
The
Computer
Museum

One Iron Way
Marlboro
Massachusetts
01752

16 January 1984

Cynthia Solomon
Atari Research Laboratory
5 Cambridge Center
Cambridge
Massachusetts

Dear Cynthia

Thank you very much for a fascinating visit last .week. I do hope
that some form of your work'can be incorporated in the exhibit on
the computer image - certainly the Logo button box would qualify.

I shall follow up the contacts you and Margaret. suggested, but
would be most grateful if you could mention this project to your
friends and colleagues in California. Two outline proposals for
the gallery are enclosed. Do get in touch if you have any ideas
or suggestions of further people to contact.

I hope this reaches you before you depart. Have a good trip!

Yours sincerely

Oliver Strimpel
Curator

PS: The address here is Computer Museum, Museum Wharf, 300
Congress Street, Boston MA 02210, tel 426-7190 ext 308.

Gestural Input to Computers
tllrough

Visual Recognition of Body Silhouettes

Abstract

Edward F. Hardebeck
Atari Cambridge Research Laboratory

Cambridge, Massachusettes, 02142

This paper describes work in progress on using body positions and gestures to
communicate with computers. A system has. been built that recognizes digitized
television images of body silhouettes.

This work is part of the Gesture Project at the Atari Cambridge Research Laboratory
([Minsky 84]). The focus of this project is on the use of gesture and body movement as
an interface to a computer system.

Introduction
A major trend in the evolution of computer systems is the increasing ease of interaction

with the computer. Nevertheless the communications interface between the user and the
computer is still one of the worst bottlenecks in any computer system. The process of
translating from the user's conception of what needs doing to what the machine needs to
be told in order to do it is one of the most time consuming and error prone parts of
computer use.

Many researchers are working to improve this situation by making the machine more
responsive to the wishes of the user. At Atari Corporate Research we are exploring the
use of gesture, both hand and body movement, to Ipanipulate and control objects in
computational environments. .

Our goal is to make gestural systems which people can easily learn and use because of
the naturalne~ of body movement and interacting with the physical world .

. ----"
One kind of -.gestural input mechanism we are investigating is the use of visual

recognition of the position of the body or certain body parts.

A fair amount of work has been done in the area of tracking body position. However,
most of these systems require the attachment of some sort of device or marker to the
body. We consider the use of any devices attached to the body to be too restrictive for
the sort of free interaction we have in mind.

Some popular hardware for body tracking include the electrogoniometer, a cumbersome
device which is strapped to the subject and provides measurements of joint angles using
potentiometers; the ROP AMS (Remote Object Position Attitude Measurement System)

,-:"

,.
1

from 'Polhemus Navigation ScienGe, Inc., which uses polarized magnetic fields to sense
the position of a small antenna; and the Selspot system which optically senses infrared
Light Emitting Diodes placed on the subject. There are several other similiar optical
systems in use.

These devices have frequently been used to gather medical data, and analyze the
performance of athletes. There are only a few systems that use body position for the
control of computational events. One of these is the -Put-That-There- system of the
MIT Architecture Machine Group (ArchMach) [Bolt 80) which uses the Polhemus system
to sense the position of a single pointing finger. Another system under construction at
ArchMach [Ginsberg 83) uses hardware similiar to Selspot to sense body position. The
data are then to be used to drive a graphical representation of a human figure, known as
a -graphical marionette- [Maxwell 83). The intended application of this system is in the
generation of realistic figure animation.

We have built a system which uses an inexpensive television camera and video digitizer
to look at a person in silhouette. A recognition program finds the positions of the
various parts of the body.

The Hardware
A general description of the system is shown in Figure 1.

HOST COMPUTER

OCher application)
recognize display

-c=J-1.

C AMERA DIGITIZER

~USER ~
DISPLAY

Figure 1: Overview of the System

The user stands before a light colored wall which is lit from the side by stage lights. A
television camera receives the image and passes it to a digitizer. The digitizer produces
a binary image, all points under a threshold are black, those above are white, thus a
silhouette of the person is passed to the computer. This applicat.ion does not require a
high resolution digitizer. Currently we are using a Computer Station Dithertizer II
(Computer Stations, Inc., St. Louise, Mo.) and an Apple II microcomputer for digitizing
and transmitting to the host computer. This digitizer has a resolution of 280 horizontal
by 192 vertical points. The image is then parsed by a recognition program on the host

.'

OJ -
computer (a Symbolics Lisp Machine) and a representation of t.he body is built,
consisting of a data structure which contains the position of the body (values of various
joint angles and so forth).

This representation can then be used to control computational processes. T!le
representation is usually displayed by a graphics routine to give feedback to the user or
to produce animation. Various display formats could be used, from the strictly
anthropomorphic to ones where body position controls arbitrary graphical events. In the
latter case a training period might be necessary during which the user would learn to
control this abstract ·body·.

