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ABSTRACT 

Because of the high complexity of the real 
world, realistic simulation of natural scenes is 
very costly in computation. The topographical 
subtlety of common natural features such as trees 
and clouds remains a stumbling block to cost­
effective computer modeling. A new scene model, 
composed of quadric surfaces bounded with planes 
and overlaid with texturing, provides an efficient 
and effective means of representing a wide range 
of natural features. The new model provides a 
compact and functional data base which minimizes 
the number of scene elements. Efficient hidden 
surface algorithma for quadric surfaces bounded by 
planes are included. A mathematical texturing 
function represents natural surface detail in a 
statistical manner. Techniques have been 
developed to simulate natural scenes with the 
artistic efficiency of an impressionist painter. 

CR Categories: 1.3.3 [Computer Graphics]: 
Picture/Image Generation - display algorithms; 
1.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling - curve, surface, solid and 
object representations; geometric algorithms, 
languages and systems; 1.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism - color, 
shading, shadowing, and texture; visible 
line/surface algorithm; J.7 [Computers in Other 
Systems]: Military, real time. 

1. INTRODUCTION 

Realistic simulation of natural scenes is one 
of.· the greatest challenges facing computer graph­
ics. Exact mathematical representation of the 
extreme complexity of nature is generally not 
cost-effective because of the high computation 
load. Nonetheless, a wide 'range of applications, 

. including training, scientific modeling, and 
entertainment, have created a demand for effective 
and efficient computer techniques for simulating 
natural scenes. In attacking the problem, the 
choice of data base is critical. A great deal of 
effort has been applied employing a wide range of 
data bases including points, planar surfaces, and 
curved surfaces. 
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The point is mathematically the simplest data 
base primitive. Dungan [6] and Spooner, et al 

16 have developed techniques to generate per­
spective images of Defense Mappi~ Agency eleva­
tion data points. Csuri, et al [5] have used 
points to model smoke, and Reeve~ [13] has used 
points to model fire and grass. The problem with 
the point data base is that very large numbers of 
scene elements have to be transformed to a 
perspective projection, producing extremely high 
computation loads. 

The next simplest data base primitive, and 
the most commonly used, is the planar face bounded 
by straight edges [17]. Because of its mathe­
matical simplicity this linear approach has 
allowed real-time implementation and is widely 
used in flight simulation [15]. An elegant 
application of the linear data base has been the 
construction of fractal surfaces to model terrain 
with unprecedented realism [7,9]. Marshall, et al 
[10] have also used a linear data base to model 
trees with great detail. Like the point data 
base, however, the linear data base requires very 
large numbers of scene elements to represent the 
nonlinear complexity of the real world. The 
realism of fractal.surface images is achieved only 
by rendering hundreds of thousands of planar 
faces, and a single linear tree requires.' thousands 
of faces. The number of scene elements is criti­
cal to the efficiency of the image generation 
approach. The greater the number of scene ele­
ments, the greater the number of surfaces and 
boundaries that must be computed, resulting in 
greater computation costs for sorting, priority 

determination, and antialiasing. Limiting the 
number of scene elements limits the realism of the 
linear model. For this reason, current flight 
simulation systems have been criticized for being 
too cartoonish. 

Various approaches to scene simulation using 
curved surfaces have been developed. Quadric 
surfaces have been used effectively by the . 
Mathematical Applications Group, Inc. (MAGI) [8] 
and the New York Institute of Technology (NYIT) 
[18] to model complex man-made objects. MAGI also 
used a large number of quadric surfaces to model a 
tree. In a landmark application of computer image 
image generation, Blinn used quadric surfaces with 
texture maps to model Jupiter and its moons for 
the Voyager flyby [2]. Quadrics have also been 
used to model molecules and are common data base 
primitives in CAD/CAM. None of these appli­
cations, however, has exploited the potential of 
quadric surfaces for modeling a wide range of 
natural features. 
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More complex curved surfaces, in particular 
bicubic surfaces, have been studied extensively 
[1,3,4]. Such surfaces provide great modeling 
flexibility because they allow for continuity of 
slope between adjoining surfaces. However,' 
despite the development of several clever image 
generation algorithms, the mathematical complexity 
of these surfaces results in severe computation 
loads for complex scenes. 

2. AN EFFICIENT DATA BASE FOR SIMULATING 
NATURAL SCENES 

In selecting a data base for simulating 
natural scenes, we must contend with the inevi­
table tradeoff between realism and computation 
load. We must define a level of realism that we 
desire and then choose the data base that will 
produce this level of realism most efficiently. 
Efficiency is particularly important When our goal 
is to generate long sequences of images to produce 
dynamic presentations. To achieve real-time image 
generation, efficiency is critical. In defining a 
desired level of realism Which would reduce the 
computation problem to manageable proportions, we 
have adopted an approach used successfully by 
impressionist painters: to represent the essence 
of natural scenes as simply as possible. An 
impressionist painter produces a very effective 
picture of a tree by representing the shape and 
texture of its foliage without expending effort on 
precise delineation of individual twigs and 
leaves. With this modest level of realism, the 
painter quickly produces a strong impression of 
the essence of a tree. A similar result can be 
produced by a computer using simple curved 
surfaces and texture patterns. Quadric surfaces, 
in particular, lend themselves to this approach 
because a single quadric surface can be used to 
model a natural scene feature such as a tree, a 
hill, or a rock. This simplifies scene modeling 
and reduces the number of scene elements required 
to model complex scenes. Furthermore, quadaric 
surfaces are mathematically the simplest form of 
curved surface and therefore provide an efficient 
means of representing natural topographical 
curvature without piecewise-linear approximation. 

Texture patterns can be mapped onto quadric 
surfaces to simulate natural scene detail. The 
most commonly used technique in texture mapping is 
to store images of texture patterns [1,3]. This 
app~oach is inefficient for simulating natural 
scenes because too much storage would be required 
to represent the wide variety of patterns neces­
sary. In addition, arbitrary views of natural 
scenes require perspective manipulation and 
antialiasing of the texture patterns. Further­
more, in dynamic presentations it is desirable to 
include complex motion of texture patterns to 
simulate flowing rivers and blowing trees. To 
provide on-line control of perspective validity, 
antialiasing, and dynamics, we produce texturing by 
means of a mathematical texturing function Which 
can be mapped onto scene surfaces in such'a way as 
to modulate surface shading and translucence. 
Because only ~ parameters are required to define 
a natural-looking texture ,pattern, a wide variety 
of patterns can be stored. 
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2.1 The Geometric Data Base 

A geometric data base composed of quadric 
surfaces only would not provide the topographical 
variety required for natural scenes. To provide 
greater flexibility in our topographical model and 
to allow for adjoining quadric surfaces, we 
include in our geometric data base the option of 
bounding each quadric with a finite number of 
planes. We then define the geometric data base to 
be a set.of discrete convex objects, with each 
object defined by one quadric surface and N 
bounding planes, Where N can be zero. This avoids 
the costly computation of intersections between 
quadrics and ensures that all surface boundaries 
will be at most second-order, allowing for scan­
line intercept determination in closed form. 

We define a three-dimensional scene coordi­
nate space (Xs'Ys,Zs)' with the Xs axis pointing 
east, the Ys axis pointing north, and the Zs axis 
pointing vertically up. We define a ground plane 
(Zs a 0), and a unit light vector. For each two­
dimensional image of the three-dimensional scene, 
we define an eyepoint and look angle. The 
coefficients of the quadric surface and bounding 
planes for each object are defined in scene coor­
dinates and must be transformed to eye coordinates 
(X,Y,Z), centered at the eyepoint (0,0,0), with 
the Y axis pointing in the direction the eye is 
looking (Fig. 1). 

