THE COMPUTER MUSEUM

The Computer Museum is the only museum of its kind in the world. It dramatically illustrates the impact of the Information Revolution through interactive exhibits of state-of-the-art computers, films and creations of vintage computer installations.

The Museum hours will be: 11 a.m.-6 p.m. Wednesday, Saturday and Sunday and 11 a.m.-9 p.m. Thursday and Friday. It will be closed Mondays, Tuesdays, Christmas, New Year’s and Thanksgiving. Its new location at 300 Congress Street is minutes from Logan International Airport and just a short walk from Boston’s financial district and such historic landmarks as Faneuil Hall and the Freedom Trail.

The Museum offers individual memberships for $30. Other membership categories are available for corporations and those individuals seeking a higher level of participation. All members receive a free subscription to The Computer Museum Report, a 10% discount on merchandise from The Computer Museum Store, free admission and invitations to Museum previews.

For more information, contact Jana Buchholz, Membership Coordinator at The Computer Museum, 300 Congress Street, Boston, MA 02210. (617) 426-2800.

THE COMPUTER MUSEUM REPORT

(1SSN 0736-5438)

The Computer Museum Report is published quarterly by The Computer Museum, 300 Congress Street, Boston, MA 02210. A yearly subscription to The Computer Museum Report is free with membership. Individual issues can be purchased through The Computer Museum Store for $3 apiece.

The Museum staff is responsible for the contents of the Report. The views expressed do not necessarily represent those of The Computer Museum or its Board of Directors.

Design and production of the Report is done by Benson and Clemons.

STAFF

Director
Dr. Gwen Bell
Administration
Geri Rogers
Business
Eva Rodding
Communications
Stephanie Haack
Brenda Erle
Development
Michael Oleksiw
Exhibits and Archives
Meredith Stelling
Paul Ceruzzi
Andrew Kristofsky
Beth Parkhurst
Katherine Schwartz
Dr. Oliver Strimpel
Gregory Welch
Bill Wisheart
Membership
Jana Buchholz
Programs
Mary Cooper
Store
Lea Cohen

BOARD OF DIRECTORS

John William Poduska, Sr., Chairman
Apollo Computer, Inc.
C. Gordon Bell
Encore Computer Corporation
Dr. Gwen Bell
The Computer Museum
Erich Bloch
International Business Machines
Harvey D. Cragon
Texas Instruments
David Donaldson
Ropes and Gray
Robert Everett
The MITRE Corporation
Dr. Sydney Fernbach
Computer Consultant
C. Lester Hogan
Fairchild Camera and Instrument Corporation
Theodore G. Johnson
Mitchell Kapor
Lotus Development Corporation
Dr. Koji Kobayashi
NEC Corporation
John Lacey
Control Data Corporation
Patrick J. McGovern
CW Communications, Inc.
James L. McKenney
Harvard Business School
George Michael
Lawrence Livermore Laboratories
Dr. Arthur P. Molella
The National Museum of American History, Smithsonian Institution
Kenneth H. Olsen
Digital Equipment Corporation
Brian Randell
University of Newcastle upon Tyne
Jean E. Sammet
International Business Machines
Edward A. Schwartz
Digital Equipment Corporation
Kitty Selfridge
Henco Software, Inc.
Erwin Tomash
Dataproducts
Dr. An Wang
Wang Laboratories, Inc.

The Computer Museum
300 Congress Street
Boston
Massachusetts
02210
The Director's Letter

In our countdown to opening the Museum, I am pleased to have the opportunity via the report to reflect on the evolution of the Museum. Five years ago, I was charged with the task of creating a "computer museum." The only models at that time were IBM's dismantled history wall done by Charles Eames in the sixties, the small exhibit of historic machines at the Smithsonian, and the interactive and historic collections at the Science Museum in London. None of these could be collected and brought back. And I felt as though I had been told to "Go fetch a rock." Every time I brought an idea back, the feedback was quick: "That's not the rock," or "How did you ever get that—it's just great."

Two and a half years ago, on June 10, 1982, The Computer Museum opened its doors for the first time: we had 50 Founders, 200 members and 3,000 square feet of dedicated exhibit space. Our goals were to develop an international collection, create exciting exhibitions, sponsor educational programs, and attract a worldwide membership. On June 24, 1984, at the end of our Founding period, we will boast 504 individuals and corporate Founders. I am glad to extend special thanks to the individuals listed on the front cover and the corporations listed on the back cover helping to found the Museum.

The Second Opening

On Wednesday, November 14, 1984 at 11:00 a.m., the Museum will formally open its doors a second time to the public. This time we will have 16,000 square feet of exhibitions of both historic computers and state-of-the-art interactive displays; another 8,000 square feet of exhibit space and 4,000 square feet for library/study collections will be developed later. As we approach our opening we can be pleased that we have by far the largest exhibition area devoted to computing and information processing at any museum.

Let me give you a brief tour of our plans for the exhibitions: After rising to the Museum on a large, glass-enclosed elevator overlooking downtown Boston, the visitor is confronted by the Whirlwind, a vacuum tube computer that seems to go on forever.
Going around the corner, the visitor enters the SAGE computer room. Here the major components of the world's largest and longest lived computer simulate their installed environment. The visitor can "start" the console and see its banks of lights cycle up. Beside each component, such as the 30-foot-long accumulator, today's equivalent chip (or part of a chip) has been placed for comparison. This arrangement reinforces an awareness of decreasing size and power and increasing programming capabilities.

For the history buff, a year-by-year timeline from 1950 to 1970 shows the fundamental inventions, the major computers, major software developments and benchmark applications.