We have implemented two display routines. The first displays a stick figure in a
position corresponding to that of the recognized figure. The second displays a flowering
plant in which the positions oC leaves correspond to that of the arms and legs and the
flower to the head. This display could be used to produce • anthropomorphic animation·
similiar to the -Waltz oC the Flowers- sequence in Disney's Fantasia where flowers
dance like people.

The Recognition Program
General visual recognition of scenes and objects by computer is an unsolved problem.

Most practical vision systems rely on some form of top down constraints, such as
knowledge of what sorts of objects are to be found in the scene. This program also uses
top down information. It ·knows· that the scene contains a human figure, all it has to
do is determine the location oC the various parts of the body. (If there is not a human
figure in the scene the program will do its best to hallucinate one.)

-.
Figure 2: Digitized Images of Human Figures

The recogmzer receives a low resolution binary image of a person (Figure 2), and

.'

3

possibly same history information of previous positions. The use of a silhouette simplifies
the recognition process, since there is no need to separate the subject from the
background. The process of finding edges and occluding contours is bypased.. Further
advances in the study of early visual processing and the speed of current methods ([Marr
821 [Hildreth 80]), would allow the program t.o use normally lit subjects rather than
silhouettes

The major drawback of using silhouettes is that a body part which coincides with
another part is occluded. This could be mitigated by using two cameras, although this
increases the recognition time by requiring the analysis of two. images. History
information is also useful in locating a non-visible body part. For instance, information
about where it was last seen and in which direction it· was moving could be extrapolated
to track a body part until it reappears.

Figure 3: Axes of the Body

The first stage oC recognition uses some low level routines to separate the image into
manageable parts. The silhouette is represented as an array of ones and zeros. This
array is scanned horizontally and Cor each sequence oC ones the midpoint and width are
collected. These sequences correspond to cross sections of the body parts. For nearly
vertical parts these midpoints lie along a • skeleton • oC the figure (Figure 3). For more
horizontal parts a vertical scanning phase is neccessary; the resulting points are merged
into the representation later. The midpoints thus found are close to the axes of limbs
and other body parts. The true axes of these parts could be found by again scanning the
image at each midpoint in the direction normal to the axis the point. As described in
[Nevatia 73] this process will converge and eventually give the correct central axis of the
parts of the figure. In practice vertical and horizontal scanning seem to give a close
enough approximation for recognition.

Next, the midpoints are glouped into segments of points which are closely (;Onnected

/ ""
/ \
,

. ~
F igure 4: Segments of the Body

(Fi gure -1) . T hese segments t end to correspond to body parts. Ve ry small segments a re
t. hrown away . T hese are uSllall y cau sed by noise, su rface irregularit ies o f clo t hes or hair,
o r sca nn ing o f pa rts in t he di rection para ll el to t heir major axis . A lin e- finding
al gorithm is t hen run on t he po in ts in each segment , further decomposi ng it into straight
pi eces (Figure !J). E ach of tb ese pieces m ay correspond to an individu al bone or a group
of bones such as the spin e o r a limb in extension.

/ ~

I \

Fig ure 5: Lines in the Body

.. - ;=;.

"

,0

"

5

Once the body has been segmented, the task is to establish the correspondence between
individual segments and their features and the parts of a human body. This is the job of
the - body parser -, a progr~m analagous to a grammatical parser. It examines the
segments and their relationships in the light of knowledge about the structure of the
human body.

As of this writing we have implemented a simple body parser and have sketched out a
-smarter - one. The program - knows - certain facts of basic anatomy such as - people
generally have two legs-, -the knee joint is generally near the middle of the leg-, or
-the thigh bone's connected to the hip bone-. In our simple parser the latter fact is
represented something like this code fragment (in Lisp):

(define possible-spine
(find-closest-part (proximal-end possible-leg»)

Of course the assumption that such a part is a spine must be checked using other
knowledge. It could, for instance, be a hand placed on the hip.

A more powerful recognizer can be built, based on heuristic programming methods. A
heuristic is a piece of knowledge similiar to a -rule of thumb-. It may be applicable
under certain conditions in a particular domain. (For more information on heuristics see
Chapter 4 of [Davis,Lenat 82]). Our piece of knowledge can be represented as an
- anatomical heuristic - as follows:

(def-anatomical-heuristic
the-thigh-bones-connected-to-the-spine ;by the pelvis
(possible-thigh possible-spine)

(when (quite-close (proximal-end possible-thigh)
(base possible-spine»

(believe possible-thigh ·thigh 1.)
(believe possible-spine ·spine 1.»)

This heuristic checks the relationship between a piece which may be the thigh and a
piece which may be the spine. If they have the right spatial relationship it asserts that
the possible thigh may actually be a thigh (giving a .numerical value for how much it.
-believes- it). There can be many such' small heuristics all contributing their various
beliefs about the anatomical pieces. The pieces can then be sorted a.ccording to which
body part they are most likely to be.