Fig. 1 Transformation From Scene to Eye 
Coordinates & Projection Onto Image 
Plane 

For each quadric, we get an equation in eye 
coordinates of the form 

Q(X,Y,Z) Q Q1X~2y2+Q3Z2+Q4XY+Q5YZ+Q6XZ 
+Q7X+QSY+Q9Z+QO .. 0 (1) 

For each plane, we get. an equation of the 
form 
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The surface geometry of a quadric surface 
bounded by an arbitrary number of planes can be 
quite complex. Generating an image of such an 
object requires exact determination of Which sur­
face is visible at each pixel, but testing each 
surface at each pixel is inefficient. We can make 
use of area coherence and scan line coherence by 
noting that a given surface will cover many pixels 
and many scan lines. We can greatly reduce visi­
bility computation by noting that there are far 
fewer boundary points than there are surface 
points in a typical image, and that boundary 
information can be used to determine surface visi­
bility. The key to efficient processing of the 
geometric data base is, then, to determine Which 
portions of the boundary curves are visible in the 
image. 

We define an image plane with coordinates 
(x,z) parallel to the XZ plane a distance f in 
front of the eyepoint such that the Y axis pierces 
the coordinate axes origin. We also define the 
image x axis to be parallel to the eye coordinate 
X axis and the image z axis to be parallel to the 
eye coordinate Z axis (Fig. 1). Then the trans­
formation from eye coordinates to image coor­
dinates can be represented as 

X'" kx 
Y .. kf 
Z .. kz (3) 

Our strategy will now be to use Eq (I), (2), 
and (3) to project all surface boundaries onto the 
image plane. We will then determine all key 
points on each boundary, that is points at Which 
boundary visibility, and therefore surface visi­
bility, changes across scan lines. We will then 
use the key points to determine a scan line list 
of visible boundaries and surfaces. 

The most important image curve is the limb 
curve, defined as the projection of the quadrIC 
silhouette (Fig. 2). The limb curve can be 
derived ~ substituting Eq (3) into Eq (1) to 
obtain a quadratic equation in k, 

Ak2 + Bk + C .. 0 (4) 

Where A is a second-order expression in the image 
coordinates, x and z, B is a linear expression in 
x and z, and C is a constant. (Algebraic expan­
sions will be omitted for the sake of brevity.) 
The parameter k relates to the distance from the 
eye, varying from a value of 0 at the eye point to 
a value of 1 at the image plane, and increasing 
along the ray out into the eye coordinate space. 
In general, a ray will intersect a quadric surface 
at two points, giving two distinct values of k 
from Eq (4). By definition, the limb curve is the 
set of image points for Which the rays are tangent 
to the quadric surface. For these points k is 
single valued, so the discriminant of Eq (4) is 
zero. 

B2 - 4AC .. 0 

This then gives the limb curve as 

f{x,z) Q alx2+a2z2+a3xz+a4x+aSz+a6 

(S) 

(6) 
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LINE OF INTERSECTION 
SILHOUETTE 

PLANE & BOUNDING PLANE 

VISIBILITY LINE 

Fig. 2 Limb Curve, Intersection Curve and 
Visibility Line 

where the coefficients are expressions containing 
only the quadric surface coefficients, and f, the 
distance from the eye to the image plane. 

The remaining image curves will be 
intersection curves, that is, projections of the 
curves of intersection between the quadric and its 
bounding planes (Fig. 2). To solve for the coef­
ficients of an intersection curve, we must satisfy 
Eq (I), (2), and (3) simultaneously. Substituting 
Eq (3) into Eq (2), we get 

(7) 

Then substituting for k in Eq (3) and using the 
result in Eq (I), we get the intersection curve as 

g{x,z) Q elx2+e2z2+e3Xz+e4x+eSz+e6 ... 0 (8) 

where the coefficients are all expressions con­
taining the quadric surface coefficients, the 
bounding plane coefficients, and f. 

Given a quadric surface with one or more 
bounding planes, we must determine which boundary 
curve segments are visible. To do this, we intro­
duce the concept of a visibility line. We define 
a visibility line for each bounding plane as the 
projection on the image plane of the line of -
intersection between the quadric silhouette plane 
and the bounding plane (Fig. 2). Since the 
visibility line will be used to partition a par­
ticular curve into visible and invisible segments, 
its definition must include a sense or sign deter­
mined from the sense of the bounding plane. 
Rewriting Eq (2) as an inequality to include the 
bounding plane sense, we have 

(9) 

Substituting Eq (3) into Eq (9) gives 

(10) 
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a. Bounding Plane Not Visible 

b. Bounding Plane Visible 

Fig. 3 Intersection Curve Visibility 

The equation for the silhouette plane can be 
determined from Eq (4) and (5) to be 

kB+2C=0 (11) 

Since B is a linear expression in x and .z, and C 
is a constant, Eq (10) and (11) can be combined to 
give the visibility line as 

where the coefficients are expressions in the 
quadric surface and bounding plane coefficients 
and f. 

(12) 

The visibility line defined by Eq (12) can be 
used to determine the visibility of any point on 
the limb curve relative to a particular bounding 
plane. If the limb point satisfies Eq (12), it is 
defined to be visible relative to the plane used 
to define the line. If more than one bounding 
plane is used in the object definition, a limb 
point. must satisfy the visibility line for each in 
order to be visible in the image. 

The visibility line for each bounding plane 
can also be used to determine the visibility of 
any point on the intersection curve related to 
that plane. This visibility test is only neces­
sary when the plane faces away from the eye, that 
is, when the eye is on the same side of the plane 
as the defined part of the quadric surface 
(Fig. 3a). When the eye is on the other side of 
the plane, no visibility test is necessary because 
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the Whole intersection curve is visible 
(Fig. 3b). To determine Which case applies, we 
simply substitute the eyepoint (X,Y,Z) = (0,0,0) 
into Eq (9) to get 

(13) 

If Eq (13) is satisifed, the eye is on the object 
side of the plane and a visibility test for the 
intersection curve is required. Figure 2 shows 
that in this case, the visible portion of the 
intersection curve lies on the opposite side of 
the visibility line as the visible portion of the 
limb curve. Therefore, for a point on the inter­
section curve to be visible, it must fail to 
satisfy Eq (12). 

Thus, the visibility line can be used to 
determine portions of the limb curve defined to be 
visible as well as portions of the intersection 
curve whose visibility depends on eye position in 
the scene. 

Images of objects with more than one bounding 
plane may include linear boundaries resulting from 
the intersection of two planes. We introduce the 
concept of an intersection line, which we define 
as the image of the intersection between two 
bounding planes. The intersection line will 
define that portion of the intersection curve of 
one bounding plane defined to be visible relative 
to the other (Fig. 4). In this sense, the inter­
section line is analogous to the visibility line 
with the first intersection curve replacing the 
limb curve. With a derivation similar to that 
used for the visibility line, we get the inter­
section line for two bounding planes as 

XIX + x2z + x3 > 0 

where the coefficients are in terms of the 
coefficients of the two bounding planes. 

INTERSECTION 
LINE 

IMAGE PLANE 

(14) 

Fig. 4 Intersection Line Defines Intersection 
Curve Visibility Relative to Intersecting 
Bounding Plane and Contains Intersection 
Points XP l' XP 2 
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In addition to its function as a visibility 
criterion, an intersection line may also be a 
visible image boundary. In order for a point on 
an intersection line to be visible it must satisfy 
the appropriate form of Eq (14) for all other 
intersection lines produced by a common bounding 
plane. 

