
Chapter 12

ZEBRA, a simple binary computer
1

W. L. van der Poel

Summary The computer ZEBRA is a computer based on the following

ideas:

1. The logical structure of the arithmetic and control units of the

machine have been simplified as much as possible; there is not even

a built-in multiplier nor a divider.

2. The separate bits in an instruction word are used functionally and

can be put together in any combination.

3. Conventional two stage operation (set-up, execution) has been aban-

doned. Each unit time interval can be used for arithmetical opera-

tions.

4. A small number of fast access registers is used as temporary storage;

at the same time these registers serve as modifier registers (B-lines).

5. Optimum programming is almost automatically done to a very great

extent. The percentage of word times effectively used is usually

greater than 60%.

6. An instruction can be repeated and modified while repeated by

using an accumulator as next instruction source and the address

counter as counter. This can be done without any special hardware.

This has resulted in a machine which has a very simple structure and hence

contains only a very moderate number of components, giving high relia-

bility and easy maintenance. Because of the functional bit coding, the

programming is extremely flexible. In fact the machine code is a sort of

micro-programming. Full-length multiplication or half-length multiplica-

tion in half the time are just as easy, only require a different micro-

programme. The minimum latency programming together with the effec-

tive use of word times lost in other systems results in a very high speed

of operation compared to the basic clock pulse frequency.

Introduction

In the Dr. Neher Laboratory of the Dutch Postal & Telecom-

munications Services the logical design of a computer called ZE-

BRA has been developed, and this computer has been engineered

and constructed by Standard Telephones & Cables Ltd, England.

The logical system is so different from most computers, that it

is worth while to devote a special lecture to it. As time is limited,

lProc. ICIP, UNESCO, pp. 361-365, June, 1959.

no technical details nor questions about dimensions or capacity

will be discussed. They can all be found in the literature [van

der Poel, 1956; van der Poel, 1952].

The main idea of the machine is to economise as far as possible

on the number of components by simplifying the logical structure.

For example, multiplication and division are not built in but must

be programmed. Of course this system can only work with an

appropriate internal code which has enough properties to execute

basic arithmetic and logical routines effectively. In fact, the inter-

nal machine code is more or less a system of microprogramming

[Wilkes and Stringer, 1953].

Operation part of the instruction

The most conspicuous, but probably not the most important,

characteristic is the functional use of the separate bits in the

operation part of an instruction. An instruction word in ZEBRA
is composed as follows:



Chapter 12 ZEBRA, a simple binary computer 201

Fig. 1. The main units of the computer.

arithmetic unit or the control. In the same way the K-bit controls

the interconnection of the fast store with the arithmetic unit or

the control unit. These interconnections can be seen from Fig. 1.

It will be seen that A and K can have 4 possible combinations:

Case 1. A = 0, K = 0. This is called the adding jump (Fig. 2a).

While a new instruction is coming into the control from the drum,

the arithmetic unit can at the same time do an operation with

the operand coming from the fast store. This is the fastest type

of operation. When the following instruction is placed in the next

location on the drum there is no waiting time, and 32 instructions

of this type can be executed per revolution. (One revolution = 10

ms, one word time = 312 jus.)

Case 2. A = 0, K = 1. This is called the double jump (Fig. 2b).

Both stores are now used for giving information to the control,

i.e., making a jump. Since the fast store is used for the control,

the instruction coming in from the drum is modified by the con-

tents of a fast register. In this way the B-line facility, as it is often

called, is realised.

Case 3. A = 1, K = 0. This is called the double addition (Fig. 2c).

Both stores are now connected to the arithmetic unit. The control

must take care of itself using the address counter which is stepped

up by 2 at a time, thus enabling this type of instruction to reach

the number lying between the two successive instructions without

any waiting time. Constants in particular will always be taken

from optimum places on the drum.

Case 4

2d).

A = 1, K = 1. This is called the jumping addition (Fig.

D- and E-bits

The functional bits D and E control the direction of flow of infor-

mation.

D = means: read from the drum.

E = means: read from the fast store.

D = 1 means: write to the drum.

E = 1 means: write to the fast store.