The recognizer produces a labelling of the segments of the body (Figure 6). Each
segment is then further parsed into joint positions (knees, elbows) and parts of limbs.
The result of the recognition phase is a data structure which is an internal model of the
position of the body. It contains numerical values for the state of each part and joint in
the body. Currently the structure consists of a list of the 2-dimensional coordinates of
each joint and distal end. .

This data structure is then given to other programs which are controlled by the

~~ !! •. - .. :",~-.:-- ... :.- ... "" ... :.=-:..:....~;.-:.; ~.- •• ::-.... --=-~~---==

SPI IE

RIGHT -~ ~T-ARM

RIGHr-lE;! ~EFr-lEG

SP~E
RIGHT-AR1 \
RIGHHE~

~EFT-ARM

~[Ff -LEG

Figure 6: Parsing of the Segments of a Body

motions of t.h e IIser. Currently it is p::tSsed to a display routine simi li:u to Max \ve!l 's
'"graphical marionette [Maxwell 831 . A simple ro uti ne draws a stick figure with line
segmcnts whose endpoint.s lie at each of thc coord inates. A more intercsting routine
creates a flower (Figure 7) by drawing waving leaves (usi ll g cubic sp lin es) that
correspond to t he limbs, a stem t hat co rresponds to th e sp ine, a nd a flo wer at the head
pos it io n.

F igure 7: The Flower Display

Conclusions and Future Plans
W c hav e built a sys tem wh ich can recognize seve ra l body p:tr t.s fr om si lh o ll cttes of

people in uprigh t posit io ns w ith li mbs c1carly v is ible. W e plan t.o implemcnt a be tter
recognition program wh ich will recognize less constra in ed ri gures .

Although experimental , the current systcm has reaso n u,bl e perfo rman cc with o ne
processing cycle taki ng on t he order of 10 seconds. \Ve fcr l t. ha t t.hro ugh severa l

7

improvements we ma.y be able to achieve real time performance. These include the use
of a faster computer (which we have available); the use of a digitizer which is on the
data bus of the computer rather than communicating through an interrace; and the
optimization of our algorithms. One of the most promising optimizations is to pipeline
the initial scanning for axis points. This simple but time consuming task could be
performed by a small microcomputer or by hardware in the digitizer.

We have written two display programs which can take a list of joint positions and
draw a figure on the display screen. We plan to build more display types. Some possible
displays are:

• Animals both real and fantastic·

• Displays which exaggerate or otherwise distort shape or motions

• Displays in which the computer improvises along with your movements

We plan to explore possible applications of gestural interfaces. Some examples of such
applications are animation, choreography, teleoperators, and whole body video games.

We would like to be able to recognize sequences of positions as gestures such as waving,
beckoning, pushing, throwing, even - reeling and writhing and fainting in coils·. Such
gestures could be used to manipulate and control objects or creatures in artificial worlds.

Acknowledgements
I would like to thank those members of Atari Corporate Research who supported and

encouraged this work, especially Cynthia Solomon and James Davis, other gesticulators
and AI hackers Margaret Minsky, Dan Huttenlocher, Danny Hillis, Ken Haase, and Gary
Drescher; all of whom read drafts of this paper and provided many helpful comments.
Also thanks to those who contributed their bodies to science, Michael Grandfield,
Margaret Minsky, and Jeannine Mosely.

References

[Bolt SO] Bolt, R. A., -'Put-That-There': Voice and Gesture at the Graphics
Interface-, Proc. Siggraph 'SO, Computer Graphics 14, no. 3, July
19S0.

[Davis, Lenat S2] Davis, Randall, and Douglas B. Lenat, A.T{nowledge-Based Systems in
Artificial Intelligence, McGraw-Hill, New York, 1982.

[Ginsberg 83] Ginsberg, Carol M., "Human Body Motion as Input to an Animated
Graphical Display·, Masters Thesis, Department of Electrical
Engineering and Computer Science, Massachusettes Institute or

, .

[Hildreth 80]

[Marr 82]

[Minsky 84]

[Maxwell 83]

[Nevatia 73]

8

Technology, 1983.

Hildreth, Ellen C., ·Implementation of a Theory of Edge Detection·,
AJ-TR-S79, Artificial Intelligence Laboratory, Massacusettes Institute
of Technology, 1980.

Marr, David, Vision, 'V. H. Freeman, San Francisco, 1982

Minsky, Margaret, ·Manipulating Simulated Objects with Real-world
Gestures using a Force and Position Sensitive Screen • , Paper
submitted to Siggraph '84.

Maxwell, Delle R., • Graphical Marionette: A Modern Day Pinocchio·,
Masters Thesis, Architecture Machine Group, Massachusettes Institute
of Technology, 1983

Nevatia, Ramakant and Thomas O. Binford, ·Structured Descriptions
of Complex Objects·, Proceedings of the Third International Joint
Conference on Artificial In.telligence, 1973. .