Having computed the equations for all image 
boundary curves and lines, we must now determine 
which boundary segments are visible. We note that 
boundary segments are generally visible over many 
scan lines and that their state of visibility 
changes only at certain key points. Determining 
these key points and restricting visibility tests 
to a few sample scan lines will greatly reduce 
visibility computations. The key points of 
boundary visibility are curve extrema (minimum and 
maximum z), contact points, intersection points, 
and triplet points. 

Curve extrema can be computed from Eq (6) and 
(8) in the standard manner. Since curves don't 
exist on scan lines outside their extrema, they 
clearly are potentially visible only on scan lines 
in between. 

We define a contact point as a point of tan­
gency between the limb curve and an intersection 
curve. In general, two contact points exist for 
each intersection curve and can be determined from 
the intersection of the relevant visibility line 
and the limb curve (Eq (12) & (6». Contact 
points are points of potential change of visi­
bility state for limb and intersection curves. 

We define an intersection point as a point of 
intersection between an intersection line and an 
intersection curve related to a common plane (Fig. 
4). Intersection points are points of potential 
change of visibility for intersection curves and 
intersection lines. 

We define a triplet point as the image point 
of the corner intersection of three bounding 
planes. Triplet points can be computed as the 
intersection of two intersection lines and are 
points of potential change of visibility for 
intersection lines. 

Once we have computed all the potentially 
visible curves, lines, and key points for the 
image of an object, we are prepared to perform 
visibility tests. In determining what tests to 
make for particular boundaries, the following 
rules apply. Any image point relating to a point 
on the quadric surface must be tested against all 
visibility lines. Any image point relating to a 
point on a particular bounding plane must be 
tested against all intersection lines related to 
that plane (except for the line producing the 
point) and, if the plane is not visible, the 
visibility line related to that plane. 

We begin the visibility testing by testing 
all key points, since only visible key points 
affect visibility changes in the boundaries. 
Editing out invisible key points, we compile a 
list of visible key points sorted on z in scan­
line order. We call this a z-band list because it 
defines regions in the image z direction 
(vertical) in which boundary visibility remains 
constant from scan line to scan line. 
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Within each z-band in the list, an average z 
value is computed to represent a typical scan line 
on which all boundary curve and intersection line 
intercept points are computed. These intercept 
points are tested for visibility, and codes for 
all visible boundary intercepts are entered in the 
z-band, sorted from left to right based on the 
intercept x value. Boundary curve intercepts are 
coded to define leftmost or rightmost intercept. 
Finally the sorted visible boundary intercepts are 
used to determine the visible surfaces in 
between. The surface between two boundary 
intercepts is assumed to be the quadric surface 
unless both boundaries are related to a common 
bounding plane. 

The resulting object visibility list, con­
sisting of sorted z-bands, each with x-sorted 
boundary intercept and surface codes, provides a 
very efficient image "blueprint" for directing 
scan-line surface shading of the object. As the 
image is generated, scan line by scan line, a par­
ticular object is considered only if the scan line 
falls within the z-band list. For each such 
object, the pertinent z-band is referenced, and, 
proceeding from left to right, boundary codes are 
referenced, intercepts computed, and surfaces 
shaded on pixels in between. Figure 5 shows how 
this approach simplifies the image generation of a 
complicated object by reducing a maze of poten­
tially visible boundaries to a manageable list of 
visible boundaries and surfaces. Figure Sa shows 
the limb and intersection curves, and the inter­
section and visibility lines in an image of a 
sphere bounded by 6 planes. Figure 5b shows the z 
bands indicated by horizontal lines drawn through 
all visible key points. Note how within each z 
band the visibility of boundaries and surfaces 
remains constant. Figure 5c shows the final 
shaded object with hidden surfaces removed. 

In addition to streamlining intraobject 
visibility, that is, the determination of visible 
surfaces for a single object, the visibility list 
simplifies interobject visibility, the deter­
mination of priority between different objects. 
Because our geometric data base includes only 
convex objects, we need not compute the distance 
to the visible object surface at every pixel. 
Instead, we can use the z-band lists to compute 
the leftmost and rightmost surface distance on a 
scan line and use linear interpolation in 
between. Then, when two objects overlap on a scan 
line we can use the interpolated distances to 
determine priority within the overlap region. 

2.2 The Texture Data Base 

We can simulate textural detail efficiently 
by modulating surface shading intensity in a 
defined manner. In so dOing, we must take care to 
assure perspective validity b~ making the texture 
intensity depend on the scene coordinates of the 
surface being textured. For any given image we 
are interested in texturing visible surfaces 
only. Thus it would be inefficient to produce 
texture intensity values for all scene surface 
points. The most practical approach is to produce 
texture values only for visible scene surface 
points corresponding to image sample points. 
Since the image sample points depend on the 
viewing perspective, we must be able to produce 

15 
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a . All Curves & Lines 

b . Visible Boundary Segmen t s & Z Bands 

c . Shaded Visible Surfaces 

Fig. 5 Visibili t y De t er mina t ion for Spher e With 6 
Bounding Planes 
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texture values for arbitrary scene points. For 
this reason we have chosen a mathematical function 
to produce texture. A mathematical texturing 
function offers the additional advantage of 
requiring a minimal data base to produce a wide 
variety of texture patterns, each of which can 
cover an unlimited region in the scene. The 
control inherent in a mathematical function, 
computed during image generation, also provides 
for straightforward antia1iasing of texture 
patterns and allows implementation of complex 
texture motion. 

In choosing the exact form of our texturing 
function, we decided that it would be most effi­
cient to represent real-world detail at a sta­
tistical level . An effective way to do this is to 
use the principle of Fourier expansion , [11, 14J. 
After investigating different expressions of 
various waveforms, we found a very effective 
texturing function to be defined as 

n 
1 
i=l 

~ cFSin(Wi Ys + PYi ) + 1J 
i=l 2 

(15) 

Where PXi and PYi represent phase shift functions 
to avoid a tartan-like regularity of the pattern. 
We have found that defining PXi as a sinusoidal 
function of Ys and PYi as a sinusoidal function of 
Xs produces natural-looking patterns for low 
values of n (Fig. 6). 

Fig. 6 Texture Pattern on Ground Plane From 
Texture Function Eq (15) With n = 7 

The primary use of the texturing function is 
to simulate surface detail by modulating shading 
intensity. This is done by computing a weighted 
average of the surface shading intensity and the 
texture function value at each visible point. A 
texture weighting parameter is defined for each 
object to provide flexibility in scene modeling. 
A secondary use of the texture function is to 
simulate boundary irregularity and amorphousness 
of certain natural features, such as trees and 



clouds. We accomplish this by treating locally 
dark texture regions on an object's surface as 
though they were holes in the object. This effect 
is achieved quite simply by assigning a threshold 
value for the texture function and defining an 
object to be translucent at any image point where 
the texture function falls below the threshold. 
The artificial boundaries produced between the 
visible and invisible portions of the texture 
surface can be softened by varying the trans­
lucence linearly as the tex ture function crosses 
the threshold. This technique is demonstrated in 
Fig. 7, which shows a sky plane textured with 
variable translucence to simulate a cloud layer. 

< ," ' ~ .., _lC .~,~ '", _. ,,_" ~ ~~~ _ """.. <>>- -.." 