The CW Communications "See It Then" theater shows films of operational computers, starting in the 1920's and ending in the 1960's with the IBM Stretch. The films are complemented by a 1965 IBM 1401 computer room, where the visitor can punch cards, and an operating PDP-89, the classic (but now very slow) minicomputer.

The evolution of Seymour Cray's work illustrates a single hardware contributor and his philosophy. The story begins with the NTDS-17 that he built for the Navy at UNIVAC in Minneapolis, which Greg Mellen, who is still at Sperry Univac, helped the Museum acquire; after that Cray built the Little Character, his first machine at CDC, presented by Control Data Corporation; then to the 6600, Serial Number 1, presented by Lawrence Livermore Laboratories; and finally to components of a Cray I, presented by the Cray Corporation. We have two videotapes of Seymour Cray, one from Lawrence Livermore Laboratories and another given to us by Joe Clarke, a former employee of CDC, who bought a two inch video tape player at a company sale and found on it a tape of Seymour Cray.

The next gallery focuses on chips and their place in the computer revolution, and the process of manufacturing computers. The inside of the "black box" is revealed, and an important, hidden part of the process is illustrated.

This collection of personal computers goes back to the very first one, the 1962 LINC, and extends to the latest models. The ring of live machines, each showing off an aspect of its special input/output, include DECTALK, a touch sensitive screen HP 150 and others.

The final gallery, is devoted to "the computer and the image." Here, the visitor will be able to explore image processing by computer, such as evaluation of landsat data, and image creation by computer, such as computer-aided design. Without much trouble, the visitor could spend two hours in this room experimenting and viewing.

The exhibits are only the tip of the iceberg of our collection of artifacts, working machines, software, documentation, photographs and films. The listing in this report represents one year's accumulation and the collection is rapidly growing.

The Evolving Board of Directors

At the first meeting of the board of directors in 1982, two decisions were made: one was to have non-renewable four-year terms and the other was to limit the number to 24 people. This year five directors retired, I was made an ex-officio director, and five new directors were elected.

The five retiring directors each played a significant role in our growth to date: Charles Bachman served as chairman of the executive committee through our critical first two years; Andrew Knowles provided our initial space in Marlboro; Robert Noyce was key in starting our semiconductor collection and gave a wonderful lecture at our pre-preview party; Michael Spock, director of the Children's Museum, had the idea of our move to the Wharf and continues to counsel us on a day-to-day basis as our closest neighbor; and the Honorable Paul Tsongas helped bring us recognition at a national level.
The new directors bring a new set of talents. Bill Poduska, the new chairman of the board, is chief executive officer and chairman of the board of Apollo Computer, Inc. which he founded in 1980. He came to MIT as an undergraduate and stayed through a Ph.D. in electrical engineering, which he taught for four years. Then he went on to become the director of the Honeywell Information Science Center before founding Prime Computer and Apollo Computer.

Mitch Kapor, president and co-founder of Lotus Development Corporation, looks at the role of computers from the point of view of a non-technical user. A psychology major from Yale with what he calls “three-quarters of a masters degree” from MIT’s Sloan School of Management, he developed VisiPlot and VisiTrend for VisiCorp before working on “1-2-3,” the business applications program for personal computers, that became the basis for Lotus. Mitch has expressed his concern for the end user, saying, “When we stop listening we will cease to be viable.” This is equally true for the Museum when we open our doors to the public.

Dr. Koji Kobayashi, chairman and chief executive officer of NEC Corporation, began his life-long career with them in 1929. NEC preserved Japan’s first transistor business computer the NEAC 2201 which they agreed to give to the Museum. This represents an important acquisition in our goal to develop an international collection. Dr. Kobayashi is also interested in the current technology, especially communications and computers, and will provide an important link to Japan.

Dr. Arthur P. Molella is chairman of the history of science and technology department at The National Museum of American History, Smithsonian Institution. Specialized museums, such as ours, have an important symbiotic relationship with the Smithsonian. We can focus on a single subject, collect, carry out research and prepare exhibitions. At the Smithsonian, Arthur has to trade off all aspects of science and technology and allocate appropriate space and personnel.

We intend to help each other, the Smithsonian has already loaned several important pieces from their collection for our opening exhibition. And when the new Smithsonian exhibit on computing opens, we will help them.

Dr. An Wang, chairman of the board and chief executive officer of Wang Laboratories, Inc., is one of the computer pioneers. He invented the magnetic pulse controlling device for the Harvard Mark IV which will be on display in the timeline planned for our opening exhibition. Wang not only founded Wang Laboratories, Inc. but also the Wang Institute of Graduate Studies in 1979.

Since 1982, the course of The Computer Museum has changed in ways that I would never have predicted, but new directions that, in retrospect, always made sense. This distinguished new class of directors will help the Museum become a strong institution as it opens to the public.

Gwen Bell
The Collection

The following listing of the Museum's collection includes all new artifacts and archival material received between April 10, 1983 and June 13, 1984. The number of artifacts and films has grown to 900 catalogued items. The artifacts range from a single chip to the multiple components of a single large-scale computer. In addition, the document and photograph collection has also increased dramatically. Archival donations are catalogued as complete collections.

Artifacts

Each artifact is described according to its manufacturer, date, and characteristics according to the PMS notation system developed in Computer Structures by Gordon Bell and Allen Newell. The PMS notation divides computer structures into processors (calculators), memory, links and switches, transducers, and control devices. Robots have been added. This system was then used to divide the list of artifacts in order to provide a better picture of the collection.

Archives

The archives supply supporting materials for the artifacts. They help the scholar reconstruct the development and use of any of the artifacts. For example, old textbooks provide significant insight into the principles and uses of a machine from the same period. Similarly, films and photographs often illustrate the working environment of artifacts.