,

•. -~--------

'"

Manipulating Simulated Objects with Real-world Gestures
using a Force and Position Sensitive Screen

Abstract

Margaret R. Minsky
Atari Cambridge Research Laboratory

Cambridge, Massachusetts

A flexible interface to computing environments can be provided by gestural input.
We describe a prototype system that recognizes some types of single-rmger
gestures and uses these gestures to manipulate displayed objects. An
experimental gesture input device yields information about single finger gestures
in terms of position, pressure, and shear forces on a screen. The gestures are
classified by a -gesture parser- and used to control actions in a fingerpainting
program, an interactive computing system designed for young children, and an
interactive digital logic simulation.

Copyright 19S4 Margaret R. Minsky

..

Manipulating Simulated Objects with Real-world
Gestures using a Force and Position Sensitive Screen

1. Introduction

We want to create worlds within the computer that can be manipulated in a
concrete natural way using gesture as the mode of interaction. The effect is
intended to have a quality of -telepresence- in the sense that, to the user, the
distinction between real and simulated physical objects displayed on a screen can .
be blurred by letting the user touch, poke, and move the objects around with
finger motions.

One goal of this research is to make a natural general purpose interface which
feels physical. Another goal is to extend some ideas from the Logo pedagogical
culture - where young children learn to program and control computing
environments (papert 80] - to gestural and dynamic visual representations of
programming-like activites.

How could we introduce programming ideas to very young children? They already
know how .to accomplish goals by using motions and gestures. So we speculate, it
would be easier for them to learn new things if we can give them the effect of
literally handling somewhat abstract objects in our displayed worlds. For this we
need to find simple languages of gesture that can be learned mostly by
exploration, and to fmd visual representations that can be manipulated and
programmed by these - gesture languages - .

The -Put-That-There- project at the MIT Architecture Machine Group [Bolt 80]
has some goals and techniques in common with this research. We also share some
goals with the -visual programming- research community.

We wanted multiple sources of gesture information including position and
configuration of the hand, velocity, and acceleration to experiment with hand
gestures. Our first step was to build an experimental input device by mounting a
transparent touch-sensitive screen in a force-sensing frame. This yields
information about single finger gestures in terms of position, pressure and shear
forces on the screen. Thus our system can measure the position of a touch, and
the direction and intensity of the force being applied.

Sections 2, 3 and 4 of this paper describe environments that we have built that

2

are controlled through this kind of gesture input , and our gesture classification .
Section 5 decribes the hardware and signal processing we usc to recognize these
gestures. Section 6 discusses the future directions of this work .

2. Fingerpaint : A First Gesture Environment

To explore the issues involved in t his kind of gestural inpu t , we first built a
fingerpaint program. The program t racks the motion of a finger (or stylus) on the
screen and paints wherever the finger moves. This application makes essential use
of the finger's pressure as well as its location . It also uses the shear-force
information to smooth the interpretation of the gesture information .

The user 's finger squooshes a blob of paint onto the screen .

Figure: Fingcrpaint

If the user presses harder, he gets a bigger blob of paint.

Figure: Fingerpaint with Varying Pressure

The user can choose from several paint colors, and can a.lso paint with simubted

3

spray paint.

Figure: Fingerpainting

In one version of this program, brush II pictures II can be picked up and stamped in
other places on the screen .

Directions for a Gesture Paint Program

\Ve would lik e to improve fin gerpaint in the direction of making a painting
system that allows more artistic control and remains sensually satisfying. At the
same time we want to avoid making the system too complex for younrr, beginners.
\Ve plan to implement a IIblend- gesture, a set of paint pots out of which t.o
choose colors with t he fingers, and some brushstrokes which depend on the force
contour of the painting gesture.

The idea of magnification proportional to pressure used in the paint program
suggests use of pressure to scale objects in other environments.

3. Parsing Gestures for Manipulating Simulated Objects

The paint program follows the finger and implicitly interprets gestures to spread
paint on the screen . For applications in which discrete, previously defined objects
are to be manipulated using gestures, we need more complex gesture recognition .
We want the user to be able to indicate, by gestures, different actions to perform
on objects. The process of recognizing these gestures can be though of as parsing
the gestures of a II gesture language ll

•

Our gesture parser recognizes t he initiation of a new gesture (just touching the
screen after lifting off) , then dynamically assigns to it a gesture type. It can
recognize three gesture types: the ill selection II gesture, the • move" gesture tbat
consis ts of motion along an approximate line, and the • path n gesture that moves

,

". !

4

along a path with inflections. Weare planning to introduce recognition of a
gesture that selects an area of the screen. These gesture types, along with details
of their state (particular trajectory, nearest object, pressure, pressure-time
contour, shear direction, and so forth) are used by the system to respond to the
user's motions.