-"'----''''''' .. . .. ,..~ ,'" 

Fi g . 7 Cloud Layer Si mulat ed by Tex ture Function 
Mo dul a t i ng Shading & Tr anslucence 

The texturing function greatly enhances the 
realism of objects defined by the geometric data 
base. Figure 8a shows mountains modeled by the 
geometric data base only, and Fig. 8b shows the 
same scene enhanced by the texturing function. In 
addition to adding simulated topographical detail, 
the texturing blends surface shading across boun­
daries between abutting objects. This unifying 
effect is due to the fact that all objects, as 
well as the ground plane, are textured with the 
same texture function parameters so that the 
texturing function maps the same pattern con­
tinuously across all scene surfaces as a function 
of scene coordinates. 

The combination of the geometric and texture 
data bases is particularly effective in simulating 
amorphous objects, such as trees and clouds, whose 
boundaries are both complex and subtle (Fig. 9). 
The trick of simulating such features so effici­
ently is to control the translucence at an 
object's silhouette. This capability is provided 
as much by the geometric data base as by the 
texturing function, for it is the definition of 
the limb curve (Eq 6) that allows us to vary the 
threshold of the texturing function to increase 
translucence in a straightforward manner at image 
points near the object boundary. Because the 
translucence can be increased smoothly and con­
tinuously, the image will have soft boundaries 
which will require no antialiasing. 
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a . Scene Wi t hou t Textur e Func t ion 

b. Scene With Tex t ur e Func t ion 

Fig . 8 Mo unt a i ns Modeled by Hyper boloids 

The control inherent in the mathematical 
texturing function has two more advantages over 
less flexible texturing techniques, such as stored 
texture maps. Antialiasing of texture patterns 
can be achieved simply by testing sine wave 
frequencies and dropping those that exceed the 
image sampling frequency (projected into scene 
space). In addition, any of the texturing func­
tion image parameters can be varied from frame to 
frame, allowing the simulation of a wide range of 
dynamic effects. Thus it would require little 
additional frame computation to simulate trees 
blowing, smoke rising, clouds drifting, or rivers 
flowing. 

The texture data base required to implement 
this simulation capability is extremely modest. A 
natural-looking tex ture pattern can be defined by 
2S parameters, including sine coefficients and 
frequencies, phase shifts , and translucence 
thresholds. A given texture pattern can be used 
for any number of objects covering any region in 
the scene. Thus, all trees of a particular type 
could be simulated using one pattern, all rivers 
using another pattern, etc. We have found that 
complex and varied natural scenes can be simulated 
effectively using only 10 texture patterns. This 
compactness of the texture data base simplifies 
both scene modeling and image generation. 
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2.3 Data Base Construction for Complex Scenes 

The new data base simplifies the modeling of 
complex scenes because it conveniently partitions 
the model into two levels of topographical detail. 
The geometric data base can be used to model major 
topographical features, such as hills, explicitly, 
and the texture data base can be used to represent 
secondary topographical variations statistically. 
The compactness of each of these data bases per­
mits a straightforward specification of the param­
eters of size, shape, position, and frequency 
content, which are the essential characteristics 
of natural scene features. 

-To facilitate the modeling of complex natural 
scenes, we developed procedural algorithms to 
generate clusters of scene features. Only two 
types of quadric surfaces are required to produce 
a wide variety of scene features. Hyperboloids of 
two sheets are very effective in simulating hills 
and mountains, and ellipsoids are efficient for 
modeling trees, rocks, and clouds. For each 
feature cluster, we define a region on the ground 
plane over which the cluster, will be generated. 
We also define a typical spacing between features 
in the cluster as well as size, shape, and color 
parameters for a typical template object. The 
algorithm places the template object within the 
defined region at positions determined from the 
defined spacing. As the object modeling each 
feature is generated, the algorithm perturbs its 
position, size, shape, and color parameters ran­
domly to produce natural statistical variations 
within the cluster. Adjacent objects are tested 
for intersection, and bounding planes are computed 
for abutting objects. This permits the modeling 
of topographic structures, such as rolling ter­
rain, mountain ranges, and forests, which are too 
complex to be simulated by isolated objects. The 
algorithm also allows us to define features in a 
cluster as "terrain objects" upon which other 
scene objects will lie. Terrain objects are gen­
erated first so that the objects composing . 
subsequent clusters can be raised to the appro­
priate terrain elevation after they are positioned 
on the ground plane. The simplicity of quadric 
surface shape and position definition makes this 
process quite straightforward. Similarly, clus­
ters can be defined to be positioned at a fixed 
altitude above the ground plane, a capability 
useful in modeling clouds. 

To use the mathematical texturing function to 
model secondary topographical variations we must 
define sets of function parameters, with each set 
chosen to simulate a desired texture pattern. The 
individual parameters in each set can be deter­
mined from an analysis of the spatial frequency 
content of features being modeled. In general, 
natural features have a power spectrum whose 
amplitude decreases as frequency increases. 
Natural-looking texture patterns can be generated 
using from 3 to 7 sine waves whose frequencies 
increase by a factor of approximately 2 and whose 
amplitudes decrease by a factor of approximately 
one half the-square root of 2. The complete 
texture data base is defined by a list of param­
eter sets. As clusters of scene features are 
generated, each object is assigned a specified 
texture parameter set number. A particular 
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texture pattern can be assigned to any number of 
clusters, minimizing the size of the overall data 
base. 

The clustering algorithm can be extended to 
generate clusters of clusters. Using the extended 
clustering algorithm, we can quickly generate and 
change models of complex natural scenes. Figures 
10 and 11 show two examples of complex natural 
scenes simulated using these algorithms. 

3. CONCLUSIONS 

We have described efficient hidden surface 
algorithms for complex curved objects composed of 
quadric surfaces bounded by planes. We have dem­
onstrated the effectiveness of a texturing func­
tion which modulates the shading intensity and 
translucence of scene surfaces. We have shown how 
these tools can be incorporated in procedural 
algorithms to simulate complex natural scenes 
efficiently. 

Textured quadric surfaces provide a means of 
bridging the gap between computationally cheap, 
but cartoonish, scene simulation and highly real­
istic, but costly, scene simulation. Textured 
quadric surfaces produce a compact, functional 
data base related directly to the most significant 
topographical characteristics of scene features. 
This approach reduces image generation computation 
because it reduces the number of scene elements 
that must be processed. Textured quadric surfaces 
allow us to represent the essential realism of 
natural scenes as an impressionist painter would, 
thus avoiding the costly replication of unim­
portant details. The new scene model is par­
ticularly effective for modeling amorphous 
objects, such as trees and clouds, which continue 
to be stumbling blocks for other approaches. The 
new model is, however, comprehensive because it 
can model man-made as well as natural features. 
The inclusion of bounding planes even permits 
modeling linear features, such as buildings. 

As a quantitative measure of the computa­
tional efficiency of this approach, the images in 
Figs. 10 and 11 took 10 min. 29 sec. and 9 min. 40 
sec., respectively, to generate on a dedicated 
Data General Eclipse 5/250 16-bit minicomputer 
with 512 KBYTE memory and floating point accel­
erator. Image resolution is 480 scan lines by 640 
pixels by 24 bits. The image generation routines 
were programmed in Fortran V using floating point 
arithmetic. (Runs for figure 10 at 512 x 512 
resolution took 5 min. 34 sec. on a VAX 11/760 and 
6.49 sec. o~ a CRAY 1M.) _ The current programs are 
in no way claimed to be optimal. On the contrary, 
there is much room for improvement in both compu­
tation time and image quality, and the author 
hopes that this paper will stimulate others to 
explore and extend this technology. 