A few possible instructions will be given below. In the written

code a drum address will always be written with 3 or more digits

and the absence of the A-bit will be indicated by the letter X.

(This is necessary for the input programme to recognize the be-

ginning of a new instruction.)

A200.5 Add <200> (the contents of address 200) and <5>

to the accumulator. Step the address counter

by 2.

X200E5 Take next instruction from 200
(
= jump to 200)

and store contents of accumulator in 5.

X200KE5 Jump to 200 and store previous contents of ad-

dress counter in 5. This amounts to placing a link

instruction for return from a sub-routine.

X200K5 Take next instruction from 200 but modify it with

<5> thus making a variable instruction.

Arithmetic bits

The remainder of the function bits have arithmetic meanings. We
shall only briefly indicate their different actions.

B: Do not use the A accumulator (most significant accumulator)

but the B accumulator.

While the drum is used for the arithmetic unit the address counter

is modified by a fast register. Control may thus be passed to any

instruction, and not only to the next instruction.

H [p



202 Part 3 The instruction-set processor level: variations in the processor Section 1 Processors with greater than 1 address per instruction

C: Clear the accumulator specified by B after storing, or before

addition. (In a serial machine like ZEBRA this is auto-

matically the case, cf. Fig. 3.)

I: Subtract instead of add.

Q: Add one (unit in the least significant place) to the B-accu-

mulator.

L: Shift both accumulators one place to the left.

R: Shift both accumulators one place to the right. The accu-

mulators are always coupled together in shifting except
when C is present.

A few more examples will be given.

A200BCE25 Store <B> in 5, clear B and add <200>

to B.

X200QLIBCE6 Jump to 200. Store <B> in 6, put
- 1 in B

(because of QIBC) and shift the A accumu-

lator one place to the left. Shifting from B

into A is prevented by the presence of C.

X200RBC3 Jump to 200. Shift A to the right. Copy <3>

into B. As register 3 is just an address for

the B accumulator itself, this means that

A is shifted while B is static.

X200K3QIBC Take the instruction from 200 and modify

it with the contents of the B accumulator

(
= register 3). Put — 1 in B afterwards.

. o u

< £K

Drum store Fast store To store

As can be seen, many complicated operations can be composed

by the elementary possibilities of the separate bits.

The accumulator

A simplified block diagram of one of the accumulators is shown

in Fig. 3.

Shifting is effected by looping the accumulator over one place

less or one place more. In a double addition the contents of the

drum store and the fast store are first added together in the pre-

adder (possibly augmented by unity in the B accumulator, if Q
is present) and this result is added into the accumulator (or sub-

tracted in case of I). A clearing gate controlled by C interrupts

the recirculation of the previous contents.

The control unit

The control unit has two shifting registers, the C-register which

receives the next instruction to be executed and the D-register

or counter. The block diagram is shown in Fig. 4. After a new

instruction has come into C, it is taken over in parallel form into

E in the interword time. It remains in E while the next instruction

is coming into C. Let us explain the action of this control with

a short programme.

Examples of programmes

100 X101E5

101 AC102

102 constant

103 etc.

The actions in the several registers are now:

<A> <C> <D>

xioo- Suppose X100 is in C at the start.

This will take <100> into C. <C> + 2- D.

X101E5 X102

Fig. 3. Accumulator.

Another jump comes into C taking in (101)

and storing (A) —> 5.

<C> + 2^ D gives X103E5.

AC 102 X103E5 Note that the operational part is kept in the

counter. The necessary constant from 102 is

just becoming available.

const. X103E5 The next instruction is taken from 103 which

is immediately following. The constant in

A is stored to 5 by E5, and is still active

after coming back from D.



Chapter 12
|

ZEBRA, a simple binary computer 203

Fig. 4. Control unit.

This is the most important aspect of the machine. An instruction

in the address counter comes back after an A-instruction and can

do something useful. To our surprise we found that in many more

cases than we first suspected, the second action could be used

effectively. In most other computers the time of access to the next

instruction is lost because nothing can be done concurrently in

the arithmetic unit.