4. Soft Implementations of some Existing Visually Oriented Systems

To support our experimentation, we built a fairly general system to display the 2-
D objects that are manipulated by gestures.

The following sections describe environments built from these components
(gesture parser and 2-D object system), and some anecdotal rmdings.

4.1 Button Bo%

The gesture system Button Box was inspired by some experiments done by Radia
Perlman around 1976 with special terminals (called Button Box and Slot Machine)
built for preliterate children [perlman 74,76]. Perlman's Slot Machine is a
plexiglass bar with slots to put cards in. Each card represents a program
command, for example, a Logo turtle command. A child writes a program by
putting the cards in the slots in the order they want, then pushing a big red
button at the end of the bar. Each card in sequence is selected by the progam
counter (a light bulb lights up at the selected card) and that card's command is
run. This provides a concrete model of computation and procedure. With various
kinds of jump and iteration cards, kids use this physical equipment to learn about
control structures and debugging.

The gesture system version is more flexible than the original, specially constructed
Slot Machine, because it can be modified and reconfigured by software. The
current implementation makes use of some force and gesture configuration
information. It can be viewed as -work iil progress - towards making models of
computation that are particularly suited to having their pieces picked up, tapped
upon, tossed about, and smudged by rmger gestures.

Pictures of buttons that control various actions appear on the screen. In our
example domain, the buttons are commands to a Logo-style turtle [Abelson 81].
For example, one button is the FD (FORWARD) command, another is the RT (RIGHT
TURN) command. H the user taps a button rather hard (think of hitting or pressing
a mechanical button), the button -does its thing-. Whatever action the button
represents happens. H the FD button is tapped, the display turtle moves forward.

5

:r" 4
t, I

:{J~? •
. • III ..

, ..• ' ...•
Figure: Forward

If the user selects a button by apply ing fa irly constant pressure to it for a longer
t ime than a • tap· gesture, the gesture is interpreted as a desire to move the
selected button on the screen. The button follows the finger until the finger lifts
off the screen, and the button remains in its new position .

This allows the user to organize th e buttons in any way that makes sense to him,
for example, the user may place buttons in a line in the order in which they
should be tapped to make the turtle draw something.

Some of these buttons control rather concrete actions such as moving the turtle or
producing a beep sound. Other buttons represent more abstract concepts, fo r
example, the PU/PD button represents the state of the turt.le's drawing pen. \Vhen
the PU!PD button is t apped it changes the state of the turtle's pen, and it also
changes its own label.

()

There are also buttons which operate Oil t he ot-h er buttons. T he COPY button can
be moved to overlap any other but ton, and then tapped to produce a copy of the
overlapped button .

Figure: A Dutton being Copied

Some concepts in programming are availab le in th e button box world . The
environment lends itself t.o thinking about the visual organization of actions. In
our anecdotal studies of non-programmers using the button box, most of our
subj ects produced a library of copies of t ur tle commands and arranged th em
systematically on t he screen. They then chose from the library the buttons tha t
allowed them to control the turtle in a desired way and arranged them at some
favored spot on t.he screen.

T here are mechanisms fo r expl icitly creating simple procedures. At this time, only
uncondition ally ordered sequences of action represented by sequences of button
pushes are available; we are working on representations of conditionals and
variables. The user can specify a sequence of buttons to be grouped into a
procedure.

We have experimented with two ways of gathering buttons into procedures:
boxes and magic paint.

The first method uses boxes. T he BOX but ton, when tapped , turns into a box . The
box is stretchy and its corners can be moved, so it can be expanded to any size,
an d pl aced around a group of buttons (or the user can move buttons into the
box). T here are buttons which, when tapped, make the system ·tap· every
button in the box in sequence.

7

Figure: Making a Box and Using it to Group Buttons

The second method uses • magic paint" . Magic paint is a genie button . AB the
user moves it? it paints. The user uses it to paint over a sequence of buttons. The
path created shows the sequence in which buttons should be pushed. When the
end of the paint path is tapped , the system iigoes along· the path , tapping each
button in sequence.

Figure: Using Magic Paint to Group Buttons

The user can group buttons with either method and have the system • push its
own buttons ll

• The user can also tell the system to create a new button from this
grouping. The CLOSE button closes up a box and makes a new button . The new
button becomes part of the button box world with a stat us equal to any other
button . The new button a.ppears on the screen and can be moved and can be
tapped like any other. Thus it becomes a subroutine.

8

Figure: Creating a New Button by Closing a Box

Most. of our experiments so far have used the box metaphor. \Ve pla.n to develop
gesture semantics for magic paint , which seems more promising because the paint
path makes the order of button pushes more explicit than the box grouping. It
feels more - gestural- to program by drawing a swooping path .