Micro-bit Electron Beam Access Memory. This memory device is Micro-bit's Electron Beam Access Memory affectionately known as ALICE. Although this device was never marketed, it got up and running at the end of December 1971. It took, recorded and played back the following message: "Merry Christmas. Send more money."
TRS-80. TRS-80 Model IIs, like the one pictured here, were introduced by Tandy Radio Shack Corporation in 1977. During that same year the Apple II and the Commodore Pet 2001 were introduced, establishing the first three personal computer designs to come assembled with BASIC built into the firmware, which allowed them to achieve a BASIC operating mode on power up. The TRS-80 Model I is one of several PCs that will be featured in the Personal Computer exhibit when the Museum opens November 14, 1984.
Air Force Cambridge Research Laboratories, Trigger Pair V EMS Circuit Boards, Pulse Generator Circuit Boards (X226.83) (X276.83) Gift of Gunare Zaghars Bendix Corporation, Bendix G-15 Logic Modules (X235.83) Gift of Ron Resch Burroughs Corporation, Electrodata Division, Electrodata Plug Board (X209.83) Gift of Claude A. R. Kagan Digital Equipment Corporation, MicroVAX I Data Path (X326.84) MicroVAX I Memory Controller (X326.84) Gift of Digital Equipment Corporation/DECwest Engineering Digital Equipment Corporation, Unibus NI Adapter Breadboard (D386.83) Gift of Digital Equipment Corporation Ferranti Corporation, ARGUS 201 Pegboard Program Tray (X337-84) Loan from Science Museum, London International Business Machines, IBM BLT Logic Card (X221.83) Gift of John Shriver International Business Machines, IBM SSEC Mercury Wetted Contact Relay (X194.83) IBM SSEC Wire Contact Relay (X195.83) Gift of A. Wayne Brooke International Business Machines, IBM Plug Board (X339.84) Gift of LaSalle National Bank Institute for Numerical Analysis, National Bureau of Standards, SWAC Chassis Unit (X228.83) Loan from Smithsonian Institution, National Museum of American History Kollmorgen Corporation, Multiwire Division, Multiwire Boards (X237.83) Gift of Multiwire Division, Kollmorgen Corporation Kollmorgen Corporation, PCK Technology, Wiring Head (X196.83): Discrete Wled Circuit Boards (X226.83) Gift of PCK Technology Division, Kollmorgen Corporation Logistics Research, Inc., ALWAC III Control Panel, (X306,84) ALWAC III Logic Boards (X307.84) Gift of Eugene Ustin MIT Lincoln Laboratory, TX-2 Module Test Panel (D384.83) Gift of Digital Equipment Corporation MIT Lincoln Laboratory, TX-2 Flip-flop (X218.83) Gift of Alan V. Oppenheim Moore School of Electrical Engineering ENIAC Function Table (X338.84) Loan from The Smithsonian Institution, National Museum of American History Motorola, Inc., MC6800 Microprocessors (X224.83) Gift of Motorola, Inc. Mullard, Ltd., Logic Boards from the Elliot 803B British Germanium Transistor Computer (X278.83) Gift of Mr. Soper National Semiconductor Corporation, NS3232 Microprocessor (X344.84) Gift of National Semiconductor Corporation Phillips (N.V. Electrologica), Electrologica X-8 Circuit Boards, (X219.83) Gift of Gordon Bell Raytheon Company, RADAC Logic Module (X234.83) Gift of Bert Latey Scientific Data Systems, SDS 940 Modules (X285.83) Gift of Systems Concepts USSR GOVERNMENT. MINSK-2 Logic PC Board. Introduced in 1962, the MINSK-2 became one of the most heavily used general-purpose computers in Russia. Each computer had a set of 107 two-address instructions and a word length of 37 bits. Their computing speed was 5,000 instructions per second and a floating-point addition took 72 microseconds. The main memory on the MINSK-2 was on ferrite cores, with either 4,000 or 8,000 words and secondary memory was on magnetic tapes.

IBM SSEC Wire Contact Relays. The wire contact relays pictured here are from the IBM SSEC (Selective Sequence-Controlled Electronic Calculator). The IBM SSEC was the first machine that could control its calculating sequence by modifying its own instructions. However, it was disputed whether or not the IBM SSEC was wholly electronic, because the machine had 13,500 vacuum tubes and 21,400 electromechanical relays.