Scene simulation using textured quadric 
surfaces has application in many diverse fields, 
including art, entertainment, advertising, 
scientific simulation, and training. At Grumman 
we have used it in a public relations film to show 
an advanced concept, forward-swept-wing aircraft 
in flight before it was built (Fig. 12). We have 
also applied the technology to pattern recognition 
research in target tracking by a missile [12J. We 



Fig . 9 Tr ees , Cl ouds & Hills Mode l ed by Tex t ured 
Quadric Surfaces 

Fig . 10 Clusters of Hills & Trees Genera t ed With 
Cluster Al gor i thm 

Fig. 11 Clusters of Hills , Tr ees & Cl ouds 
Generated Wi th Extended Cluster 
Algorithm 

Computer Graphics Volume 18, Number 3 July 1984 

Fig. 12 Frame From X- 29 Promo t ional Film. The 
X- 29 aircraft is mode l ed by 40 quadric 
surfaces without t ex t uring. The cl ouds 
are model ed by quadric s urfaces with 
texturing . 

are currently investigating real-time implemen­
tation of the algorithms for flight simula tors. 
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August 6 1984 

Geoffrey Y Gardner 
Grumman Aerospace Corp 
MS A-08/35 
Bethpage 
NY 11714 

Dear Mr Gardner 

Thank you for your letter of 6 March and the photographs and 
papers enclosed with it. 

Having seen the films you presented at your talk and at the film 
show at SIGGRAPH, I think the best way to put over your work 
would be as film. Would it be possible to show some sequences 
in our gallery The Computer and the Image? I would like sequence~ 
that show the various terrain, tree and cloud texture as well as 
some that show aircraft in the scene. 

The film would be shown in a section on simulation; we use 3/4 
inch U-Matic video tape players. 

I enclose the latest issue of The Computer Museum Report and a 
brochure prepared for our capital campaign to give you some 
background on the Museum. 

Thank you for any help you might offer. 

Yours sincerely 

Dr Oliver Strimpel 
Curator 

enclosures 





Grumman Aerospace 
Corporation 
Bethpage. New York 11714 

Mr. Oliver Strimpel 
Computer Museum 
300 Congress Street 
Boston, MA 02210 

Dear Mr. Strimpel: 

Research and Development Center 
6 March 1984 

Enclosed is a copy of the paper I submitted to the SIGGRAPH 184 
Conference. I am also enclosing a brief description of my approach to 
Computer Image Generation and a couple of photos illustrating the results. 

Thank you for your interest. If I can be of any further help, please let 
me know. 

GYG:amp 
Enc. 

Sincerely, 

!#J~ 
Geoffrey Y. Gardner 
Staff Scientist 
M.S. A-08/35 
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Grumman Aerospace 
Corporation 
Bethpage, New York 11714 

GRUMMAN ADVANCED COMPUTER IMAGE GENERATION TECHNOLOGY 

The Grumman Aerospace Corporation has developed unique and Advanced 
Computer Image Generation (CIG) techniques to generate realistic images of 
synthetic scenes. Our techniques are particularly effective in representing 
natural features such as terrain, trees, and clouds, which are stumbling 
blocks for other CIG approaches. Using simple curved surfaces overlaid with 
texturing, we are able to portray the essential curvature and natural detail 
of the real world with artistic efficiency. Because we developed our 
techniques for eventual real-time implementation, we have kept computation to 
a minimum. As a result, we can generate images of rich and complex scenes in 
a fraction of the time required by other CIG techniques. In addition, the 
simplicity of our geometric data base facilitates scene modeling, and our 
unique mathematical texturing function allows a straightforword means of 
producing dynamic special effects such as weapon explosions and smoke. 

We model a scene using a geometric data base composed of quadric (second­
order) surfaces bounded by planes. We add natural detail by means of a 
mathematical texturing function which modulates surface shading and 
translucence. We have written scene modeling software that allows quick 
creation and manipulation of clusters of features such as trees, hills, and 
clouds. Our techniques include the capability for the arbitrary orientation 
and movement of objects such as aircraft. We have developed an efficient 
antialiasing algorithm to remove quantization effects such as staircasing, and 
we have developed efficient image generation algorithms to produce dynamic, 
movie type sequences of images. Typical computation time for a single full­
color image of 480 scan lines with 640 pixels per scan line and 24 bits per 
pixel is 10 minutes on a Data General Eclipse S/250 1~ bit minicomputer. 



SIMULATION OF NATURAL SCENES 

USING TEXTURED QUADRIC SURFACES 

Geoffrey Y. Gardner 

Grumman Aerospace Corporation 
Research & Development Center 

Bethpage, New York 11714 

ABSTRACT 

Because of the high complexity of the real world, realistic simulation of 
natural scenes is very costly in computation. The topographical subtlety of 
common natural features such as trees and clouds remains a stumbling block to 
cost-effective computer modeling. A new scene model, composed of quadric 
surfaces bounded with planes and overlaid with texturing, provides an 
efficient and effective means of representing the essential realism of a wide 
range of natural features. The new model provides a compact and functional 
data base which minimizes the number of scene elements. A mathematical 
texturing function represents natural surface detail in a statistical 
manner. Techniques have been developed to simulate natural scenes with the 
artistic efficiency of an impressionist painter. 

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image Generation - display 
algorithms; 1.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling - curve, surface, solid and object representations, geometric 
algorithms, languages and systems; 1.3.7 [Computer Graphics]: Three­
Dimensional Graphics and Realism - color, shading, shadowing, and texture, 

visible line/surface el imination; J.7 [Computers in Other Systems]: Military, 

real time. 



1. INTRODUCTION 

Realistic simulation of natural scenes is one of the greatest challenges 
facing computer graphics. Exact mathematical representation of the extreme 
complexity of nature is generally not cost-effective because of the high 
computation load. Nonetheless, a wide range of applications, including 

training, scientific modeling, and entertainment, have created a demand for . 
effective and efficient computer techniques for simulating natural scenes. 

In attacking the problem, the choice of data base is critical. A great 
deal of effort has been applied employing a wide range of data bases including 
points, planar surfaces, and curved surfaces. Dungan [6] and Spooner, et al 
[16] have developed techniques to generate perspective images of Defense 
Mapping Agency elevation data points. Csuri, et al [5] have used points to 
model smoke, and Reeves [13] has used points to model fire and grass. The 
problem with the point data base is that very large numbers of scene elements 
have to be transformed to a perspective projection, producing extremely high 

computation loads. 

The most commonly used data base is the linear data base, composed of 

planar faces bounded by straight edges [17]. Because of its mathematical 
simplicity this approach has allowed real-time implementation and is widely 
used in flight simulation [15]. The most elegant application of the linear 
data base has been in the construction of fractal surfaces to model terrain 
with unprecedented realism [9,7]. Marshall, et al [10] have also used a 
1 inear data base to model trees with great detail. Li ke the point data base, 
however, the linear data base requires very large numbers of scene elements to 
represent the non-linear complexity of the real world. The realism of fractal 
surface images is achieved only by rendering hundreds of thousands of planar 
faces; a single linear tree requires thousands of faces. The number of scene 
elements is critical to the efficiency of the image generation approach. The 

greater the number of scene elements, the greater the number of surfaces and 

boundaries that must be computed, resulting in greater computation costs for 
sorting, priority determination, and antialiasing. Limiting the number of 
scene elements 1 imits the realism of the linear model. For this reason, 
current fl ight simulation systems have been criticized for being too 
cartoonish. 
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Various approaches to scene simulation using curved surfaces have been 
developed. Quadric surfaces have been used effectively by the Mathematical 
App1 ications Group, Inc. (MAGI) [8] and the New York Institute of Technology 
(NYID [18] to model complex man-made objects. In one of the most significant 
applications of computer image generation to date, 81 inn used quadric surfaces 
with texture maps to model Jupiter and its moons for the Voyager flyby [2]. 
Quadrics have also been used to model molecules and are common data base 
primitives in CAD/CAM. None of these applications, however, has exploited the 
potential of quadric surfaces for modeling a wide range of natural features. 