4.2 Logic Design - Rocky's Boots

'Ve have applied t.he same set of gestures to make a smooth interrace to another
environment. A graphic logic-design system based on Warren Robinett 's program,
Rocky's Boots [Robinett 821.

Gates, wires, logic input.s, and outputs are the objects in this environment. The
user moves them around in the same way as buttons. They are always - doing
their thing-. They connect to each other when an input is brought close to an
output. The user can cut them apart by making a gesture while holding a knife .

Figure : Logic objects: Gates, HI input, clock input(blurrcd), output light

Figure: A Circui t with a Connection being P ut In

Figure : The Knife being used to Remove a Component

Since these logic components are objects, like buttons, we can operate on them
the same ways we can with buttons (e.g. copying with the COPY button) .

Figure: Copying a Logic Object

There are actions we plan to implement in the logic world , by crea ting buttons to

10

perform new actions on the objects or in some cases by recognizing new gestures.
For example, we could get rid of the need for the knife object by recognizing a
"cutting- gesture. We haven't yet defined mech anisms for creati ng new logic
elements from combinations of existing ones but t hese are the kinds of extensions
that can be made with the current gesture repertoire.

4 . 3 Rooms

All of our gesture-controlled environments: button box programming, interactive

logic simulation, and a rudimentary Colorformstm-lik e environment, have heen
combined in an information environment we call Rooms.

Rooms is an extension of visual representation for adventure game maps and
other visual information designed by '''' a rren nobineU [Robin ett 7{)] IHobinett 821.
There are rooms which contain objects. The rooms connect to each other through
doonvays. In our implementation, each room takes up the whole screen , doors are
at the edge of the screen . As the user 's finger moves through a doorway , the
adjacent room appears on the screen, filled with whatever objects it contains.
The user can drag any object (button , logic gate, etc) through a doorway.

Our environment starts with a room containing the button box environment, a
room containing the logic objects, a room containing colorforms, and a
miscellaneous room with a few miscellaneous buttons in it.

Colorforms is a more free-form environment consisting of colorform-like shapes
that can be moved around and stamped with finger gestures to create pictures.
Our shapes are a face, eyes, mouth, etc which can be grabbed and moved around.

Figure: Colorforms Room

!

11

4.4 Combining Environments

One of th e tenets of developing good gesture interfaces is that the object.s being
manipulated by gestures should act like possible physical objects in their reactions
to the user's gestures. When the objects are brought near each other they shou ld
interact in plausible ways. 'Ve have seen that the COPY button can copy logic
elements. W e introduced logic elements that can act on buttons. A special
output, the HAND, taps a button when it is clocked.

Figure: lUND Tapping the FD Button

The ci rcuit in the fi gure is an example of parallel processing invented by a user
who was experimenting with the interface between the Button 'VorId and the
Logic W orId.

Figure: A -Program" that Draws a Circle

Amazin g! Or is it? Nobody is amazed when a real object, like a teapot, can be
stacked on top of another kind of real object, for example, a table . However,
programs can hardly ever fit together meaningfully, much less smoothly. The
object nature of t hese programming-like environments , and their necessary
analogy to physical objects de riving from the gesture int.erface, has allowed this

12

sm00t.h combination to happen .

R efl ec ting on our box a.nd magic paint programming met.aphors, we ca n see t hat
in th ese worlds, procedures arc things which embody processes in their behavior.
Here, t he processes a re represented by the paths of t he user's gestures as he
const.ructs a configuration of objects on the screen .

5 . Gesture System Hardware and Software

Hardware Configuration

We mounted a commercially avail able t.ransparent, resistive-film, touch-sensitive
sc reen on t.he face of a color display monitor . T he touch sc reen is supported by
four force- measur ing strain gauges ("load-cells") at t he fo ur corners of t he
screens. The mechanical arrangement is shown~

We note that a touch screen that used a d ifferent arrangement to obtain some
force information from strain gauges was built in the J 970's at the rv11T
Archit.ecture Machin e Group.

The load cells are mount.ed so t hat t hey supply useful force information through a
0-10 lb. range for finger gestures , and are protected from damage due to
overloading. To make the user feel that t hey a.re actually II tou ching- objects on
t he screen, t he su rface touched by the user must be 3..<; close as poss ible to the

13

monitor face to prevent parallax problems. In this arrangement, the position
sensitive panel floats about l/S- above the display surface.

This is a block diagram of mechanical connections and information flow in our
system.

1 LISPM 1 •••••• >1 COLOR MONITOR

,.,
•
•••••••• 1 POSITION PANEL

•
•
•
•••• 1 FORCE SENSORS

(- - -
Finger.
Stylus

Figure: Block Diagram

Our gesture system software is written in LISP and runs on a LISP Machine. Raw
position and load information is processed by the gesture software into recognized
motions or gestures. The effects of the gestures on one of our gesture-interfaced
environments is computed, and the LISP Machine color system creates the display
seen through the transparent gesture sensing screen.

