A Small World Still Has Big Problems

As scientists pierced the frontiers of knowledge, the problems they struggled with became ever more complex. To assist them in their research, scientists sought ever faster, more powerful computers. The fastest computers of their day came to be known as "super-computers."

When introduced in 1976, the CRAY-I computer was by far the fastest in the world, performing 166 million operations per second. Such calculating power helped change the way scientists used computers for research. With the CRAY-1, scientists could construct and study complex mathematical models of objects or events too dangerous, inaccessible, or big to experiment with directly.

Meteorologists at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, used the CRAY-1 supercomputer to predict the world's weather for extended ten-day forecasts. The mathematical calculations used to chart weather patterns and track major storm systems were performed by the CRAY-1 computer.

To make its weather predictions, the ECMWF built a computer center the size of a small factory and filled it with an array of computer equipment. The CRAY-1 supercomputer was its heart. "Talking" to a person would only slow down the CRAY-1, so other computers were used to feed it data and instructions rapidly.

Forecasting the weather was exactly the type of enormous arithmetic problem that demanded the use of supercomputers like the CRAY-1. The ECMWF fed the computer the temperature, humidity, barometric pressure, wind speed, and wind direction from satellites, 9,000 weather stations, 750 weather balloons, and numerous ships and planes around the world (80 million bits of information total). From these readings, the CRAY-1 calculated the estimated conditions for every point on a grid covering the globe's atmosphere. (With points spaced 200 km apart and 15 layers deep, there were 273,630 points in all.) Then, applying the physical laws describing the behavior of gases and fluids, the computer figured out how the weather conditions at each point of the grid would affect the points surrounding it 15 minutes later. The CRAY-1 system repeated this last step 960 times, and 500 billion calculations later the meteorologists had an approximate view of the weather around the world for the next ten days. Of course, as with all such predictions, the accuracy of the forecast was limited by the simplifying approximations made by the programmers.

It's not hard to understand why this global weather model required a very fast and large computer. Neither a minicomputer nor a data-processing mainframe could have handled all the data and calculations fast enough. The CRAY-1 computer produced the forecast in just five hours.

Supercomputers were not cheap (the CRAY-1 computer system cost $8,000,000 in 1976), but some jobs, both then and now, could not be done without them. For example, defense laboratories use supercomputers to simulate new weapons under design. Environmental scientists use them to study different scenarios to explain global warming. Aircraft companies use supercomputers to test the design of airplanes before they start construction. Oil companies use them to map the Earth's interior. The weather forecast still comes to you thanks to supercomputers like the current CRAY, NEC and Fujitsu machines.
The speed of the CRAY-1 is partly attributable to the tightly packed circuits arranged in a semi-circle to minimize the distance between the computer's parts. The CRAY-1 is so fast that if the electricity had to travel too far, the computer would have to wait for it. The "seat" houses the equipment that supplies power to the rack of circuitry above it. A pump circulates Freon (the liquid used in air conditioners) through the cast aluminum racks to keep the computer cool.