More complex curved surfaces,in particular bicubic surfaces, have been 
studied extensively [3,1,4]. Such surfaces provide great modeling flexibility 
because they allow for continuity of slope between adjoining surfaces. 
Despite the development of several clever image generation algorithms, 
however, the mathematical complexity of these surfaces results in severe 
computation loads for complex scenes. 
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2. AN EFFICIENT DATA BASE FOR SIMULATING NATURAL SCENES 

In selecting a data base for simulating natural scenes, we acknowledged 
the necessity of compromising perfect realism for computational efficiency. 
Efficiency is particularly important when long sequences of images are to be 

generated to produce a dynamic presentation. We therefore set our goal to be 
to represent the essential realism of the real world as efficiently as 
possible. Studying natural scenes we noticed that their essential 
characteristics were surface curvature and textural detail. We also noticed 
that an observer perceives complex scenes as sets of isolated features, such 

as hills, trees, rocks, and lakes. Reviewing the candidate data bases in 
1 ight of these observations, one can see that quadric surfaces hold the 
potential for an efficient natural scene model. Quadrics provide the simplest 
form of curved surface. Moreover, a single quadric surface can be used to 
model an individual feature such as a hill or tree. A geometric data base 

composed of quadric surfaces will therefore minimize the number of scene 
elements and allow straightforward computation of boundaries and surface 
shading. 

In selecting a model for texturinig we noted that the textural detail of 

the real world was statistical in nature. This indicated that it was not 
necessary to store exact texture maps, which would 1 imit the variety of 
texture patterns in the model. To provide on-line control for antia1iasing, 

perspective validity, and dynamics, we chose to produce texturing by means of 
a mathematical function which could be mapped onto scene surfaces in such a 
way as to modulate surface shading and translucence. 

2.1 The Geometric Data Base 

A geometric data base composed only of quadric surfaces would not provide 
the topographical variety required for natural scenes. To allow for adjoining 
quadric surfaces we include in our geometric data base the option of bounding 
each quadric with a finite number of planes. We then define the geometric 
data base to be a set of discrete convex objects, with each object defined by 
one quadric surface and N bounding planes, where N can be zero. This ensures 
that all surface boundaries wi 11 be at most second-order, all owi ng for scan­
line intercept determination in closed form. 
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We define a scene coordinate space (Xs'Ys,ZJ ' with the Xs axis pointing 
east, the Ys axis pointing north, and the Zs axis pointing vertically up. We 
define a ground pl ane (Zs = 0) , and a unit 1 ight vector. For each image of 
the scene, we define an eyepoint and look angle. The coefficients of the 
quadric surface and bounding planes for each object are defined in scene 
coordinates and must be tranasfonmed to eye coordinates (X,Y,~, centered at 
the eyepoint (O,O,~ , with the Y axis pointing in the direction the eye is 
look i ng (Fi g. 1). 

For each quadric, we get an equation in eye coordinates of the form 

Q(X, Y, Z) =Q 1 X2+Q2 y2+Q3Z2+Q4XY+QS YZ+Q6XZ+Q7X+Q8Y+Q9Z+QO=0 (1) 

For each plane, we get an equation of the form 

P(X,Y,Z) = B1X+B2Y+B 3Z+B4=0 ~ (2) 

The surface geometry of a quadric surface bounded by an arbitrary number 
of planes can be quite complex. Generating an image of such an object 

requires exact determination of which surface is visible at each pixel, but 
testing each surface at each pixel is inefficient. We can make use of area 
coherence and scan line coherence by noting that a given surface will cover 
many pixels and many scan lines. We can greatly reduce visibility computation 
by noting that there are far fewer boundary points than there are surface 
points in a typical image, and that boundary infonmation can be used to 
determine surface visibility. The key to efficient processing of the 
geometric data base is, then, to determine which portions of the boundary 
curves are visible in the image. 

We define an image plane with coordinates (x,~ parallel to the Xl plane 
a distance f in front of the eyepoint such that the y axis pierces the 
coordinate axes origin. We also define the image x axis to be parallel to the 
eye coordinate X axis and the image z axis to be parallel to the eye 
coordinate Z axis (Fig. n. Then the transformation from eye coordinates to 
image coordinates can be represented as 

Z = kx 
Y = kf 
Z = kz 

(3) 
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Our strategy will now be to use equations (1), (2), and (3) to project 
all surface boundaries onto the image plane. We will then determine all key 

points on each boundary, that is points at which boundary visibility, and 
therefore surface visibility, changes across scan lines. We will then use the 

key points to determine a scan line list of visible boundaries and surfaces. 

The most important image curve is the 1 imb curve, defined as the 

projection of the quadric silhouette. The limb curve can be derived by 
substituting equation (~ into equation (~ to obtain a quadratic equation in 

k, 

( 4) 

where A is a second-order expression of the image coordinates, x and z, B is a 

1 inea expression of x and z, and C is a constant. (Algebraic expansions will 
be omi tted for the sake of brevity.) The parameter k rel ates to the di stance 

from the eye, varying from a value of 0 at the eyepoint to a value of 1 at the 
image plane, and increasing along the ray out into the eye coordinate space. 

In general, a ray will intersect a quadric surface at two points, giving two 

distinct values of k from equation (4). By definition, the 1 imb curve is the 

set of image points for which the rays are tangent to the quadric surface. 
For these points k is single valued, so the discriminant of equation (~ is 

zero. 

B2 - 4AC = 0 ( 5) 

This then gives the 1 imb curve as 

f(x,~ =a1x2+a2z2+a3xz+a4x+a5z+a6 ( 6) 

where the co~fficients are expressions containing only the quadric surface 

coefficients, and f, the distance from the eye to the image plane. 

The remaining image curves will be intersection curves, that is, 

projections of the curves of intersection between the quadric and its bounding 

planes. To solve for the coefficients of an intersection curve, we must 

satisfy equations (1), (2), and (3) simultaneously. Substituting equation (3) 
into equat ion (2), we get 

(7) 

Then substituting for k in equation (3) and using the result in equation (1), 

we get the intersection curve as 
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( 8) 

where the coefficients are all expressions containing the quadric surface 
coefficients, the bounding plane coefficients, and f. 

Given a quadric surface with one or more bounding planes, we must 
determine which boundary curve segments are visible. To do this, we introduce 
the concept of a visibility line. We define a visibility line for each 
bounding plane as the projection on the image plane of the line of 
intersection between the quadric silhouette plane and the bounding plane 
(figure ~. Since the visibility line will be used to partition a particular 
curve into visible and invisible segments, its definition must include a sense 
or sign determined from the sense of the boundng plane. Rewriting equation 
(2) as an inequality to include the bounding plane sense, we h,ave 

P(X,Y,Z) = B1X+B 2Y+B 3Z+B 4>0 

Substituting equation (3) into equation (9) gives 

k(B1x+B 2f+B3z] + B4>0 

(9) 

(10) 

The equation for the silhouette plane can be determined from equations (~ and 

(5) to be 

kB+2C = 0 (11) 

Since B is a linear expression of x and z, and C is a constant, equations (10) 
and (1~ can be combined to give the visibility line as 

(12) 

where the coefficients are expressions of the quadric surface and bounding 
plane coefficients and f. 

The visibility line defined by equation (12) can be used to determine the 
visibility of any point on the limb curve relative to a particular bounding 
plane. If the limb point satisfies equation (12) , it is defined to be visible 

relative to the plane used to define the line. If more than one bounding 
plane is used in the object definition, a 1 imb point must satisfy the 
visibility line for each in order to be visible in the image. 

