of the (/?). If the exponent
of the (P) is positive then the shift proceeds to the left, in the

direction of increasing value; if negative, then the shift is right.

In addition, the sign of the number, which is shifted out of the

cell, is lost.

11. —
2

a P y. Special subtraction, used for decreasing

the addresses of instructions. In the cell a is found the instruction

to be transformed, and in cell /? the specially selected number.

Ordinarily addresses a and y are identical.

12. ^ a P y. Comparison of two numbers (a) and (/8)

by means of digital additions of the numbers being compared
modulo two. In the cell y is placed a number possessing ones in

those digits in which inequivalence results in the numbers being

compared.

Control instructions

13. C a P 0000. Conditional transfer of control either to

instruction (a) or to instruction (/?), depending on the results of

the preceding operation. With the operations of addition, sub-

traction, and subtraction of absolute values, it appraises the sign

213

214 Part 3 I The instruction-set processor level: variations in the processor Section 1 Processors with greater than 1 address per instruction

of the result: for a positive or zero result it transfers control to

the command (a), for negative results to the command (/?).

The result of the operation of multiplication is dependent on

the relationship to unity. Transfer is made to the command (a)

in the case where the result is greater than or equal to one, and

to command (/?), if it is smaller than one.

For conditional transfer after the operation of comparison,

transfer to the instruction (a) is made in the case of equality of

binary digits, and to (/?) when there is any inequivalence.

After the operation A (logical sequential multiplication) the

conditional transfer command jumps to the instruction (a) when

the result is different from zero, and to instruction (/8) when it

is equal to zero.

A forced comparison is given by

C a a 0000

The third address in this command is not used and in its place

is put zero.

14. I-O a 0000 0000. This instruction is executed paral-

lel with the code of the other operations, and guarantees bringing

into working position in good time the zone of the external ac-

cumulator (magnetic tape unit) with the address a.

15. H 0000 0000 0000. This instruction executes an ab-

solute halt.

Group transfer instructions

Special instructions for group transfer serve for the accomplish-

ment of a transfer of numbers to and from the accumulators. In

the second address in these instructions stands an integer, desig-

nating the quantity of numbers in the group which must be trans-

ferred. Group transfers always are produced in increasing sequence

of addresses of cells in the storage.

16. Tj 0000 n y. The instruction Tj guarantees transfer

from a given input unit (with punched cards, perforated tape, etc.)

into the storage. In the third address y of the instruction is indi-

cated the initial address of the group of cells in the storage where

numbers are to be written. With punched paper tape or punched

cards the variables are written in sequence, beginning with the

first line.

17. T
2 0000 n y. The instruction T2 guarantees transfer

of a group of n numbers from an input unit into the external

accumulator in zone y.

20. T
3

a n y. This instruction guarantees a line-by-line

sequence of transfers of n numbers from zone a of the external

accumulator into the cells of the storage beginning with the cell

with address y.

21. T4
a n 0000. This instruction guarantees the trans-

fer to the input-output unit (to punched paper tape or punched

cards) of a group of n numbers from the storage, beginning with

address a. The record on punched paper tape or punched cards

as a rule will begin with the first line and therefore a positive

indication of the addresses of the record is not required.

22. T5 o n y. Instruction T5 guarantees transfer of a

group of n numbers from one place in the storage with initial

address a into another place in the storage with initial address y.

23. T6 a n y. Instruction T6 guarantees transfer of a

group of n numbers from the storage with initial address a into

the external accumulator with address y.

24. T
7

a n 0000. Instruction T
7
serves for transfer of n

numbers from the zone of the external accumulator with address

a into the input-output unit.

Instructions T2
and T

7
cannot be performed concurrently with

other machine operations.

Standard subroutine instructions

Certain instructions in the Strela, although written as ordinary

instructions, are actually "synthetic" instructions which call on

a subroutine for computation of the function involved. The amount

of machine time (number of basic instruction cycles) for an itera-

tive process depends on the required precision of the computed

function. The figures given below are based on approximately

ten-digit decimal numbers with desired precision one in the tenth

place.

25. I) a
/.' y. This standard subroutine serves for exe-

cution of the operation of division: The number (a) is divided into

the number (/?) and the quotient is sent to cell y.

The actual operation of division is executed in two steps: the

initial obtaining of the value of the inverse of the divisor, by which

the dividend is then multiplied. The computation of the inverse

is given by the usual Newton formula, originally used with the

EDSAC [Wilkes et al., 1952].

</n+i
=

!/n(
2 - y**)

For x = d • 2P , where % < d < 1, the first approximation is taken

as 2~p
. The standard subroutine takes 8 to 10 instructions and can

be executed in 18-20 machine cycles (execution time for one

typical command).

26. V"~ « 0000 y. This instruction guarantees obtaining

the value \/x from the value x — (a) and sending the result to

cell y. Initially 1/ \fx is computed by the iteration formula

!/»+!
= y2 !/n(3 - *y„

2
)

Chapter 15
|

Instruction logic of the Soviet Strela (Arrow) 215

where the first approximation is taken as

iro
= 2lP/21

the bracket indicating "integral part of." After this the result is

multiplied by x to obtain V*- This standard subroutine contains 14

instructions and is executed in 40 cycles.

27. ex a 0000 y. This instruction guarantees formation

of e* for the value x = (a) and sending the result to cell y. The

computation is produced by means of expansion of e1 in a power
series. The standard subroutine contains 20 instructions and is

executed in 40 cycles.

30. In x a 0000 y. This instruction guarantees forma-

tion of the function In x for the value x — (a) and sending the re-

sult to location y. Computation is produced by expansion of In x in

series. The subprogram contains 15 instructions and is executed

in 60 cycles.

31. sin x a 0000 y. This instruction guarantees execu-

tion of the function sin x and sending the result to location y. The

computation is produced in two steps: initially the value of the

argument is translated into the first quadrant, then the value of

the function is obtained by a series expansion. The subroutine

contains 18 instructions and is executed in 25 cycles.

32. DB any. This instruction performs conversion of

a group of n numbers, stored in locations a, a + 1, . . . from bi-

nary-coded decimal into binary and sending of the result to loca-

tions y, y + 1, The subroutine contains 14 instructions and

is executed in 50 cycles (for each number).

33. BD any. This instruction performs the conversion

of a group of n numbers stored in locations a, a + 1, . . . from the

binary system into binary-coded decimal and sends them to loca-

tions y, y + 1, The subroutine contains only 30 instructions

and is executed with 100 cycles (for each number).

34. MS any. This is an instruction for storage sum-

ming. This instruction produces the formal addition of numbers,

stored in locations beginning with address a, and the result is sent

to location y. Numbers and instructions are added in fixed point.

This sum may be compared with a previous sum for control of

storage accuracy.

References

BasiI57; KitoA56 ; LebeS56; WilkM52.