BIZMAC Clock. The BIZMAC was the result of an early attempt by RCA to produce a large-scale general-purpose computer for business applications. With its 29,000 tubes and 63,000 diodes, it was certainly one of the largest first generation computers ever built. The BIZMAC was one of the first commercial computers to use magnetic core memory. Later computers with full-scale core memories made BIZMAC obsolete.
<table>
<thead>
<tr>
<th>Memories</th>
<th>Transducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge University Computation Laboratory, EDAC Memory Driver (X335.84); EDAC Memory Memory Tank Cover (X336.83) Loan from Science Museum, London</td>
<td>Cockhead Corporation, Ralph C., Vari-typer (X240.83) Gift of Lee Swanson</td>
</tr>
<tr>
<td>Control Data Corporation, Microbit Division, Electron-beam Accessed Memory Tube, (X215.83) Loan from Charles A. Brown</td>
<td>Friden Corporation, Flexowriter (X325.81) Gift of Digital Equipment Corporation</td>
</tr>
<tr>
<td>Digital Equipment Corporation, Magnetic Tape Unit (D380.83); Tape Drive (D385.83) Gift of Digital Equipment Corporation</td>
<td>Harvard University, Division of Applied Science, Color Viewing Helmet for the Space Pen (X197.83) Gift of Harvard University, Division of Applied Science</td>
</tr>
<tr>
<td>Digital Equipment Corporation, PDP-10 Core Memory Board (X225.83) Gift of Peter Sredojevic</td>
<td>International Business Machines, IBM 01 Typewriter (X199.83) Gift of Richard Boylan</td>
</tr>
<tr>
<td>Digital Equipment Corporation, PDP-12 Core Memory Stack (X222.83) Gift of Peter Sredojevic</td>
<td>International Business Machines, IBM 26 Printing Card Punch (X322.84) Loan from Design Pak, Inc.</td>
</tr>
<tr>
<td>Digital Equipment Corporation, Read Only Rope Memory (X204.83) Gift of Ron Nuebling</td>
<td>Sanders Technology, Inc., Sanders Media 127 Printer (X355.84) Gift of Douglas Roas</td>
</tr>
<tr>
<td>Ford Motor Company, Aeronutronic Division, 10 Megacycle BIAX Cores (X242.83) Gift of G.B. Westrom</td>
<td>Southwest Technical Products, Corporation, Alphanumeric Parallel Printer PR-40 (X298.83) Gift of Roger J. Spott</td>
</tr>
<tr>
<td>Goodchild, C.W., "Complete Mathematical Chart" (X245.83) Gift of University of Illinois, Department of Computer Science</td>
<td>Sperry Rand Corporation, UNIVAC keyboard (D394.83) Gift of Teleensory Systems, Inc.</td>
</tr>
<tr>
<td>Institute for Numerical Analysis, National Bureau of Standards, SWAC William's Tube (X227.83) Loan from The Smithsonian Institution, National Museum of American History</td>
<td>Acoustic Data Coupler, This Anderson Jacobson Acoustic Data Coupler 260 (circa 1963) is one of the earliest modems. A modem is an acronym for MODulator DEModulator unit, a device that converts data from a form that is compatible with data processing equipment to a form that is compatible with transmission facilities, and vice-versa.</td>
</tr>
<tr>
<td>Micro-bit Corporation, Electron Beam Access Memory: ALICE I (X329.84) Gift of Micro-bit Corporation</td>
<td></td>
</tr>
<tr>
<td>MTF Instrumentation Laboratory, Apollo Memory Stack Module (X186.83) Gift of Boguslaw Frackiewicz</td>
<td></td>
</tr>
<tr>
<td>Mullard, Ltd., Ferrite Core Memory from Elliot 830B British Germanium Transistor Computer, (X277.83) Gift of Mr. Soper</td>
<td></td>
</tr>
<tr>
<td>Rand Corporation, Johnnian Selectron Tube (X281.83) Gift of Fred Gruenberger</td>
<td></td>
</tr>
<tr>
<td>Radio Corporation of America, Electron Tube (X301.83) Radio Corporation of America, RCA 3488 Magnetic Cards (X232.83) Gift of Daniel Klein</td>
<td></td>
</tr>
<tr>
<td>Radio Corporation of America, RCA 128 x 136 3-wire Core Memory Plane (X190.83), RCA 64 x 64 4-wire Core Memory Plane (X191.83) Gift of Boguslaw Frackiewicz</td>
<td></td>
</tr>
<tr>
<td>Remington Rand, Inc., Eckert-Mauchly Division, Uniservo (X224.83) Gift of R. S. Nelson</td>
<td></td>
</tr>
<tr>
<td>Roman Art Company, Punch-card paper tape from contemporary Jacquard loom (X276.83)</td>
<td></td>
</tr>
<tr>
<td>Scheutz, George and Edward, Specimens of Tables, Calculated, Stereomoulded, and Printed by Machinery, (X187.83) Loan from Frederick J. Beutler</td>
<td></td>
</tr>
<tr>
<td>Union Label Company, McBee Keystorm Needle Cards and Punch (X328.84) Gift of Gordon Bell</td>
<td></td>
</tr>
<tr>
<td>Unknown, Mercury Delay Line (X282.83) Gift of Arthur Uhlir</td>
<td></td>
</tr>
<tr>
<td>Unknown, Thode Power Supply Control Rectifier (X391.83) Gift of Gordon Bell</td>
<td></td>
</tr>
<tr>
<td>USSR Government, MINSK-2 Logic Board (X327.84) Gift of Dileep Bandaker</td>
<td></td>
</tr>
<tr>
<td>Wickes Engineering and Construction Company, BIMAC Clock (X305.84) Gift of Neil Kleinberg</td>
<td></td>
</tr>
</tbody>
</table>
Calculators

Baby Calculator,
Baby Calculator (X213.83)
Gift of Gordon and Gwen Bell

Bachman, Charles,
Circular Slide Rule (X342.84)
Gift of Charles Bachman

Bowmar Instrument Corporation,
Bowmar MX70 Memory
Calculator (X216.83)
Gift of Ian Gunn

Carbic, Lid.,
Olia King’s Pocket Calculator
(X214.83)
Gift of L. Bernard Cohen

Dennert & Pape Company,
Aristo Darmstadt Slide Rule
(X333.84)
Gift of L. Bernard Cohen

Dietzgen Company,
Smith’s Improved Protractor
(X243-83)
Gift of University of Illinois,
Department of Computer Science

Dietzgen Company,
Dietzgen Pedirule Slide Rule
(X331.84)
Gift of L. Bernard Cohen

Egli, Hans,
Millionaire Calculating Machine
(X347.84)
Gift of A. Wayne Brooke

Egli, Hans,
Millionaire Calculator (X211.83)
Gift of Paul J. Harrington

Faber-Castell Company,
Slide Rule (X332.84)
Gift of L. Bernard Cohen

Felt & Tarrant Manufacturing
Company,
Comptometer (X349.84)
Gift of Herbert and Virginia
Eldridge