The visibility line for each bounding plane can also be used to determine 
the visibility of any point on the intersection curve related to that plane. 
This visibility test is only necessary when the plane faces away from the eye, 
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that is, when the eye is on the same side of the plane as the defined part of 
the quadric surface (fig~ 3~. When the eye is on the other side of the 
plane, no visibility test is necessary because the whole intersection curve is 
visible (fig. 3~. To test which side of the plane the eye is on we simply 
substitute the eyepoint (X,Y,Z) = (0,0,0) into equation (9) to get 

(13) 

if equation (1~ is satisfied, the eye is on the object side of the plane and 
a visibility test for the intersection curve is required. Figure 3a shows 
that in this case, the visible portion of the intersection curve lies on the 
opposite side of the visibility line as the visible portion of the limb 
curve. Therefore, for a point on the intersection curve to be visible, it 
must fail to satisfy equation (12). 

Thus, the visibility line can be used to determine portions of the limb 
curve defined to be visible as well as portions of the intersection curve 

whose visibility depends on eye position in the scene. 

Images of objects with more than one bounding plane may include linear 
boundaries resulting from the intersection of two planes. We introduce the 
concept of an intersection line, which we define as the image of the 
intersection between two bounding planes. The intersection line will define 
that portion of the intersection curve of one bounding plane defined to be 
visible relative to the other (figure ~. In this sense, the intersection 
line is analogous to the visibility line with the first intersection curve 
replacing the limb curve. With a derivation similar to that used for the 
visibility line, we get the intersection line for two bounding planes as 

(14) 

where the coefficients are in terms of the coefficients of the two bounding 
pl anes. 

In addition to its function as a visibility criterion, an intersection 
curve may also be a visible image boundary. In order for a point on an 
intersection line to be visible it must satisfy the appropriate form of 
equation (1~ for all other intersection lines produced by a common bounding 
p1 ane. 
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Ha vi ng computed the equat ions for all image boundary curves and 1 i nes, we 
must now determine which boundary segments are visible. We note that boundary 
segments are generally visible over many scan 1 ines and that their state of 

visibility changes only at certain key points. Determining these key points 

and restricting visibility tests to a few sample scan lines will greatly 

reduce visibility computations. The key points of boundary visibility are 

curve extrema (minimum and maximum ~ , contact points, intersection points, 

and triplet points. 

Curve extrema can be computed from equations (~ and (~ in the standard 

manner. Since curves don't exist on scan lines outside there extrema, they 

clearly are potentially visible only on scan lines in between. 

We defi ne a contact po i nt as a poi nt of tangency between the 1 imb curve 

and an intersection curve (figure 5). In general, two contact points exist 

for each intersection curve and can be determined from the intersection of the 

relevant visibility line and the limb curve (equations (12) & (6)). Note that 

certain object geometries and viewing aspects may produce a single contact 

point or no contact points for a given intersection curve (figure ~. Contact 
points are points of potential change of visibility state for limb and 

intersection curves. 

We define an intersection point as a point of intersection between an 

intersection line and an intersection curve related to a common plane (figure 

~. Intersection points are points of potential change of visibility for 

intersection curves and intersection lines. 

We define a triplet point as the image point of the corner intersection 
of three bounding planes. Triplet points can be computed as the intersection 

of two intersection 1 ines and are points of potential change of visibility for 

intersection 1 ines (figure 7). 

Once we have computed all the potentially visible curves, lines, and key 
points for the image of an object, we are prepared to perform visibility 
tests. In determi n i ng 
following rules apply. 

surface must be tested 

what tests to make for particular boundaries, the 

Any image point relating to a point on the quadric 

against all visibility lines. Any image point relating 

to a point on a particular bounding plane must be tested against all 

intersection lines related to that plane (except for the line producing the 
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poinq and, if the plane is not visible, the visibility line related to that 
plane. 

We begin the visibility testing by testing all key points, since only 
visible key points affect visibility changes in the boundaries. Editing out 
invisible key points, we compile a list of visible key points sorted on z in 
scan~ine order. We call this a z-band list because it defines regions in the 
image z direction (vertical) in which boundary visibility remains constant 
from scan line to scan line. 

Within each z-band in the list, an average z value is computed to 
represent a typical scan line on which all boundary curve and intersection 
1 ine intercept points are computed. These intercept points are tested for 
visibility, and codes for all visible boundary intercepts are entered in the 
z-band, sorted from left to right based on the intercept x value. Boundary 
curve intercepts are coded to define leftmost or rightmost intercept. Finally 
the sorted visible boundary intercepts are used to determine the visible 
surfaces in between. The surface between two boundary intercepts is assumed 
to be the quadric surface unless both boundaries are related to a common 
bounding plane. 

The resulting object visibility list, consisting of sorted z-bands, each 
with x- sorted boundary intercept and surface codes, provides a very efficient 
image "blueprint" for directing scan-line surface shading of the object. As 
the image is generated, scan line by scan line, a particular object is 
considered only if the scan line falls within the z-band list. For each such 
object, the pertinent z-band is referenced, and, proceeding from left to 
right, boundary codes are referenced, intercepts computed, and surfaces shaded 
on in between pixels. Figure 8 shows how this approach simplifies the image 
generation of a complicated object by reducing a maze of potentially visible 

boundaries to a manageable list of visible boundaries and surfaces. Figure 8a 
shows the limb and intersection curves, and the intersection and visibility 
lines in an image of a sphere bounded by 6 planes. Figure 8b shows the z 
bands indicated by horizontal lines drawn through all visible key points. 
Note how within each z band the visibility of boundaries and surfaces remains 
constant. Figure 8c shows the final shaded object with hidden surfaces 
removed. 
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In addition to streamlining intraobject visibil ity, that is, the 
determination of visible surfaces for a single object, the visibility list 
simpl ifies interobject visibility, the determination of priority between 
different objects. Because our geometric data base includes only convex 
objects, we need not compute the distance to the visible object surface at 
every pixel. Instead, we can use the z-band 1 ists to compute the leftmost and 
rightmost surface distance on a scan line and use linear interpolation in 
between. Then, when two objects overlap on a scan line we can use the 
interpolated distances to determine priority within the overlap region. 

2.2 The Texture Data Base 

We can simulate textural detail efficiently by modulating surface shading 
intensity in a defined manner. In so doing, we must take care, to assure 
perspective validity by making the texture intensity depend on the scene 
coordinates of the surface being textured. For any given image we are 
interested in texturing visible surfaces only. Thus it would be inefficient 
to produce texture intensity values for all scene surface points. The most 
practical approach is to produce texture values only for visible scene surface 
points corresponding to image sample points. Since the image sample points 
depend on the viewing perspective, we must be able to produce texture values 
for arbitrary scene points. For this reason we have chosen a mathematical 
function to produce texture. A mathematical texturing function offers the 
additional advantage of requiring a minimal data base to produce a wide 
variety of texture patterns, each of which can cover an unlimited region in 
the scene. The control inherent in a mathematical function, computed during 
image generation, also provides for straightforward antialiasing of texture 
patterns and allows implementation of complex texture motion. 

In choosing the exact form of our texturing function, we decided that it 
would be most efficient to represent real-world detail at a statistical 
level. A rather obvious way to do this is to use the principle of Fourier 
expansion, and, indeed, this approach to texturing is not unique [14, 11]. 