Signal Processing

A variety of smoothing and calibration strategies are necessary.

The position screen reports a finger position with a nominal resolution of 4K x
4K. The force sensor hardware reports 12 bits of force data from each of the four
load cells.

To get the display and touch screens into good registration, the system performs
an initial calibration when it is turned on. This includes finding a linear scaling
factor for the x and y position components, and finding x and y offsets. The x and
y force offsets are also calculated.

During operation, an asynchronous process interprets position inputs and four
force sensor inputs in terms of finger gestures. This process looks for the initiation
of a touch, waits until it has computed a trustworthy, filtered initial position, and
then signals that a new gesture has begun.

This process tracks the trajectory of the finger during a gesture. The tracking of
touched positions is aided by a three-point median smoothing algorithm applied to
the position data and by using continuity constraints derived from the force data.

14

The gesture process uses local continuity of the shear force magnitude and
direction to ignore sudden position changes. Most. position readings that are
associated with these sudden changes must be ignored, since finger trajectories on
the screen are mechanically constrained (over short time scales) to have shear
forces parallel to the direction of motion, and smooth rotation of shear at
inflection points.

Another asynchronous process recalibrates the force sensors every few seconds.

The load cells are arranged at the corners of the screen:

1---------------2
I I
I I
I I
I I
I I
3---------------4

H the loads (corrected for zero force offset) on the load cells are 81, 82, 83, and
84, the z-force (pressure) is:

PRE8SURE = 81 + 82 + 83 + 84

The components in the plane of the screen are:

X-FORCE (horizontal)
= (81 + 83) - (82 + 84)

- zero· calibration offset

Y-FORCE (vertical)
= (81 + 82) - (83 + 84)

- zero calibration offset

We assume that the screen is flat, the load cells are at the corners, the load cells'
data is not noisy, and the touch position from the position sensing screen (after
smoothing) is correct. .

There are no corrections for nonlinearity over the screen. There is noticeable
nonlinearity, but it does not seem to affect gesture recognition and tracking. Thus
the user has to -get the feel- of the screen, since tracking in the corners feels
slightly different than in the center. We plan to correct for this. It may become
more important if the system is trying to recognize more complex gestures than
we have worked with so far.·

We have gained an advantage in this setup from multiple sources of gesture
information, e.g. the use of local continuity of forces to help track positions. We

15

could theoretically derive position from the force sensors, but- the touch-sensitive
screen gives us higher position resolution and perhaps more reliability. We do not
cross-check because this system worked well enough for our purposes.

8. Future Directions

Directions for Gesture Programming

There are several force controlled gestures with which we have experimented
briefly and on which we plan to do more w~>rk.

An example is -flicking-. The user can send an object to another part of the
screen by flicking it with the rmger, as in tiddlywinks. Shear is used to determine
the direction of motion and the force determines the initial velocity of the object,
which slows down by - friction - .

We intend to create more application worlds to put into the Rooms. For example,
we plan extensions to the Button Box, a gesture controlled kit for making treasure
maps, and a button environment in which the buttons represent musical notes and
phrases.

We would like to study classes of gestures that are useful in systems intended for
expert use, in other words, systems where the gestures may be useful once learned
but are not as easy or obvious as the ones in our current repertoire.

We see the need to do more careful motion studies, and to record more data
about people's ability to use the gestures we recognize. There is already extensive
literature in related areas, for example (Loomis 83]. We have several ideas for
gestures we would like to recognize that make more use of force and force-time
contours to express analog quantities. . We also plan to build a multiple rmger
touch version of our current hardware to allow gestures that use more of the
hand.

We also intend to explore vision based gesture input, which allows the user much
more freedom. There is ongoing research in this laboratory on real-time visual
interpretation of whole body gesture as input to a motion and animation display
(Hardebeck 84]. We may also explore recognition of hand gestures through vision
of hand silhouettes.

Directions for Information Layout

This research has prompted the beginining of a project in this laboratory to
develop schemes for using gestural input in -Information Spaces-. A prototype of
an information organization system has been created that displays representations
of file systems and large programs. There are objects displayed in these
representations that are analogous to our logic gates and buttons. This system
uses a modified mouse and recognizes more - iconic - gestures than the systems
described in this paper.

16

Acknowledgements

I would like to thank Danny Hillis for providing the initial leadership in starting
this project, and for continuing ideas, inventions, and support. Ed Hardebeck has
done a large amount of the design and most of the implementation of the systems
described in this paper. Others who worked on this project are Dan Huttenlocher,
Gregor Kiczales, Warren Robinett, and Fred Thornburgh. David Wallace and
David Chapman partipated in early design of the gesture environments.