Friden Calculating Machine
Company,
Friden Model D8 Calculator
(X304.84)
Gift of Lee Bauer

Friden Corporation,
Friden Calculator (X230.83)
Gift of Dave Stone

General Business Machines
Corporation,
Automatic Printing Calculator
(X220.83)
Gift of Peter Stalker

Harmann Manus,
De Te We (X190.80)
Loan from Declan and Margrit
Kennedy

Hewlett-Packard Company,
HP-55 Calculator (X196.83)
Gift of Randolph S. Canham

Hewlett-Packard Company,
HP-85 Programmable Calculator
(X241.83)
Gift of Stephen and Barbara Gross

Keuffel & Esser Company,
Fuller’s Cylindrical Slide Rule
(X250.83)
Thacher’s Cylindrical Slide Rule
(X253.83)
Drawing instruments (X257.83)
(X258.83)
Gift of University of Illinois,
Department of Computer Science

Marchant Calculating
Machine Company,
Marchant Calculator (X347.84)
Gift of Fred Gruenberger

Monroe Calculating Machine
Company,
Monroe High Speed Adding
Calculator (X239.83)
Gift of Lee Swanson

Microsoft Corporation,
NOVUS 650
Fixed Point Calculator (X302.83)
Gift of Harry and Martin Aguilera

Reliable Typewriter and Adding
Machine Corporation,
VE-PO-AD (Vest Pocket Adder)
(X204.83)
Gift of M.M. Cragon

Reliable Typewriter &
Adding Machine Company,
Addometer (X323.84)
Gift of George J. Kelly

Riefler Nessel Wang
and Munchen Company,
Drawing Instrument (X254.83)
Gift of University of Illinois,
Department of Computer Science

Shure Brothers, Inc.,
Reactance Slide Rule (X303.83)
Gift of Claude A.R. Kagan

Tasco Industries,
Pocket Arithmometer (X208.83)
Gift of J. M. Shag Groetz

Texas Instruments, Inc.,
TI-2500 Datamath Electronic
Calculator (X317.83)
Gift of Ian Gunn

Unknown,
Binary Slide Rule (X287.83)
Gift of Jacqueline Tyrwhitt

Unknown,
Drawing Instrument (X244.83)
Gift of Ian Gunn

Victor Adding Machine Company,
Victor Adding Machine (X201.83)
Gift of Henry Merrill, III

Wang Laboratories,
Wang Model 300K Electronic
Calculator (X308.84)
Gift of Robert Caron

Wang Laboratories,
Wang Model 500-K Programmable
Calculator (X222.83)
Gift of Ocean Data Systems

Western Electric Company,
Hollerith Tabulating Machine
Counter (X193.83)
Gift of A. Wayne Brooke

Wolf Research and
Development Corporation,
Pert VIP Time Data Converter
Circular Slide Rule (X330.83)
Gift of Wolf Research and
development Corporation

Wyle Laboratories,
Wyle Scientific
Electronic Calculator (X212.83)
Gift of Glenn C. Stewart

Planimeter. This exquisite Keuffel & Esser Planimeter is one of many fine drafting and drawing instruments donated to The Computer Museum by the Computer Science Department at the University of Illinois. Planimeters were used to determine the area of a closed curve.
Miscellaneous Artifacts

- **Comet Metal Products Company, Model of Sylvania MOBICD (Mobile Digital Computer) (X205.83)**
- **Gift of Frederick W. Pettee**
- **Ecole municipale de tissage de Lyon Dessin de Ch. Michel d'apres C. Bonneton, Jaccard portrait woven in silk. (X341.84)**
- **Loan from Gordon and Gwen Bell**
- **MIT and USAF**
- **Ashtray: APT II (X236.84)**
- **Gift of Douglas Ross**
- **NASA, Jet Propulsion Laboratory, Mariner 4 First Computer Image of Mars, (X246.84)**
- **Loan from Jet Propulsion Laboratory**

Robots

- **Automatix, Inc., Autovision 2 (X203.83)**
- **Gift of Automatix, Inc.**
- **Stanford Research Institute (SRI), SHAKEY the Robot, (X279.83)**
- **Loan from SRI International**