After investigating different expressions of various waveforms, we found a 
very effective texturing function to be defined as 

n C [Sin(w.X + PX.) + 1 J n 
l 

[Sin(w.Y + PY.) + 1J 
T (Xs ' Y s' Z s) = L . 1 S 1 I 1 S I (15) 1 2 2 

i=1 i =1 

11 
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here PXi and PYi represent phase shift functions to avoid a tartan-like 
regularity of the pattern. We have found that defining PXi as a sinusoidal 
function of Ys and PYi as a sinusoidal function of Xs produces natural-looking 
patterns for low values of n (Figure 9). 

The primary use of the texturing function is to simulate surface detail 
by modulating shading intensity. This is done by computing a weighted average 
of the surface shading intensity and the texture function value at each 
visible point. A texture weighting parameter is defined for each object to 
provide flexibility in scene modeling. A secondary use of the texture 
function is to simulate boundary irregularity and amorphousness of certain 
natural features, such as trees and clouds. We accomplish this by treating 
locally dark texture regions on an object's suface as though they were holes 
in the object. This effect is achieved quite simply by assigning a threshold 
value for the texture function and defining an object to be translucent at any 
image point where the texture function falls below the threshold. The 
artificial boundaries produced between the visible and invisible portions of 
the texture surface can be softened by varying the translucence linearly as 
the texture function crosses the threshold. This technique is demonstrated in 
Figure 10, which shows a sky plane textured with variable translucence to 
simulate a cloud layer. 

The texturing function greatly enhances the realism of objects defined by 
the geometric data base. Figure 11a shows mountains modeled by the geometric 
data base only, and Figure llb shows the same scene inhanced by the texturing 
function. In addition to adding simulated topographical detail, the texturing 
blends surface shading across boundaries between abutting objects. This 
unifying effect is due to the fact that all objects, as well as the ground 

plane, are textured with the same texture function parameters so that the 
texturing function maps the same pattern continuously across all scene 
surfaces as a function of scene coordinates. 

The combination of the geometric and texture data bases is particularly 
effective in simulating amorphous objects, such as trees and clouds, whose 
boundaries are both complex and subtle (figure 1~. The trick of simulating 
such features so efficiently is to control the translucence at an object's 
silhouette. This capabil ity is provided as much by the geometric data base as 
by the texturing function, for it is the definition of the 1 imb curve 
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(Equation ~ that allows us to vary the threshold of the texturing function to 
increase translucence in a straightforward manner at image points near the 
object boundary. Because the translucence can be increased smoothly and 
continuously, the image will have soft boundaries which will require no 
antialiasing. 

~ 

The control inherent in the mathematical textu~~i~ function has two 
more advantages over less flexible texturing techniques, such as stored 
texture maps. Antialiasing of texture patterns can be achieved simply by 
testing sine wave frequencies and dropping those that exceed the image 
sampl ing frequency (projected into scene spac~. In addition, any of the 
texturing function image parameters can be varied from frame to frame, 
allowing the simulation of a wide range of dynamic effects. Thus it would 
require little additional frame computation to simulate trees blowing, smoke 
rising, clouds drifting, or rivers flowing. 

The texture data base required to implement this simulation capability is 
extremely modest. A realistic texture pattern can be defined by 25 
parameters, including sine coefficients and frequencies, phase shifts, and 
translucence thresholds. A given texture pattern can be used for any number 
of objects covering any region in the scene. Thus, all trees of a particular 
type could be simulated using one pattern, all rivers using another pattern, 
etc. We have found that complex and varied natural scenes can be simulated 
effectively using only 10 texture patterns. This compactness of the texture 
data base simplifies both scene modeling and image generation. 

2.3 Data Base Construction for Complex Scenes 

The new data base simplifies the modeling of complex scenes because it 
conveniently partitions the model into two levels of topographical detail. 
The geometric data base can be used to model major topographical features such 
as hills explicitly, and the texture data base can be used to represent 
secondary topographical variations statistically. The compactness of each of 
these data bases permits a straightforward specification of the parameters of 
size, shape, position, and frequency content, which are the essential 
characteristics of natural scene features. 

To facilitate the model ing of complex natural scenes, we developed 
procedural algorithms to generate clusters of scene features. Only two types 
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of quadric surfaces are required to produce a wide variety of scene 

features. Hyperboloids of two sheets are very effective in simulating hills 

and mountains, and ellipsoids are efficient for modeling trees, rocks, and 
clouds. For each feature cluster, we define a region on the ground plane over 

which the cluster, will be generated. We also define a typical spacing 

between features in the cluster as well as size, shape, and color parameters 

for a typical template object. The algorithm places the template object 
within the defined region at positions determined from the defined spacing. 

As the object modeling each feature is generated, the algorithm perturbs its 

position, size, shape, and color parameters randomly to produce natural 

statistical variations within the cluster. Adjacent objects are tested for 

intersection, and bounding planes are computed for abutting objects. This 

permits the model ing of topographic structures, such as rolli~g terrain, 

mountain ranges, and forests, which are too complex to be simulated by 

isolated objects. The algorithm also allows us to define features in a 
cluster as "terrain objects" upon which other scene objects will lie. Terrain 

objects are generated first so that the objects composing subsequent clusters 

can be raised to the appropriate terrain elevation after they are positioned 

on the ground plane. The simplicity of quadric surface shape and position 

definition makes this process quite straightforward. Similarly, clusters can 

be defined to be positioned at a fixed altitude above the ground plane, a 
capabil ity useful in model i ng clouds. 

To use the mathematical texturing function to model secondary 

topographical variations we must define sets of function parameters, with each 

set chosen to simulate a desired texture pattern. The individual parameters 

in each set can be determined from an analysis of the spatial frequency 

content of features being modeled. In general, natural features have a power 

spectrum whose amplitude decreases as frequency increases. We have found that 

natural-looking texture patterns can be generated using from 3 to 7 sine waves 

whose frequencies increase by a factor of approximately 2 and whose amplitudes 
decrease by a factor of approximately one hal f the square root of 2. The 

complete texture data base is defined by a list of parameter sets. As 
clusters of scene features are generated, each object is assigned a specified 

texture parameter set number. A particular texture pattern can be assigned to 

any number of clusters, minimizing the size of the overall data base. 
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Using the clustering algorithm, we can quickly generate and change models 
of complex natural scenes. Figure 13 shows an example of a scene model 

including clusters of hills, mountains, trees and clouds. Figure 14 shows a 
variation of the model altered by a small number of parameter changes in the 

data base. 
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3. CONCLUSIONS 

Textured quadric surfaces provide a means of bridging the gap between 
computationally cheap, but cartoonish, scene simulation and highly realistic, 
but costly, scene simulation. Textured quadric surfaces produce a compact, 
functional data base related directly to the most significant topographical 
characteristics of scene features. This approach minimizes image generation 
computation because it minimizes the number of scene elements that must be 
processed. Textured quadric surfaces allow us to represent the essential 
realism of natural scenes as an impressionist painter would, thus avoiding the 
costly replication of unimportant details. The new scene model is 
particularly effective for modeling amorphous objects, such as trees and 
clouds, which continue to be stumbling blocks for other approaches. The new 
model is, however, comprehensive because it can model man-made as well as 
natural features. The inclusion of bounding planes even permits modeling 
linear features, such as buildings. 

Scene simulation using textured quadric surfaces has application in many 
diverse fields, including art, entertainment, advertising, scientific 
simulation, and training. At Grumman we have used it in a public relations 
film to show an advanced concept, forward-swept-wing aircraft in flight before 
it was built (figure 1~. We have also applied the technology to pattern 
recognition research in target tracking by a missile [12]. We are currently 
investigating real-time implementation of the algorithms for fl ight 
simulators. 
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