Another example of the action of the control is the jump to a

sub-routine. Suppose that we have the following piece of pro-

gramme:

100 X200KE5 Jump to sub-routine starting in 200. Place

return jump in 5.

102 etc. Sub-routine returns here.

The action is as follows:

<C> <D>

X100- 1 The instruction is taken from 100.

X200KE5 X102 X200KE5 -» C and X100 + 2 -» D. Now
KE5 stores D in 5. Thus <5> = X102.

(200) The subroutine at 200 is executed and ends

with XK5: jump to 5.

Take instruction from 5.XK5

X102

(102)

Now the main programme proceeds to 102

etc.

By ending the sub-routine:

220 X221K5

221 - 1

we can return not two but one location further on, i.e., X221K5
takes as next instruction <5> — 1 = X101. Here 5 contains the

instruction and the drum modifier.

The test bits

The digits V x4 x2 x
x
will not be dealt with extensively but the

different combinations of these 4 digits represent different types
of test. When for example VI is attached to an instruction, this

instruction will be executed when <A> is negative, but will be

skipped altogether when <A> is positive or zero. The harmless

A-instruction will then be executed instead. The test can be at-

tached to a jump, giving a conditional jump, as well as to an

A-instruction, giving a conditional addition.

The W-bit

So far the digit W has not been mentioned. When W is present
in an instruction the drum address is not used. The instruction

is not kept waiting but is immediately executed and the drum is

completely disregarded. With the help of this digit W, jumps can

be made to instructions in the fast store, e.g., XK5W takes the

instruction from 5 only, and the drum does not deliver any number.

The use of this type of instruction has very peculiar consequences.
Let us take the following example:

100 X101KE6

101 X8186K5RW
102 etc.

<5> = ARW
(6) — filled with return instruction

The action is as follows:

<A> <C> <D>

X100-

X101KE6 X102

X8186K5WRs

Take instruction from 100.

Jump to 101 and store return

instruction X102 in 6.

Do 1 right shift.

Y2S. ARW X8188K5RW Do another right shift by ARW.
The drum address in D is

counted up but is not active.

The register address remains

the same. Hence the instruc-

tion in 5 is repeated.



204 Part 3 The instruction-set processor level: variations in the processor Section 1
|

Processors with greater than 1 address per instruction

2-2 • a X8188K5RW

I

2-3.

2-4,

2-5,

a ARW X8190K5RW

a X8190K5RW\
a ARW X0OOK6RW

2-6 • a X000K6RW

2~7 -a X102

The repeating instruction as

well as the repeated instruction

are both shifted one place to

the right.

As the drum address overflows

into the fast store address the

repeating instruction becomes

X8192K5RW = X000K6RW

taking the next instruction from

6.

As <6> = X102 the repetition

returns to the main programme
and the A accumulator is shifted

over 7 places.

The instruction ARW has thus been repeated p times when the

drum address of the repeating instruction is 8192—2p. This way
of repeating an instruction has made it possible to do multipli-

cation, division, block transfers, table look up and many other

small basic repetitive processes in a very simple way. There is no

special hardware present in the machine to do the counting neces-

sary for the repetition, as this counting is done by the normal

address counter.

As a last example we shall give a programme for the summa-

tion of a block of locations from 200 to 300 in the store. This

involves 101 locations. The programme reads:

100 A101RC

101 A200Q

102 X103KE4C

103 X7990K3W

Put A200Q in B (B has address 3).

Put return jump X104 in 4. Clear A in

advance.

Repeat A200Q 101 times. Because A200Q
is standing in B the Q augments the in-

struction itself at every repetition. Hence

104 etc. successively <200>, <201> etc. are added

to A. At the end the sum is left in A and

the programme proceeds at 104.

It is left to the reader to work out the action diagram.
This example is not programmed for minimum waiting, but by

supplying the repeating instruction X7990K3W with a Q it will

step up the repeated instruction A200Q by 2 every time. Now,
once the first instruction has been located, all even locations follow-

ing are emerging from the drum just at the right time. The odd

numbered locations must be summed in a second, similar repeti-

tion.

References

VandW59; VandW52, 56; WilkM53a.