Manuals and Documentation

- **ALWAC III Manuals and Drawings, (84.3)**
- **Gift of Eugene Ushin**
- **Amadahl 470 Reference Manuals, (83.23)**
- **Gift of Lloyd Dickman**
- **AN/FSQ-7 Programming Cards, (84.28)**
- **Gift of Computer Systems Division, Grissel Air Force Base**
- **Burroughs B-500 Manuals and Documentation, (84.5)**
- **Gift of Design Pak, Inc.**
- **Byte, Interface Age, Kilobaud Magazines, et. al. periodicals, software, manuals and books, (83.18)**
- **Gift of Dr. Roger J. Spott**
- **Computer, Data Communication, and Programming books and manuals, (83.22)**
- **Gift of Gordon and Gwen Bell**
- **Computer Science Press, Computer Science Textbooks and other recent publications, (83.24)**
- **Gift of Computer Science Press**
- **Datamation (1957-1981), Creative Computing, Tekram and other documentation, (84.25)**
- **Gift of Douglas Ross**
- **DECSys 10 & 20 and TOPS Manuals, (84.8)**
- **Gift of Sharon Lipp**
- **Electron Beam Memories Papers and Drawings, (84.7)**
- **Gift of Sterling Newberry**
- **Hewlett-Packard and IBM Reference Data Cards, (84.18)**
- **Gift of Harvey Morgan**
- **IBM AN/FSQ-7 and IBM 704 Programmer cards, (83.21)**
- **Gift of Alexander Vanderburgh, Jr.**
- **IBM Punched Card Machine Manuals, (84.11)**
- **Gift of Marjorie Canto**
- **IBM, Control Data Corporation, and Digital Manuals Correspondence relating to early programming timing results, (84.17)**
- **Gift of Dr. Melvin Klerer**
- **IBM, General Electric, Unicomp, Burroughs, Digital, Honeywell, et. al. Manuals, (84.1)**
- **Gift of Neil R. Karl**
- **IBM and other manuals, (84.25)**
- **Gift of Frank C. Bequaert**
- **Microcomputing (Kilobaud) 1977-1982, (84.27)**
- **Gift of Joseph Clarke**
- **NTDS CP-642 Naval System Operator’s and Programmer’s Manuals, (83.25)**
- **Gift of Sperry Corporation and H. Stanford Foote**
- **Packard Bell, Raytheon, et. al. manuals, (83.20)**
- **Gift of Claude A. R. Kagan**
- **Personal Computer and Calculator Brochures, Pamphlets, Catalogs and other documentation, (84.20)**
- **Gift of Harley R. Schneider**
- **Gift of Reston Publishing Company, Inc.**
- **SAGE and Varian Computer Documentation, (84.13)**
- **Gift of Computer Systems Division, Grissel Air Force Base**
- **Symbolic Logic, Boolean Algebra and the Design of Digital Systems, (84.9)**
- **Gift of M. J. Gettleman**
- **TRIS-80 manuals, (84.23)**
- **Gift of Samuel M. Gerber**
- **UNIVAC and Remington Rand Manuals, (84.6)**
- **Gift of G. Murl Mohr**
- **Viatron manuals and papers, (84.24)**
- **Gift of Fred DeBros**
- **Wang Laboratory Manuals, (84.4)**
- **Gift of Robert Caron**

Ashtrey

This aluminum ashtray donated by Douglas Ross, was made in February 1959 at MIT and is the first object produced using computer-aided design. Upon its production, the New Yorker ran this quote from the San Francisco Chronicle:

"The Air Force announced today that it has a machine that can receive instructions in English, figure out how to make whatever is wanted, and teach other machines how to make it. An Air Force general said it will enable the United States to 'build a war machine that nobody would want to tackle.' Today it made an ashtray."

ALEXANDER VANDERBURGH, JR.

SAGE Programmer Cards

These cards are from the SAGE, the U.S. air defense system from 1958-1983. Museum member Alexander Vanderburgh, Jr. recalls that these memories were used to interpret memory dumps that could be translated from numerical format to command format. They also contained the mnemonic code for the instruction set.
Audio-Visual Material

Film:
"... from one John V. Atanasoff," Iowa State University Media Services, 1983. Gift of Iowa State University
"Graphic Rocket," The Rand Corporation, 1965. Gift of Willis Ware
"Hollerith Punched Cards," "Punched Cards" Gift of Bill Luebbert
"UNIVAC ..." Seymore Zwiebel Production for Remington Rand's Eckert-Mauchly Division. Gift of Sperry Rand Corporation
Investigating Computer Systems, 15 filmstrips and 10 Card Computing Films. Gift of the Charles Babbage Institute, (84.10)
Newsclip of CDC 7600 announcement with Norris, Cray, et. al. Gift of Joseph Clarke, (84.27)

Photographs:
Harold Cohen, photographs (84.12) Gift of Harold and Beckey Cohen
Cray, Seymour, CDC 6600 Gift of Lawrence Livermore Laboratories
Ford Tempo Ads Gift of Ford Motor Company
Pilot Ace Gift of National Physical Laboratory
Punched Card Room, 2 b/w photographs. Gift of The Travelers Insurance Company
US Navy Gift of Naval Tactical Data Systems
ISS ROCC System: 5 color transparencies. Gift of Computer Systems Division, Griffiss Air Force Base, (84.28)

SAGE, 13 photographs. Gift of System Development Corporation, (84.21)
SAGE, 4 photographs and LIFE magazine 2/11/57. Gift of IBM Communications, Kingston, (84.19)
SAGE-North Bay Installation, 5 photographs. Gift of Hanacom Field Air Force Base, (84.14)
Stibitz, George Gift of Bell Labs
TRADIC Computer Gift of Bell Labs
UNIVAC 494, 2 color photographs. Gift of The Travelers Insurance Company, (84.15)

Equipment:
Sony BVU 200B videotape player. Gift of Sony Corporation of America, (84.22)

Pioneers. This photograph is part of The Computer Museum's archival collection. Pictured are British computer pioneers and other distinguished guests at the opening of the Science Museum's computing gallery in London, December 1975.

Back row, left to right: Donald Davis, Tom Flowers, Grace Hopper (USA), Jim Wilkinson, Tom Kilburn, Raymond Thompson, Maurice Wilkes, Cecil Marks, Allen Coombs. Front row: Mrs. Douglas Hartree, Fred Williams, Max Newman, David Wheeler, Konrad Zuse (Germany).
The Apple I

by Brenda A. Erie

When the Museum opens at its new quarters in downtown Boston on November 14th, 1984 an Apple I board will be part of the Museum's Personal Computer exhibit. Surrounded by a ring of state-of-the-art operational machines, the Apple I board will be exhibited with other personal computer ancestors such as the Altair and the Xerox Alto.

It is too difficult to put a price tag on the Apple I's current value because "only 210 to 220 Apple I's were ever manufactured," according to Stacey Farmer, of Apple Computer, Inc. This reliable microcomputer, which needed little assembly, was built in 1975 by Apple co-founders Steven P. Jobs and Stephen G. Wozniak. Primarily bought by computer experimenters and home computer novices the Apple I could be used for developing programs, playing games or running BASIC.