Thanks to Cynthia Solomon in her role as Director of the Atari Cambridge
Research Lab, and for reading many drafts of this paper. Many thanks for help
with the paper also go to Ed Hardebeck, Danny Hillis, Dan Huttenlocher, and
Marvin Minsky. .

References

[Abelson 81] Abelson, Harold, and Andrea DiSessa, Turtle Geometry, MIT
Press, Cambridge, 1981.

[Bolt 80] Bolt, R. A., -'Put-That-There': Voice and Gesture at the
Graphics Interface-, Proc. Siggraph '80, Computer Graphics
14, no. 3, July 1980.

[Hardebeck 84] Hardebeck, Edward F., -Gestural Inpput to Computers through
Visual Recognition of Body Silhouettes -, Submitted to Siggraph
'84, 1984.

[Loomis 83] Loomis, Jeffrey, Poizner, Howard, Bellugi, Ursula, Blakemore,
Alynn, and John Hollerbach, - Computer Graphic Modeling of
American Sign Language-, Proc. Siggraph '83, Computer
Graphics 11, no. 3, july 1983.

[Papert 80] Papert, S. A., Mindstorms, Basic Books, New York, 1980.

(perlman 74] -Tortis: Toddler's Own Recursive Turtle Interpreter System·,
Logo Memo 9, Logo Laboratory, Massachusetts Institute of
Technology, Cambridge, July 1974.

(perlman 76] -How to Use the Slot Machine-, Logo Working Paper 37, Logo
Laboratory, Massachusetts Institute of Technology, Cambridge,

(Robinett 7Q]

(Robinett 82]

17

. January lQ76.

Atari VCS Adventure, Software product of Atari, Inc.,
Sunnyvale, CA, lQ7Q.

Rocky's Boots, Software product of The Learning Co., Portola
Valley, CA, lQ82~

...

News from Harper & Row
Electronic and Technical Publishing

10 East 53d Street, New York, New York 10022
Cable Harpsam Telephone (212) 207-7627

For lmmediate release
Contact Jessica Solon

Coming in November!

wo
edited

by Cynthia Solomon, Margaret Minsky, and Brian Harvey

preface by Marvin MinsKy

The power of Logo, the most popular children's programming
language, is unleashed as never before in this exciting new
booK.

Logo to date has been used mostly for educational purposes; yet
Log c, i -:. i n f act a ') e r')' '::·0 phi 's tic ate dan d p OIAI e r f u Ito 0 I. I nth i s
remarkable booK the authors provide many innovative Logo
a.pp I i ca t ion '::.. De',)e loped b::r' the for'emost Atar i Logo exper ts,
LOGO WORKS is the first book that shows how beautifully Logo
works for a vast range of programming appl ications.

LOGO WORKS features more than thirty programs for Atari Logo,
incllJding:

* l...Jor· dp I a:~' game -:. : I i 1< e t"lad I i b-:., I,oJc,r' d:.c r am, Han gman, Ar' gu e ,
Animal Game, and more;

* Story programs: Cartoon, Jack and Jil I, and RocKet Blast;

* Games: Boxgame, Pacgame, Dungeon, Al ien, and others;

* Turtle Geometry: including Turtle Race, Four Corner Turtles,
Polycir'c, and anima.ted I ine dra~vings;

* Music programs: for Melodies, Ear Training, Sound Effects
and Naming Notes;

* Other progr'amm i ng ideas: such as mak i ng an opera t i on for
adding numbers, a small database manager, Mergesort, and 1 ines
and mirrors;

* Special features of Atari Logo: including Turtle Graphics,
shapes, demons, and Turtle Coll isions.

LOGO WORKS includes an entertaining preface by Marvin Minsky,
one of the premier researchers in artificial intell igence--and
a great Logo enthusiast.

This book represents a major advance for the mill ions of Logo
users--even those who don't have Atari Logo. It provides
exciting appl ications, full descriptions of their development,
and complete program 1 istings. Fully indexed, LOGO WOR~S is the
most complete, instructive, and inspiring book on Atari Logo for
everyone.

About the Authors

Cynthia Solomon, Margaret Minsky, and Brian Harvey are
acknowledged Logo experts. The programs in LOGO WORKS were
developed while Ms. Solomon, Ms. Minsky and Mr. Harvey were
worKing for Atari Incorporated. Ms. Solomon was previously
Director of the Atari Cambridge Research Laboratory, where Ms.
Minsky was a Research Scientist. Mr. Harvey was the founding
Director of the Computer Dept. at the Lincoln-Sudbury Regional
High School in Massachuse t ts, an i nnova t i ve cen ter for compu ter
education in which Logo is the primary teaching language. He is
currently a Ph.D Candidate in Science and Mathematic Education
at the University of Cal ifornia, Berkeley.

Approx i mate 1 y 300 pages, ill ustra ted, indexed.

ISBN 0-06-669020-X

$14.95

WORKS LOGO WORKS LOGO WORKS LOGO WORKS