When the Apple I was inaugurated into the marketplace, the "two Steve's," (as they were nicknamed by their employees) had already established a design philosophy that still exists today at Apple—dedication to making their computers easy to use, understandable and inexpensive. They also recognized the need to incorporate suggestions from Apple I users to improve the production and sales of the machine.

The home computer market liked the Apple I because it was easy to assemble unlike some of the kits that were around in the mid-1970's. Rich Travis, a sales representative at the Sunshine Computer Company in Southern California did not directly promote the Apple I in 1977, but made the machine "easy to buy" for his customers because they were "looking for a complete, ready-to-run system that was inexpensive."

The Apple I was sold at computer stores throughout the United States. In 1977, Kilobaud Magazine ran an article by Sheila Clarke a computer hobbyist writer who found that owning the Apple I did not "require you to be either an electronics buff or a millionaire."

For instance if you had walked into the Byte Computer Store in San Jose, California to purchase an Apple I in 1977, you would have gotten a fully-guaranteed computer kit for $666.66 that included: a printed circuit board with video terminal electronics, 8K bytes of RAM, 4 regulated power supplies, a keyboard interface and a hex monitor in PROM.

However, other purchases were also required in order to get your Apple I operating. These totaled $122.00 and included: an ASCII keyboard, a video monitor (if you didn't use your own TV set), and two transformers. If you did use your own television, a simple modification was required like a Pixe-verter or switch box and an rf modulator. In order to store programs, a two inch high cassette interface (ACI) was also available which came fully assembled and burned-in with a tape of APPLE BASIC for $75.00. Jobs and Wozniak both agreed
that BASIC at this time was the language of the people because it was easy to use.

In 1977, Apple I advertisements claimed that, "unlike many other cassette boards on the marketplace, ours works every time." So if you also bought a tape recorder you were in luck because the Apple I worked reliably with almost any inexpensive audio-grade cassette recorder. Your total cost for the machine, $903.66.

Relatively few Apple I's were sold compared to personal computers on the market today. However, the Apple I gained enough popularity because it was essentially "hassle free" and could be purchased for under $1,000. Hobbyists, home computing novices and the computer store dealers themselves applauded its reliability.

It was this microcomputer, the Apple I that enabled Apple Computer, Inc. to quickly turn from a small, single-product private company to the multi-product, multi-national, public company that it is today. As the Apple I's sales increased in 1977, Jobs and Wozniak began to spend much time perfecting the design of the Apple I and their future product the Apple II. But as the company bloomed, it was necessary for Jobs and Wozniak to go to the outside for help.

They recruited A.C. Markkula who had been marketing manager at Intel. He was fascinated with what both Jobs and Wozniak had already accomplished. To show his confidence in the duo he put up $91,000, secured a credit line, and then found $500,000 from other venture capitalists to help put Apple Computer Company on its feet. Shortly after, in May 1977, Markkula became chairman of the board, and Michael Scott, who took a 50 percent pay cut to join Apple from National Semiconductor became the company's first president.

The Apple I. This Apple I board will be part of the Museum's Personal Computer exhibit opening November 14, 1984. Apple Computer, Inc. co-founders Steven P. Jobs and Stephen G. Wozniak designed the Apple I in 1975 to meet the requirements of computer hobbyists. Priced at $566.66, it met their needs as an easy-to-use computer system that was inexpensive.
Pre-Preview Party

The Computer Museum held a Pre-Preview Party on May 11 at its new location in downtown Boston. The festive evening commenced with a talk on the invention of the integrated circuit by Intel founder Dr. Robert N. Noyce. Dancing and a screening of the film "Metropolis" followed dinner for party guests from industry and Museum Members.

Pre-Preview Party Lecture. Talking on the invention of the integrated circuit, Intel's Dr. Robert N. Noyce recalled,

"When I was in college, I could slave over something, finally get the right answer, hand in my paper and it would come back with these big red markings on it. My physics professor would say I did it the hard way. Then he'd jot down a couple of sentences which clearly made it much easier for me by using some other method. I guess that is what stuck with me, because one of the characteristics of an inventor I think is that he is lazy and doesn't like to do it the hard way."
Ascending to the sixth floor. Attendees at The Computer Museum's May 11 Pre-Preview Party climb the new central stairway between the fifth and sixth floors. The stairway was completed just days before the party. The $100 benefit dinner kicked off The Computer Museum's $10,000,000 capital campaign.

Multiwire machine. Barbara T. Mastro and Curtis P. Hoffman familiarize themselves with a recent gift to the Museum from Kollmorgen's PCK Technology Division during the Pre-Preview Party. The Multiwire machine can "write" wire patterns at rates of 100 inches per minute making it possible to reduce the size of computers.

Computing Relic. Talking by the 1958 SAGE display console are Peter Hirshberg (left) and Michael Poe. The console is part of the SAGE, the U.S. air defense computer that could use a light gun to track down enemy bombers.
Admiring the SAGE’s duplex maintenance console during the pre-preview of the Museum’s new 55,000-square-foot facilities in downtown Boston are Mr. and Mrs. Strump.

Janice Stone and Ned Forrester examine the core memory stack from the Whirlwind, an early vacuum tube computer developed at MIT. Forrester’s father Jay W. Forrester directed the design of the computer which was the first to use magnetic core memory.

The mini-museum. Stephanie Haack, (right center) communications director at The Computer Museum explains to party guests the concept behind the Museum’s 20,000 square feet of exhibits scheduled to open on November 14.

Greetings. Mr. and Mrs. Phillip Pyburn meet a unique guest, ‘Shakey,’ the first fully-mobile robot with artificial intelligence, 1969, at The Computer Museum’s Pre-Preview Party. The collection browsing followed Dr. Robert N. Noyce’s talk on the invention of the integrated circuit.
Dear Editor:

I've enjoyed reading the Computer Museum Report for the past few months. It's good to see that people are preserving the older computers so that others will have an understanding of the family tree of today's Apples and IBM PCs.

Your note in "The End Bit" in Volume 9 noted that the MITS Altair was the first computer to use cassette tape as auxiliary memory. I don't think this is correct. I remember using several PDP-8 mini-computers in the 1971-1973 period and an 8-track audio cassette was used to save programs. The cassette unit was manufactured by Tincancomp and I think it was basically the type of cassette or cartridge system used by radio stations for advertisements or other short messages. It was an endless loop cassette and worked quite well. We had many programs stored on it and it was much, much easier than loading (and reloading) paper tapes.

There were several other microcomputer-based computers available to hobbyists and experimenters prior to the MITS Altair. One of the better known units was the Mark-8, an 8008-based computer that I designed and that was described in Radio-Electronics magazine in July 1974. After being available for several months, a group of experimenters in the Denver area came up with a modem board that allowed an audio cassette recorder to be used for program storage. This group eventually formed themselves into the Digital Group, which manufactured several types of computers. I think they were the first ones to use an audio cassette for storage of programs as modem tones.

I have a packet of information that the Digital Group published and distributed. It is undated, but I recall that it was put out in late 1974 or early 1975. It includes a schematic of the modem used for the cassette storage. The modem was made available prior to the publication of this technical information. The modem board is small, measuring 4 1/2 by 2 inches.

There may have been other systems that used a cassette recorder for data and program storage at about this time. I know that Sceili Computer Consulting, Milford, CT put together an 8008-based computer but I don't know if it had a cassette add-on. The early documentation I have does not show one.

With best wishes,
THE BLACKSBURG GROUP, INC.
Jonathan A. Titus, Ph.D
President

IBM System/360 in Conclusion

In the Spring issue of The Computer Museum Report, Number 9 the Museum printed a transcript of a lecture on the IBM System/360 given by Bob O. Evans, IBM vice-president of engineering, programming and technology. The conclusion was inadvertently left out. It follows:

Immediately other companies thought they had been damaged too and filed their own law suits—TransAmerica, Memorex, Calcomp, and others. So, with much senior management and lawyers time expended, IBM went through the gauntlet of several anti-trust trials. That story is over for now, and I hope forever. We won every case on the merits and, recently, the last one, the TransAmerica case went to the Supreme Court which refused to hear it, thus upholding the lower court's decision. And a little over a year ago, the government dropped their anti-trust suit as being without merit. So that enormous weight has been lifted and we are back to getting on with life.

Yet the debate goes on that, had we not standardized and designed the System/360, we would not have had these kinds of copies, and we would not have had those lawsuits, and thus would not have had such difficulties. Thus, was it all worth it?

Of course my bias is that the driver of our products is the end user, and we have an accountability to that user. We also have an accountability to conduct ourselves in an ethical manner. Overall I believe devotedly the 360 decision was the right decision.

I can tell you that if I were faced with that decision today, we would make the 360 decision again, although I am certain it would be much tougher these days.

The net is: System/360 was conceived, born of a need, weathered a lot of tough gauntlets and went on to be a success for IBM and to be a significant part of the computer industry.
Museum Offers New Membership Categories

To celebrate its fall opening, the Museum is offering new membership categories and benefits for individuals and corporations. All individual members receive: a 10% discount on catalog purchases, a year's subscription to the Museum's quarterly magazine, invitations to openings, free admission to the Museum, notification of events, priority admission to special lectures and full library privileges with access to the Museum's extensive print and video archives.

Check the appropriate membership category:

- Individual Member $30
 All benefits listed above.

- Double Member $40
 Individual benefits for two people at the same address.

- Participating Member $100
 Invitations to two "meet the speaker" receptions following major lectures plus Double Member benefits.

- Micro Patron $250
 Recognition in the Museum Report plus Participating Member benefits.

- Mini Patron $500
 A guided tour of the Museum by the Director plus Micro Patron benefits.

- Mainframe Patron $1000
 Mainframe Patrons receive an original, signed computer generated drawing by artist Harold Cohen plus Mini Patron benefits.

- Super Patron $5000
 Recognition in the Museum as a "core contributor to the capital campaign and Mainframe Patron benefits.

Name
Address
City/Town
State Zip

Gift Membership from:
Name
Address
City/Town
State Zip

☐ Enclosed is a check or money order
☐ Please Charge my membership to:
 ☐ Visa ☐ MasterCard ☐ Amex
Number
Expiration
Signature

Corporate Memberships

For information concerning corporate membership contact Michael Oleksiw, Development Director. New corporate benefits include free admission tickets for employees, rental privileges of Museum facilities, and eligibility to participate in the Museum's Collection Loan program.

Museum Hours

On Wednesday November 14, when the Museum opens its doors to the public at Museum Wharf in downtown Boston the hours will be: 11 a.m. to 6 p.m. Wednesday, Saturday and Sunday and 11 a.m. to 9 p.m. Thursday and Friday. It will be closed Mondays, Tuesdays, Christmas, New Years and Thanksgiving.

Upcoming Events

November
November 7—Members Association Meeting, 7 p.m.
November 13—Member's Preview
November 14—Public Opening

December
December 5—Members Association Meeting, 7 p.m.
December 13—Engelman lecture on Artificial Intelligence 7:30 p.m.

January
January 2—Members Association Meeting, 7 p.m.

The Computer Museum
Museum Wharf
300 Congress Street
Boston, Massachusetts 02210

Non-Profit Organization
U.S. Postage PAID
Permit No. 110
Fitchburg, MA 01420